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Abstract: Ni-based catalysts supported on alumina derived from the pseudo-boehmite prepared
by the impregnation method were employed for catalytic dry reforming of methane reaction at the
temperature of 550–750 ◦C. The effect of calcination temperature on physicochemical properties such
as the Ni dispersion, reduction degree, nickel crystallite sizes, and metal–support interaction of the
catalysts was investigated. The characterization results show that increasing the catalyst calcination
temperature leads to the formation of nickel-alumina spinel, which enhances the metal–support
interaction and increases the reduction temperature. The nickel nanoparticle size decreases and the
effective dispersion increases with the increasing calcination temperature from 450 ◦C to 750 ◦C due
to the formation of nickel aluminate. The catalyst calcined at 750 ◦C exhibits the highest CH4 and
CO2 conversion owing to the small Ni0 active sites and high Ni dispersion. In a 200 h stability test in
dry reforming of methane at 700 ◦C, the Ni/Al2O3-750 catalyst exhibits excellent catalytic stability
and anti-coking ability.

Keywords: carbon dioxide; methane; calcination temperature; dry reforming; nickel particles

1. Introduction

With the huge development of modern industrialization, global warming and climate
change caused by CO2 emission from the combustion of conventional fossil fuels have
become serious problems in recent years [1,2]. Meanwhile, CH4 from petroleum resources
and landfills is also a major contributor to greenhouse gases [3,4]. As an abundant alter-
native to petroleum and coal, natural gas and biogas that are rich in CH4 have become
the main energy resources [5–8]. Therefore, the dry reforming of methane (Equation (1)),
which can simultaneously utilize methane and carbon dioxide, is significant to alleviate
the energy crisis and to reduce greenhouse gas emissions [9–11]. Compared with the
partial oxidation and steam reforming of methane, dry reforming of methane is industrially
advantageous due to the syngas with a low H2/CO molar ratio of nearly 1, which is more
appropriate for the synthesis of hydrocarbons with long-chain through the Fischer–Tropsch
reaction [12–15].

CH4+CO2 → 2H2+2CO ∆H
◦
298= +247 kJ·mol−1 (1)

The stable structure of CH4 and CO2, owing to their high bond energies, makes the
dry reforming of methane a very challenging task [16–18]. Furthermore, the endothermic
dry reforming of methane reaction is always performed at high temperatures. The reverse
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water gas shift reaction (RWGS; Equation (2)), which occurred as a side reaction, causes
higher CO2 conversion than that of CH4 and the H2/CO ratio lower than 1 [19,20].

CO2+H2 → CO + H2O ∆H
◦
298= +41.2 kJ·mol−1 (2)

Over the past decades, many kinds of metal catalysts have been widely investigated
for the dry reforming of methane reaction. Nobel metals, such as Ru, Rh, Pt, Ir, and Pd,
exhibit excellent catalytic performance and coke resistance [21–25]. However, they are
not suitable for scaled-up industrial applications because of their high cost and scarcity.
As an economic substitute, Ni-based catalysts have been studied extensively due to the
low cost and comparable catalytic activity to noble metals [11,26]. A big drawback of
Ni-based catalysts is that they are always suffering from rapid deactivation because of
coking deposition and sintering of Ni nanoparticles [20,27,28]. In the dry reforming of
methane reaction, coke formation is mainly caused by the methane decomposition reaction
(Equation (3)) and the CO disproportionation reaction (Equation (4)):

CH4 → C + 2H2 ∆H
◦
298= +75.0 kJ·mol−1 (3)

2CO → C + CO2 ∆H
◦
298= −172.0 kJ·mol−1 (4)

Therefore, preventing the sintering of Ni active sites and reducing the amount of
carbon deposition on Ni-based catalysts are of great significance from both the academic
and industrial perspectives. Great efforts have been focused on improving catalytic perfor-
mance and catalyst stability by loading Ni on various oxide supports, such as CeO2, SiO2,
ZrO2, Al2O3, MgO, etc. [29–33]. The supports were shown to play an important role in
catalytic performance and coke formation. The interaction between active metal component
and support influences the structure of catalysts, the particle size, and the dispersion of
active sites, affecting the catalytic performance and stability of catalysts. Furthermore,
catalysts with high metal dispersion and small metal nanoparticles caused by strong
metal–support interaction have been proved to exhibit excellent catalytic performance [31].

Ni supported on alumina is a promising catalyst for large-scale industrial application
because of its affordability and thermal stability. The alumina surface (the γ form) has
certain acidity and functional groups like hydroxyl that could enhance metal–support
interaction [27,31,34,35]. Kumar et al. studied the catalytic performance of Ni-based
catalysts with diverse support materials (Al2O3, TiO2, ZrO2, SBA-15, MgO, and CeO2-
ZrO2) for the methane reforming reactions. The Al2O3-supported Ni catalyst had the best
catalytic performance in the reaction conditions studied, which could be attributed to the
well-dispersed small Ni nanoparticles, strong metal–support interaction, high reduction
degree, and high basic site concentration in the Ni/Al2O3 catalyst [36]. Our previous
work also found that Ni/Al2O3 spinel-derived catalysts possessed a large number of well-
dispersed, small Ni0 particles which could yield outstanding activity and stability under
optimized reaction conditions [34]. Several studies investigated the effect of calcination
temperature on the supported active metal species [32,37–41]. Calcination temperature
has a great influence on the dispersion of active metal particles and the metal–support
interaction, thus affecting the activity and stability of catalysts. Zhang et al. investigated
the relationship between the interaction of Ni species and alumina versus calcination
temperature during the steam reforming of acetic acid. They found that high calcination
temperature resulted in the formation of nickel-alumina spinel, which strengthened the
interaction between nickel species with alumina. After the nickel-alumina spinel was
completely reduced, the catalyst exhibited good activity [42]. Wang et al. revealed that
calcination temperature significantly affected the Ni particle size, the degree of reduction,
metal–support interaction, and surface Ni active species content. Calcination temperature
is pivotal to determine the activity and stability of the Ni-based catalysts in steam reforming
ethanol reaction [43].

The study of the relationships between the metal–support interaction of Ni-based
catalysts and calcination temperature is expected to have a crucial impact in enhancing
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the catalytic performance in dry reforming of methane reaction. In the present work, we
investigate the effect of calcination temperature on the catalytic performance of alumina
supported Ni-based catalysts in dry reforming of methane reaction. A series of Ni-based
catalysts supported on alumina derived from the pseudo-boehmite were prepared by the
simple wet impregnation method, and then calcined at different temperatures (450, 550, 650,
and 750 ◦C). The effects of calcination temperature on Ni dispersion, metal nanoparticle
size, and reduction degree were investigated by various techniques. The characterization
results of the catalysts calcined at different temperatures are correlated to their activity and
stability in the dry reforming of methane reaction.

2. Materials and Methods
2.1. Catalyst Preparation

The alumina support was derived from the calcination of pseudo-boehmite precursor
(Shandong City Star Petroleum Chemical Technology Co. Ltd., Shandong, China) at 750 ◦C
for 3 h. The catalysts were prepared through the wet impregnation method; 0.49 g of
Ni(NO3)2·6H2O was initially dissolved in 16 mL of water and 1.0 g of support power
was then added into the nickel nitrate solution. The mixture was magnetically stirred
overnight at room temperature, and the excess water was removed from the slurry in a
rotary evaporator operating at 60 ◦C. The solids were dried at 120 ◦C for 12 h and calcined
at different temperatures (450, 550, 650, and 750 ◦C) for 3 h at a heating rate of 1 ◦C·min−1

from room temperature in a muffle furnace. The as-prepared samples were denoted as
Ni/Al2O3−x (x represented the calcination temperature), and the loading of metal Ni was
10 wt.%.

2.2. Catalyst Characterization

The nickel content of the calcined catalysts was decided by inductively coupled plasma
atomic emission spectrometer (ICP-AES) performed on a Thermo Elemental IRIS Intrepid
apparatus. Before the analysis, 10 mg catalyst power was digested at 100 ◦C for 3 h in a
mixed acid solution of 2 mL concentrated nitric acid (67 wt.%) and 3 mL hydrochloric acid
(37 wt.%).

Transmission electron microscopy (TEM) was obtained on a JEOL JEM2011 electron
microscope. The catalysts were ultrasonically suspended in anhydrous ethanol. The
suspension was then dropped onto a copper grid-supported transparent carbon foil and
dried in the air.

The specific surface area, pore volume, and average pore size of different samples were
measured from the N2 adsorption–desorption isotherms at −196 ◦C using a Micromeritics
Tristar 3000 apparatus. Before the measurements, the sample was degassed under vacuum
at 250 ◦C for 3 h. The Brunauer–Emmett–Teller (BET) method was applied to calculate the
specific surface areas of the catalysts. The cumulative volumes of pores and average pore
diameters were calculated from the desorption branch of the nitrogen isotherms by the
Barrett–Joyner–Halenda (BJH) model.

X-ray diffraction (XRD; Bruker D8 Advance diffractometer) with Cu Kα radiation
(λ = 1.5418 Å) was used to characterize the samples at 40 kV and 40 mA. The samples were
scanned in the range of 10◦ to 80◦, a step size of 0.01◦, and a step time of 0.6 s. The average
crystallite size of the metallic Ni was estimated according to the Scherrer equation.

The surface composition of the catalysts was analyzed by X-ray photoelectron spec-
troscopy (XPS; Versa Probe PHI 5000, Al Kα). The binding energies were calibrated using
the containment carbon (C1s = 284.6 eV).

The reducibility of the catalysts was studied by H2 temperature-programmed reduc-
tion (H2-TPR) using a Micromeritics ChemiSorb 2720 apparatus with a thermal conductivity
detector (TCD). Before measurement, ~45.0 mg catalyst was placed in a U-shape quartz
tube and degassed under Ar at 200 ◦C for 2 h to remove the adsorbed moisture and impuri-
ties. The sample was cooled to room temperature and the was gas changed to 10% H2/Ar.
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Then, the sample was reduced in a stream of 10% H2/Ar (50 mL·min−1) with a heating
rate of 10 ◦C·min−1 from room temperature up to 900 ◦C.

H2 temperature-programmed desorption (H2-TPD) experiments were also carried
out on a Micromeritics ChemiSorb 2720 apparatus. Approximately 100 mg of catalyst was
placed into the quartz tube and reduced with a flow of 10% H2/Ar (50 mL min−1) at 750 ◦C
for 90 min. After reduction, the sample was cooled down to 40 ◦C and then purged with
Ar flow (50 mL min−1) for 1 h to remove weakly adsorbed species on the surface. The
desorption process was carried out by increasing the temperature of the sample from 40 to
700 ◦C at a heating rate of 10 ◦C min−1 under the flow of Ar. The amount of desorbed H2
was calculated by integrating the area of the H2-TPD profiles, and the equipment was prior
calibrated using Ag2O reduction as the reference. The Ni dispersion was calculated based
on the stoichiometry of H:Nisurface = 1:1.

The amount of deposited carbon in the stability test was evaluated by the thermogravi-
metric analysis performed on SDT Q600 integrated thermal analyzer. The spent catalyst
(~5 mg) was heated under the flow of air (100 mL min−1) from room temperature to 900 ◦C
with a heating rate of 10 ◦C min−1.

2.3. Catalytic Activity and Stability Tests

A fixed-bed reactor system was used to test the catalytic activity and stability tests
for dry reforming of methane using a quartz tube with an inner diameter of 5 mm and a
length of 48 cm at atmospheric pressure. The gas flow rate was controlled by mass-flow
controllers. Typically, 30 mg catalyst (40–60 mesh) was mixed with 250 mg inert quartz
sand (40–60 mesh) and placed into the reactor. The catalyst was reduced in a flow of H2
(30 mL·min−1) at 750 ◦C for 90 min before the reaction, then purged with Ar for 40 min.
Then, the reaction gas (CO2:CH4:Ar volume ratio of 1:1:3) was introduced with a gas hourly
space velocity (GHSV) of 24,000 mL h−1 g−1. The effluent product gases were cooled in an
ice-water bath and analyzed by online gas chromatography with a thermal conductivity
detector (TCD) using a TDX-01 packed column. The catalytic activity of the catalysts was
tested at the temperature range of 550 to 750 ◦C. A long-term stability test was performed
at 700 ◦C for 50 and 200 h under identical conditions. The conversions of CH4 and CO2
were calculated using the following formulae:

Conversion of CH4 (%) =
FCH4,in − FCH4,out

FCH4,in

×100%

Conversion of CO2 (%) =
FCO2,in − FCO2,out

FCO2,in

×100%

where FCH4,in and FCO2,in represent the inlet flow rates of CH4 and CO2, respectively, and
FCH4,out and FCO2,out represent the outlet flow rates of outlet CH4 and CO2, respectively.

3. Results and Discussion
3.1. Effect of Calcination Temperature on the Physicochemical Properties of Ni/Al2O3 Samples
3.1.1. ICP-AES and N2 Adsorption-Desorption Analysis

The chemical compositions of the calcined Ni/Al2O3-x samples are summarized
in Table 1. ICP-AES was performed to determine the exact Ni content of the calcined
samples, and the results show that the measured Ni contents are consistent with the
theoretical values. The influence of calcination temperature on physicochemical properties
of the samples was investigated by the N2 adsorption–desorption analysis, and the results
are presented in Figure 1. The alumina support and calcined samples exhibit type IV
isotherms coupled with the hysteresis loop [34,43]. This indicates that alumina support and
Ni/Al2O3 catalysts calcined at different temperatures have a typical mesoporous structure.
The corresponding surface area, pore volume, and average pore diameter are also presented
in Table 1. The surface area, pore volume, and average pore diameter of Al2O3 support
are 214 m2 g−1, 1.14 cm3 g−1, and 10.2 nm, respectively. After Ni impregnation into
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Al2O3 support, the surface area and pore volume of Ni/Al2O3 samples decrease with the
increasing calcination temperature. It is also found that the hysteresis loop shifts slightly
toward the high relative pressure with increase of calcination temperature as shown in
Figure 1. It has been generally accepted that the shift of the hysteresis loop toward to high
relative pressures indicates the existence of larger pore diameters [37], which is consistent
with the average pore diameter result in Table 1.

Table 1. Physicochemical properties of the Al2O3 support and the calcined Ni/Al2O3-x samples.

Samples Ni Content
(wt.%) 1

BET Surface
Area (m2 g−1)

Pore Volume
(cm3 g−1)

Average Pore
Diameter (nm)

Al2O3 - 214 1.14 10.2
Ni/Al2O3-450 9.6 201 1.06 10.4
Ni/Al2O3-550 9.9 192 0.89 11.0
Ni/Al2O3-650 10.0 173 0.74 11.8
Ni/Al2O3-750 9.6 165 0.67 12.9

1 Analyzed by ICP-AES.
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Figure 1. N2 adsorption–desorption isotherms of Al2O3 support and Ni/Al2O3 samples calcined at
different temperatures.

3.1.2. XRD Characterization

Figure 2 shows the XRD patterns of the Al2O3 support and Ni/Al2O3 samples treated
at different calcination temperatures. All the samples exhibit the diffraction perks at 2θ
of 37.6◦, 39.5◦, 45.9◦, and 67.0◦, which correspond to the (311), (222), (400), and (440)
diffractions of γ-Al2O3 (PDF No. 10-0425), respectively [43,44]. For the Ni/Al2O3-450 and
Ni/Al2O3-550 samples, there is a weak peak at 2θ of 43.3◦ assigned to the (200) diffractions
of NiO (PDF No. 04-0835) without observable peaks assigned to the NiAl2O4 phase, indicat-
ing the NiO phase may be the main component in Ni/Al2O3-450 and Ni/Al2O3-550 [25,40].
With increasing calcination temperature, the diffractions of the NiO phase disappear grad-
ually, and instead three new peaks at 2θ of 19.1◦, 31.6◦, and 59.7◦, corresponding to the
(111), (220), and (511) diffractions of NiAl2O4 spinel (PDF No. 10-0339), are observed in
the Ni/Al2O3-650 and Ni/Al2O3-750 samples [34,44]. Moreover, the intensity of NiAl2O4
spinel phase in Ni/Al2O3-750 is much stronger than that in Ni/Al2O3-650, indicating more
NiAl2O4 spinel phase exists at high calcination temperature. In the catalysts calcined at
different temperatures, the Ni species assigned to NiO or NiAl2O4 cannot be distinguished
by XRD results because of the overlapped diffraction peaks of NiO, Al2O3, and NiAl2O4.
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Therefore, the effect of calcination temperature on the Ni species of Ni/Al2O3 samples will
be further investigated with H2-TPR and XPS analysis below.
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XRD patterns of the reduced catalysts are shown in Figure 3. The diffractions of γ-
Al2O3 are observed for all samples, indicating that the structure of Al2O3 support maintains
after reduction. Three new peaks at 2θ of 44.5◦, 51.9◦, and 76.4◦ are observed for all the
catalysts after reduction in H2, which can be assigned to the (111), (200), and (220) lattice
planes of metallic Ni (PDF No. 04-0850), respectively [33,45]. The XRD results show that the
intensity of the metallic Ni phase decreases with increasing calcination temperature. The
amount of Ni0 species decreases with increasing calcination temperature, indicating the
metal–support interaction between Ni species and the alumina support is stronger and the
Ni species are more difficult to reduce at the higher temperature. The Ni nanoparticle size
was estimated from Ni (200) diffraction peak using the Scherrer equation, and the results
are given in Table 2. The particle size of the Ni0 decreases with the increasing calcination
temperature. The high calcination temperature facilitates the nickel oxides to react with the
alumina support and strengthens the metal–support interaction through the formation of
the NiAl2O4 spinel phase. Therefore, Ni species can be reduced to form small Ni particles.

Table 2. Crystallite size, reduction degree, and dispersion of Ni/Al2O3-x catalysts after reduction
with H2 at 750 ◦C for 90 min.

Samples Ni Particle Size
(nm) 1

Degree of
Reduction (%) 2

Dispersion (%)
3

Effective
Dispersion (%) 4

Ni/Al2O3-450 12.6 91.6 4.3 4.7
Ni/Al2O3-550 11.5 87.4 4.5 5.1
Ni/Al2O3-650 10.2 80.9 4.6 5.7
Ni/Al2O3-750 9.2 71.6 5.2 7.3

1 Estimated from Ni (200) (2θ = 51.9◦) diffraction peak using Scherrer equation. 2 Calculated based on the H2
consumption during the reduction processes. 3 Calculated based on the H2 desorption amount during H2-TPD.
4 Effective dispersion = dispersion/degree of reduction × 100%.
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3.1.3. TEM Analysis

The morphology of the samples calcined at different temperatures has been charac-
terized by TEM. As it can be seen in Figure 4, all samples present similar morphology at
the nanoscale and do not change significantly with increasing calcination temperature.
Combining with the XRD results that all catalysts exhibit the diffraction peaks correspond
to γ-Al2O3 phase, it can be proved that the Ni/Al2O3-x samples possess favorable thermal
stability after being calcined up to 750 ◦C in this work. The TEM images and Ni parti-
cle size distributions of the reduced catalysts are shown in Figure S1. The average Ni
nanoparticle sizes of the reduced catalysts are 12.4 nm, 11.8 nm, 10.3 nm, and 9.5 nm for
Ni/Al2O3-450, Ni/Al2O3-550, Ni/Al2O3-650, and Ni/Al2O3-750, respectively. The results
are in agreement with the XRD results in Table 2.

3.1.4. H2-TPR and H2-TPD Analysis

H2-TPR was performed to study the nickel reducibility and the metal–support interac-
tions to identify the nature of Ni species. As showed in Figure 5, the reducible NiO species
shown in the H2-TPR study are usually classified into three types: (1) the peak located in
the low-temperature region of 300 to 550 ◦C is typically assigned to the α-type NiO species
that have weak interaction with the alumina support, (2) the moderate-temperature peak
in the range of 550 to 700 ◦C represents the β-type NiO species with the strong interac-
tion with alumina, and (3) the reduction peak located in the high-temperature region of
more than 700 ◦C is assigned to the γ-type NiO species which is attributed to the stable
nickel aluminate phase with a spinel structure [40,43,44,46]. From the H2-TPR results, the
α-type and β-type NiO species mainly exist in Ni/Al2O3-450, with a small shoulder at
~720 ◦C corresponding to the NiAl2O4 species which can be detected in the XRD pattern.
The reduction peaks of the α-type and β-type NiO species shift to high temperature for
Ni/Al2O3-550 and Ni/Al2O3-650, and no obvious peak assigned to the α-type NiO species
appears in Ni/Al2O3-750. Meanwhile, the peaks assigned to the NiAl2O4 phase (γ-type
species) increase their intensity and shift to high temperature with the increase of calcination
temperature. These results also clearly show that NiO species and Al2O3 can react to form
NiAl2O4 at high temperature, which is in agreement with the XRD study (Figure 2). Based
on the results of H2-TPR, the reduction degree of Ni was obtained (Table 2). The reduction
degree of catalysts shows a trend of decrease with the increasing calcination temperature,
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indicating that the calcination temperature promotes the interaction between nickel species
and alumina support, which makes the reduction of Ni2+ species with H2 difficult [32,43].
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The metal dispersion was measured by H2-TPD, and the effective Ni dispersion
calculated are given in Table 2. The results show that the nickel crystallite sizes decrease
with the increase of calcination temperature, which can be attributed to the strong metal–
support interaction at high temperature. Although the reduction degree decreases with the
increase in calcination temperature, the effective dispersions of Ni increase. During the
formation of NiAl2O4 species at high calcination temperature, the reaction of surface nickel
oxide with alumina support not only prevents the migration of nickel particles over the
surface leading to sintering, but also stabilizes the high dispersion of nickel on the support
resulting in high dispersion of Ni species. [25,47,48].

3.1.5. X-ray Photoelectron Spectroscopy Analysis

XPS analysis was carried out to further confirm the chemical state of nickel in the
calcined Ni/Al2O3 catalysts. Figure 6 shows Ni 2p3/2 signals of the samples calcined at
different temperatures. The deconvolution of the main XPS peak in the Ni 2p3/2 region
displays two peaks, indicating that there are two kinds of Ni species in the catalysts.
The peak located at 854.6 eV is associated with NiO species exhibiting interaction with
Al2O3 support, and the peak observed at 856.5 eV is assigned to the Ni2+ ions in the
NiAl2O4 the spinel phase of which is harder to reduce than NiO species [46,49–51]. In
Ni/Al2O3-450, the spectrum clearly shows that the main Ni species is NiO. The content
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of NiO species decreases and the content of nickel-alumina spinel increases with the
increasing calcination temperature, which is due to the formation of the spinel phase
at high calcination temperature [37,43]. The above results of Ni species distribution are
confirmed from the XRD studies of calcined samples and are also pointed out in the
discussion of TPR results. In the previous studies, the NiAl2O4 spinel phase was found to
be able to enhance the anchoring of the metallic nickel on Al2O3 support, which improves
the anti-sintering ability of Ni nanoparticles and catalyst thermal stability at high reaction
temperatures [37,40,41,52].
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3.2. Catalytic Performance for the Dry Reforming of Methane Reaction
3.2.1. Influence of Reaction Temperature on the Activity of the Calcined Catalysts

The catalytic activity of Ni/Al2O3 catalysts in the dry reforming of methane reaction
was tested in a fixed-bed reactor in the temperature region from 550 to 750 ◦C under the
conditions of 0.1 MPa and GHSV of 24,000 mL g−1 h−1. Figure 7 shows the CH4 and CO2
conversion over the four Ni/Al2O3 catalysts at different reaction temperatures. The CH4
and CO2 conversions monotonically increase as a function of reaction temperature for
all the catalysts, these are agreed well with the endothermic nature of the dry reforming
of methane reaction (Equation (1)). The CH4 conversion is lower compared to the CO2
conversion, which is due to the simultaneous occurrence of a reverse water gas shift
reaction (Equation (2)) [10,11,20]. The CH4 and CO2 conversions over the catalysts at all
reaction temperatures follow the order Ni/Al2O3-750 > Ni/Al2O3-650 > Ni/Al2O3-550 >
Ni/Al2O3-450, indicating that the CH4 and CO2 conversions are strongly dependent on
the calcined temperature of the catalysts. The above temperature-dependent performance
results reveal that Ni/Al2O3 catalysts with small Ni nanoparticles and high Ni dispersion
caused by strong metal–support interaction exhibit high catalytic activity. The Ni/Al2O3-
750 catalyst exhibits the highest catalytic activity at all ranges of temperature, with the CH4
and CO2 conversions of 89.8% and 92.9% at 750 ◦C, respectively. This result is consistent
with the small size of the metallic nickel particles present in this catalyst and the high Ni
dispersion determined by H2-TPD analysis (as shown in Table 2).
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3.2.2. Effect of Calcination Temperature on the Catalytic Stability

Preliminary studies of activity performances on Ni/Al2O3 catalysts demonstrated
that calcination temperature could influence the CH4 and CO2 conversions by affecting
the Ni nanoparticle size and active component dispersion of the catalysts. Therefore,
long-time stability tests were carried out to investigate the performance of the catalysts
calcined at different temperatures. The 50 h stability performance of the dry reforming of
methane reaction was tested at 700 ◦C, 0.1 MPa, and GHSV of 24,000 mL g−1 h−1 over all
the catalysts. The results in Figure 8 show that the initial catalytic activity increases with
increasing calcination temperature, which can be explained based on the difference of Ni
dispersion and the Ni0 particle size. Ni/Al2O3-750 catalyst shows the highest initial CH4
and CO2 conversions of 81.0% and 86.5%, respectively. For the stability performance, the
Ni/Al2O3-750 catalyst displays superior stability among the four catalysts with no obvious
deactivation and stable CH4 and CO2 conversions during the 50 h reaction. Compared to
Ni/Al2O3-750, the Ni/Al2O3-650 catalyst shows a slight decrease in the initial CH4 and
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CO2 conversions to 79.6% and 85.3%, respectively, with slight deactivation during 50 h
stability test. However, Ni/Al2O3-550 and Ni/Al2O3-450 catalysts show clear deactivation
with the time on stream, and it is more significant over Ni/Al2O3-450 catalysts. H2 and
CO yields show similar trends as those for the CH4 and CO2 conversions (Figure S2a,b).
The results show that the initial H2 and CO yields increase with the increasing calcination
temperature. In addition, the H2/CO ratios of all four catalysts are lower than 1, which is
attributed to the occurrence of reverse water gas shift reaction (Figure S1c). The H2/CO
ratio over Ni/Al2O3-750 catalyst remains unchanged in the stability tests. The H2/CO
ratio over the other three catalysts decreases to some extent. The carbon deposition of
the Ni/Al2O3-x catalysts after 50 h reaction was investigated by TG analysis (Figure S4).
It can be seen that the Ni/Al2O3-450 catalyst has a large weight loss of ~15%, indicating
that a large amount of carbon deposition during the 50 h reaction. However, the spent
Ni/Al2O3-750 catalyst shows no noticeable weight loss, indicating that the catalyst calcined
at high temperature exhibits good performance in coke resistance. The high stability of
Ni/Al2O3-750 catalyst can be ascribed to the enhanced interaction between the active
Ni species and Al2O3 support, which leads to small nickel nanoparticles and high Ni
dispersion [37,43].
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3.2.3. Long-Term Stability Test of the Ni/Al2O3-750 Catalyst

It is generally known that the catalysts for dry reforming of methane deactivate rapidly
due to the formation of coke that blocks the active metal sites. The coke formation occurs
because of the side reactions such as the methane decomposition (Equation (3)) and CO
disproportionation reaction (Equation (4)). Therefore, a long-term durability test of 200 h
was then carried out at 700 ◦C to further study the potential application of Ni/Al2O3-750
catalyst. In Figure 9, the Ni/Al2O3-750 catalyst shows excellent catalytic stability without
any noticeable drop during the 200 h reaction. The H2 yield, CO yield, and H2/CO ratio of
the Ni/Al2O3-750 catalyst also remain constant in the long-term stability test (Figure S3).
The superior catalytic stability of Ni/Al2O3-750 catalyst can be explained from two aspects.
On the one hand, the highly dispersed Ni with a small nanoparticle size is prone to
expose more active metal sites, which gives rise to the remarkably initial activity. On the
other hand, the high dispersion of Ni and the strong metal–support interaction maintain
the Ni nanoparticle size during the reaction, which leads to the remarkable stability of
Ni/Al2O3-750.
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reaction. Reaction conditions: CH4:CO2:Ar = 1:1:3, GHSV = 24,000 mL g−1 h−1, Temperature: 700 ◦C,
atmospheric pressure.

3.3. Characterizations of Spent Ni/Al2O3-750 Catalyst after 200 h Dry Reforming of Methane
Reaction

Normally, the deactivation of Ni-based catalysts in the dry reforming of methane
reaction is caused by the coke formation. Therefore, the spent Ni/Al2O3-750 catalyst was
characterized in order to study its high catalytic performance.

The crystal structure of the spent Ni/Al2O3-750 catalyst was analyzed by XRD
(Figure 10). The characteristic peaks of Al2O3 indicate that the structure of the spent
Ni/Al2O3 catalyst remains after the 200 h durability test at the high temperature of 700 ◦C.
The intensity of the peaks assigned to the NiAl2O4 spinel greatly decrease, indicating that
Ni has been reduced during the pretreatment process in the flow of H2, which has been
proved by the XRD in Figure 3. Ni nanoparticle size (10.1 nm) is estimated from Ni (200)
diffraction peak using the Scherrer equation. The small increment of Ni0 crystallite size
suggests that Ni/Al2O3-750 catalyst is resistant to sintering deactivation, attributed to
its small Ni nanoparticles, high Ni dispersion, and strong metal–support interaction [45].
On the other hand, the characteristic peak for graphic carbon (2θ = 26.6◦) is not observed
in the spent catalyst, implying that there may be less coke formation during the 200 h
reaction [33,34].

TG-DTA analysis could provide additional information on deposited carbon on the
spent catalysts. Figure 11 presents the TG-DTA curves of the spent Ni/Al2O3-750 catalyst.
The TG curves can be divided into three parts: the weight loss before 200 ◦C is ascribed
to the removal of adsorbed water, the weight increase at 200–400 ◦C is due to oxidation
of active metallic nickel, and the weight reduction in the region of 400–750 ◦C is related
to the oxidation of deposited carbon. The TG result shows a weight loss of 7.5 wt.% on
the spent Ni/Al2O3-750, indicating the catalyst has remarkable coke resistance. Normally,
based on the DTA curve, the types of deposited carbon are classified into three different
carbon species: amorphous carbon species that is easily oxidized (<320 ◦C), the carbon
species between amorphous carbon and graphitic carbon (320–520 ◦C), and graphitic
carbon (>650 ◦C) [29,32,53,54]. Therefore, it can be reasonably inferred that after 200 h
of dry reforming of methane reaction at 700 ◦C, the carbon species on the Ni/Al2O3-
750 catalysts are mainly non-graphitic carbon species that can be easily activated and
eliminated. Based on the characterization results, it can be explained that the highly stable
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Ni nanoparticles with high dispersion obtained at high calcination temperature improve
the coking resistance of the Ni/Al2O3-750 catalyst.
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According to the previous studies, the calcination temperature had a significant influ-
ence on the catalytic performance in the dry reforming of methane reaction [32,40,55–57].
However, the synthesis methods of the catalysts reported in the literature were compli-
cated, and it is desirable to further improve the catalyst stability. In this work, we prepared
catalysts by the simple method and enhance the metal–support interaction by increasing
calcination temperature, which led to small Ni nanoparticles sizes and high Ni dispersion.
Thus, the Ni/Al2O3-750 catalyst displayed better catalytic activity and stability compared
to the previous studies in the dry reforming of methane reaction.
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4. Conclusions

In this work, a series of Ni/Al2O3 catalysts with different calcination temperatures
(450, 550, 650, and 750 ◦C) were prepared by the wet impregnation method. The characteri-
zation results suggest that calcination temperature significantly affects the surface area, Ni
crystallite size, reduction degree, Ni metal dispersion, and metal–support interaction. High
calcination temperature leads to the strong interaction between Ni species and alumina to
form nickel-alumina spinel. Although increasing the calcination temperature results in a
decrease of the surface area and the Ni reduction degree, the effective dispersion increases
and the Ni particle size decreases. The catalysts performances show that the activity and
stability of Ni/Al2O3-x catalysts increase with the increasing calcination temperature. The
Ni/Al2O3-750 catalyst shows the highest catalytic activity among catalysts studied, along
with the superior stability and strong resistance to coke formation after the 200 h stability
test at 700 ◦C.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pr9040706/s1, Figure S1: TEM images and Ni particle size distributions of the reduced
catalysts: (a) Ni/Al2O3-450, (b) Ni/Al2O3-550, (c) Ni/Al2O3-650, (d) Ni/Al2O3-750, Figure S2:
(a) H2 yield, (b) CO yield and (c) H2/CO ratio as the function of time for stream of Ni/Al2O3-x
catalysts (50 h test). Reaction conditions: CH4:CO2:Ar = 1:1:3, GHSV = 24,000 mL g−1 h−1, 700 ◦C,
atmospheric pressure. Figure S3: H2 yield, CO yield and H2/CO ratio of Ni/Al2O3-750 catalyst
in the long-term stability (200 h) test for dry reforming of methane reaction. Reaction conditions:
CH4:CO2:Ar = 1:1:3, GHSV = 24,000 mL g−1 h−1, 700 ◦C, atmospheric pressure. Figure S4: TG
analysis of spent Ni/Al2O3-x catalysts after the 50 h reaction.
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