
processes

Article

Improved NSGA-III with Second-Order Difference Random
Strategy for Dynamic Multi-Objective Optimization

Haijuan Zhang 1, Gai-Ge Wang 1,2,3,4,* , Junyu Dong 1 and Amir H. Gandomi 5

����������
�������

Citation: Zhang, H.; Wang, G.-G.;

Dong, J.; Gandomi, A.H. Improved

NSGA-III with Second-Order

Difference Random Strategy for

Dynamic Multi-Objective

Optimization. Processes 2021, 9, 911.

https://doi.org/10.3390/pr9060911

Academic Editor: Gade

Pandu Rangaiah

Received: 8 May 2021

Accepted: 19 May 2021

Published: 21 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China;
zhanghaijuan@stu.ouc.edu.cn (H.Z.); dongjunyu@ouc.edu.cn (J.D.)

2 College of Information Technology, Jilin Agricultural University, Changchun 130118, China
3 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China
4 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,

Guangxi University for Nationalities, Nanning 530006, China
5 Faculty of Engineering & Information Technology, University of Technology, Sydney, NSW 2007, Australia;

gandomi@uts.edu.au
* Correspondence: wgg@ouc.edu.cn

Abstract: Most real-world problems that have two or three objectives are dynamic, and the environ-
ment of the problems may change as time goes on. For the purpose of solving dynamic multi-objective
problems better, two proposed strategies (second-order difference strategy and random strategy)
were incorporated with NSGA-III, namely SDNSGA-III. When the environment changes in SDNSGA-
III, the second-order difference strategy and random strategy are first used to improve the individuals
in the next generation population, then NSGA-III is employed to optimize the individuals to obtain
optimal solutions. Our experiments were conducted with two primary objectives. The first was to test
the values of the metrics mean inverted generational distance (MIGD), mean generational distance
(MGD), and mean hyper volume (MHV) on the test functions (Fun1 to Fun6) via the proposed
algorithm and the four state-of-the-art algorithms. The second aim was to compare the metrics’ value
of NSGA-III with single strategy and SDNSGA-III, proving the efficiency of the two strategies in
SDNSGA-III. The comparative data obtained from the experiments demonstrate that SDNSGA-III
has good convergence and diversity compared with four other evolutionary algorithms. What is
more, the efficiency of second-order difference strategy and random strategy was also analyzed in
this paper.

Keywords: dynamic; multi-objective; NSGA-III; evolutionary algorithm; prediction strategy

1. Introduction

Most optimization problems in the real world are multi-objective, which include
different constraints. For multi-objective optimization, many classical evolutionary al-
gorithms (EAs) have proven to be powerful tools to obtain optimal solutions, like the
multi-objective evolutionary algorithm based on decomposition (MOEA/D) [1], fast, elitist
multi-objective nondominated sorting genetic algorithm (NSGA-II) [2] and other meta-
heuristic algorithms [3–8]. Because most practical problems faced in the real world are not
limited to static multiple objectives, environmental changes may lead to different optimal
solutions under different time windows. Such issues that have changing objectives and
constraints are called dynamic multi-objective optimization problems (DMOPs).

Compared with static multi-objective problems (SMOPs), DMOPs are much closer to
practical problems and more complex, which brings some challenges to the optimization
process for the following reasons. First, changes in the number of goals or constraints
increase the uncertainty of the problem. For SMOPs, convergence and diversity are both
important for obtaining optimal solutions, which is also the same for DMOPs. Differently,

Processes 2021, 9, 911. https://doi.org/10.3390/pr9060911 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-3295-8972
https://orcid.org/0000-0002-2798-0104
https://www.mdpi.com/article/10.3390/pr9060911?type=check_update&version=1
https://doi.org/10.3390/pr9060911
https://doi.org/10.3390/pr9060911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9060911
https://www.mdpi.com/journal/processes

Processes 2021, 9, 911 2 of 23

algorithms for DMOPs have rapid convergence while performing worse for maintaining
the diversity of a population, which leads to local, not global optimal solutions. Besides,
the Pareto front and optimal solutions tracked by the algorithm also change over time.
Second, two parameters, i.e., frequency and severity, are introduced because of the dynamic
changes. The change in their values has a great influence on the algorithm’s ability to
track the optimal solution, which adds much complexity to the problem in a larger part.
Therefore, the purpose of the algorithm for DMOPs is to track the changing Pareto front
and maintain rapid convergence and diversity when the environment changes.

Over the past few years, dynamic optimization has received increasing attention, and many
such techniques have been proposed for solving DMOPs. These techniques can be classified
into two categories [9]: (1) memory-based approaches and (2) prediction-based approaches.

In the memory-based method, the initial population is generated by memorizing
the historical optimal solution of the previous generation, coping with the changes in
the problem. Properly storing the optimal solutions obtained in the past, and restarting
these solutions for optimization can greatly improve the efficiency and searchability of
the solution as the environmental changes during the optimization process. For instance,
Luo et al. [10] combined the species strategy and memory method into species-based parti-
cle swarm optimization (SPSO) and enhanced the performance of SPSO. Nakano et al. [11]
improved the artificial bee colony algorithm (IABC) by introducing memory and detection
schemes for higher dimensional DMOPs. However, several drawbacks in the memory-
based approach include large memory consumption and incorrect predictions to solve
time-varying nonlinear problems, or more frequent environment.

On the other hand, prediction-based methods aim to predict the changing Pareto front
through a certain prediction model, thereby forming a prediction solution to respond to the
next change of the environment. In other words, memory-based methods are more suitable
for periodic or repeated environmental changes, while various types of changes can be
handled through prediction-based techniques. Therefore, many improved algorithms
incorporated with different prediction models have been developed. Gong et al. proposed
a multidirectional approach [12] based on multi-time optimal solution prediction and a
multi-model method [13] based on prediction for DMOPs. The representative individuals
generated by the clustering of optimized solutions predict the change of the Pareto front
and, finally, generate the predicted solutions. According to the relationship between the
type of change and the response strategy, the prediction model corresponding to the type
of problem change is selected to generate a predicted solution. Both methods have proved
to be superior to other algorithms in performance. Wu et al. [14] added the idea of the knee
point into the multi-objective artificial flora algorithm (MOAF), improving the diversity
and distribution. In addition, maintaining diversity in the population is also critical for
DMOPs. Zhou et al. [15] improved the population diversity through different information
obtained from various populations before and after a change occurs, whereby the infor-
mation is used for guiding the next environmental change. Considering the difficulties in
identifying the proportion of diversity introduction methods, [16] proposed an adaptive
diversity introduction (ADI) method, wherein the ratio of the diversity introduction can be
adjusted adaptively.

For DMOPs, the dynamic version of NSGA-II [2] had been proposed. Similar to
NSGA-II, NSGA-III [17] is also a classical evolutionary algorithm for many objectives.
Although NSGA-III can be used for solving DMOPs directly, the performance of NSGA-III
on DMOPs cannot be guaranteed. Therefore, the motivation of this work was to design
dynamic strategies combined with NSGA-III and improve its performance when dealing
with DMOPs.

This study mainly focused on the DMOPs that have a fixed number of objectives and
decision variables and introduces second-order difference strategy and random strategy to
be applied in NSGA-III, combined with the good convergence and diversity of NSGA-III.
The general process of the strategy is that when the environment changes are detected, a
second-order difference strategy is first used to predict the next centroid based on every two

Processes 2021, 9, 911 3 of 23

solutions, then new individuals are produced by randomly searching around the predicted
solution. Second, in the experimental part, the comparisons on six benchmarks show the
performance of the proposed algorithm, and the two parameters (change in frequency and
severity) are changed. Subsequently, three different dynamic metrics are evaluated on the
proposed algorithm. In addition, the experiment also verifies the efficiency between the
second-order difference strategy and the random disturbance strategy in the algorithm.

The rest of this paper is organized as follows. Section 2 presents the background and
related work of DMOPs, which we focused on. The proposed strategies are introduced
in Section 3, and the experimental settings and results are described in Section 4. At last,
Section 5 concludes the results obtained from experiments and discusses future work.

2. Background and Related Work
2.1. Problem Formulation

There are many formulations for dynamic multi-objective optimization problems.
Without loss of generality, we considered a minimum DMOP in this study [18]: minF(x, t) = (f1(x, t), f2(x, t), · · ·, fM(x, t))T

s.t.x ∈ Ω =
n
∏
i=1

[ai, bi]
(1)

where x = (x1, x2, x3, . . . , xn)T is an n-dimensional decision vector, and Ω is the decision
space. F(x, t): Rn × T→ RM denotes an M-dimensional objective space, which contains M
objectives that have some environmental changes during the evolutionary process. What’s
more, we suppose that all the objective functions are continuous. There are three definitions
of dynamic Pareto as follows.

Definition 1. (Dynamic Pareto Dominance [19]): In a dynamic environment, a decision vector
x1 Pareto dominates another decision vector x2 at the time window t, expressed as x1 � x2, if and
only if {

∀i = 1, . . . , M, fi(x1, t) ≤ fi(x2, t)
∃i = 1, . . . , M, fi(x1, t) < fi(x2, t)

(2)

Definition 2. (Dynamic Pareto-optimal Set (DPS) [12]): For a fixed time window t and a
decision vector x* ∈ Ω, when there is no other decision vector x ∈ Ω such that x dominates x*, the
decision vector x* is said to be nondominated. The dynamic Pareto-optimal set (DPS) is the set of all
non-dominated solutions in decision space, which can be represented by:

DPS(t) = {x∗ ∈ Ω|∃x ∈ Ω, x � x∗} (3)

Definition 3. (Dynamic Pareto-optimal Front (DPF) [12]): Similar to the static Pareto-front,
the dynamic Pareto-optimal front (DPF) is the set of the corresponding objective values of the DPS:

DPF(t) = {F(x∗, t)|x∗ ∈ DPS} (4)

Based on the above definitions, the following statement can be made. Since an
environmental change can lead to changes of DPS or DPF, an effective dynamic multi-
objective optimization evolutionary algorithm (DMOEA) is expected to track the moving
DPF in time and still maintain diversity and convergence.

2.2. Evolutionary Algorithms for DMOPs

Due to their wide application in real-world problems, they have acquired rapidly
increasing attention in recent years. Because of the changes of DPS and DPF, DMOEAs pose
a higher requirement of efficiency compared with static MOEAs. A well-designed DMOEA

Processes 2021, 9, 911 4 of 23

should perform well in maintaining both convergence and diversity of the population.
Many improved classic evolutionary algorithms can be used in the process of solving
DMOPs, such as multi-objective evolutionary algorithm based on decomposition and a first-
order difference model (MOEA/D-FD) [20], the dynamic non-dominated sorting genetic
algorithm (DNSGA-II) [21], a novel dynamic multi-objective evolutionary algorithm with a
cell-based rank and density calculation strategy (DMOEA) [22], and dynamic constrained
optimization differential evolution (DyCODE) [23].

As mentioned in Section 1, memory and prediction techniques are general methods
for DMOPs and various studies have proposed prediction-based approaches. From the
perspective of evolutionary process, prediction-based methods, can generally be divided
into two classes: (1) population-based prediction and (2) individual-based prediction. In
population-based prediction, the whole population is optimized with a single prediction
model while the moving location of each individual is predicted in individual-based pre-
diction methods. Teodoro et al. [24] proposed a method of plane separation for a whole
population to solve DMOPs with incorporated references. In terms of computational cost,
many algorithms focus on distribution but ignore the excessive computational burden.
Moreover, a knee-guided prediction evolutionary algorithm (KPEA) [25] has been proposed
to achieve a lower computational cost. Specifically, KPEA generates the non-dominated
solutions around the knee points and boundary regions, and then relocates the location
of the knee point and boundary regions. Zhou et al. [26] introduced two strategies for
application in the process of population re-initialization. The two strategies are based
on individuals in the population, and some individuals are predicted according to the
information obtained from past environments. A feed-forward prediction approach, which
combines a forecasting technique to place an anticipatory group of individuals, was intro-
duced by Hatzakis et al. [27]. Taking the relevance between previous environments and
new environment into account, Liu et al. [28] stored the solutions in the past environments
into two different archives, so that the stored solutions will provide the information to
find the optimal solutions when the next change occurs. Many DMOPs in real-world
applications have various characteristics, such as the interval characteristic, which is one of
the common applications in DMOPs. To solve interval DMOPs (DI-MOPs), Gong et al. [29]
proposed a novel co-evolutionary model in terms of interval similarity. The interval param-
eters are set, and two different response strategies for change are applied to track the DPF.
Wang et al. [30] presented a predictive method based on a grey prediction model, which
divided the population into some clusters, then the centroid of each cluster was used to
build the model. In addition, individuals from different clusters were selected to detect the
environmental change.

Herein, we used various standards to measure the performance of a DMOEA in the
evolutionary process, which is largely influenced by the speed of convergence and diversity.
DMOEAs with rapid convergence track the moving DPF rapidly, while DMOEAs with
good diversity pursue the effective distribution of the optimal solutions. Keeping a good
balance between population diversity and convergence is critical to the performance of
DMOEAs. For DMOPs, Chang et al. [31] combined query-based learning with particle
swarm optimization (QBLDPSO) to improve the diversity of a population. Instead of main-
taining the diversity of particles passively like typical PSO, QBLDPSO actively employs
quantum parameter adaptation to achieve population diversity. In order to accelerate
the convergence, Liang et al. [32] classified the decision variables into different groups
according to different optimization stages, like change detection stage, optimization stage
in each time window. The different crossover operators are employed to keep a balance of
convergence and diversity.

There are many application scenarios for dynamic optimization algorithms. For
example, Wang et al. [33] improved PSO with a mixed-integer programming model and
four match-up strategies to manage dynamic scheduling problems with random job arrivals.
Luna et al. [34] presented a novel restart method that can react to the changes in the traffic
demands, improving the energy efficiency in the fifth generation (5G) of cellular networks.

Processes 2021, 9, 911 5 of 23

A novel chance-constrained dynamic optimization method, proposed by Zhou et al. [35],
was applied to solve real industrial process issues. In the study of humanoid robots, losing
balance and falling down are common problems. Chang et al. [36] applied a DMOEA to the
falling down process of robots and was able to reduce damage to the robots. A dynamic
multi-objective approach can also be applied to heterogeneous systems. For instance, [37]
introduced a multi-objective dynamic load balancing (DLB) approach combined with a
genetic heuristic engine, to enhance performance and code portability for such systems.

From the review above, we can identify three essential parts that should be included
in an ideal DMOEA, which are change detection, change reaction, and multi-objective
optimization. Herein, Algorithm 1 was prepared as the major frame of DMOEA. In the
algorithm, after initializing the current generation, some strategies are used for change
response when an environmental change occurs. The initialized population will be updated
with these useful strategies, and the time window T is going to increase by one, which
means the next environmental change. In the next step, the i-th multi-objective problems
are optimized using a multi-objective evolutionary algorithm (MOEA) for one generation.
The static MOEA employs the updated population as the initial population. At last, if the
stop condition is not met, the process is repeated, otherwise the optimization of the next
generation will be conducted.

Algorithm 1 The main frame of DMOEA

Input: the number of generations, g;
the time window, T;
Output: optimal solution x* at every time step;
1: Initialize population POP0;
2: while stop criterion is not met do
3: if change is detected then
4: Update the population using some strategies: reuse memory, tune parame-ters, or
predict solutions;
5: T = T + 1;
6: end if
7: Optimize T-th population with an MOEA for one generation and get optimal solution x*;
8: end while
9: g = g+1;
10: return x*.

3. NSGA-III and Proposed Strategies
3.1. NSGA-III

There are many classical algorithms for multi-objective or many-objective problems.
NSGA-III [17] is one of the classical multi-objective evolutionary algorithms (MOEAs) for
static many-objective problems. NSGA-III adds the idea of reference points as an enhance-
ment of NSGA-II [2], which is mainly used for dealing with multi-objective problems. The
major framework of NSGA-III is similar to the original NSGA-II algorithm, except for
the differences between their environmental selection in the critical layer. The NSGA-II
method applies congestion and comparison operation to select and maintain diversity.
Comparatively, NSGA-III employs well-distributed reference points to maintain the di-
versity of a population. Most MOEAs are more effective in solving problems with fewer
objectives. When the number of objectives is greater than or equal to four, many methods
have reduced selection pressure due to increased dimensions, and the effect is not ideal.
Different non-dominated fronts are classified using the method of fast non-dominated
sorting. In the selection stage, the congestion distance method is changed to the reference
points method, because the former does not perform well for balancing the diversity and
convergence in NSGA-II. It is also limited to solving various unconstrained problems,
such as normalization, scaling, convexity, concavity, and convergence to the PF plane. In
addition, the dynamic version of NSGA-II has been proposed for DMOPs, which was used

Processes 2021, 9, 911 6 of 23

for comparison in our experiments and NSGA-III was chosen as the evolutionary algorithm
combined with the two proposed strategies.

The whole detailed process of NSGA-III is given in Algorithm 2. Firstly, reference
points are defined and the initial population is obtained through generating a set of
uniformly distributed points randomly. Secondly, genetic operators are used to generate
the offspring, and then non-dominated sorting is conducted. The parent population Pt
and the generated offspring Qt are combined as a new population Rt. The new population
is placed in a non-dominant order, which means that the solutions in Rt are divided into
different non-dominant levels. The N individuals that make up the next population will be
selected from the mixed population. If the individuals in the first l− 1 non-dominated layer
are exactly equal to N, then these individuals directly form the next generation population
Pt+1. Otherwise, the remaining solutions of Pt+1 are selected from Fl according to the
selection mechanism. Then, normalizing the objectives and each solution will be associated
with one reference point. The closest K individuals associated with the reference points are
selected. Finally, the best N solutions in the combined population are selected, and the next
population Pt+1 is obtained.

Algorithm 2 The procedure of NSGA-III

Input: parent population, Pt;
the archive population, St;
i-th non-dominated front, Fi;
Output: the next population, Pt+1;
1: Define a set of reference points z*;
2: Generate offspring Qt through cross and mutation using GA operator;
3: Non-dominated sorting (Rt = Pt ∪ Qt);
4: while |St| < N do
5: St = St ∪ Fi;
6: i = i + 1;
7: end while
8: Fl = Fi;
9: if |St| = N then
10: Pt+1 = St;
11: else
12: Pt+1 = F1 ∪ F2 ∪ . . . ∪ Fl−1;
13: end if
14: Normalize objectives and associate each solution with one reference point;
15: Calculate the number of the associated solutions;
16: Choose K = N − |Pt+1| solutions one by one from Fl;
17: return Pt+1.

3.2. Change Detection

As mentioned above, one of the critical steps for DMOPs is change detection. Before
using the change response strategy, change detection is necessary for dynamic multi-
objective evolutionary algorithms (DMOEAs). The main process of environmental change
detection is described in Algorithm 3, wherein we define a label flag indicating whether
a change occurs. The initial value of flag is set to zero when the change detection starts.
Then, individuals randomly selected from the initial population are evaluated for change
detection. Herein, 20% of randomly selected individuals are used in our proposed algo-
rithm, and their objectives are stored into Ps, which are then re-evaluated. By investigating
whether there is a difference in the objective values between two generations, the results
about whether a change occurs can be shown obviously. If there is a difference between the
two generations, the value of a flag is set to one, and it can be said that an environmental
change occurs and the change detection process ends.

Processes 2021, 9, 911 7 of 23

Algorithm 3 Change detection

Input: the initial population, PT;
the current number of iterations, g;
the number of objective functions, F;
the individual in population, p;
stored individuals from past environment, Ps;
the current time window, t;
Output: the sign indicating whether a change occurs, flag;
1: flag = 0;
2: Select randomly individuals from population PT, and store individuals into Ps;
3: for every p∈Ps, i∈F do
4: Caculate fi(p, t);
5: fi(Ps) = fi(p, t);
6: end for
7: g = g + 1;
8: for every p∈Ps do
9: Caculate fi(p, t);
10: if fi(p, t) 6= fi(Ps) then
11: flag = 1;
12: t = t + 1;
13: break;
14: end if
15: end for
16: return flag.

3.3. Second-Order Difference and Random Strategies

We propose a new strategy named the second-order difference strategy for DMOPs
in this paper. This strategy is based on the first-order difference strategy, which used the
centroid of the decision space to describe the trajectory of moving solutions over time. Let
CT be the centroid of the DPS and PT be the obtained DPS at the time window T, then CT
can be calculated by the following formula:

CT =
1
|PT | ∑

x∈PT

x (5)

where CT+1 represents the center of the decision space at the next time window, T + 1,
which can be obtained by Formula (6):

CT+1 = CT +
→

CT − CT−1 (6)

where |PT| is the cardinality of PT; and x is a solution of decision space in PT. The initial
individuals of the population are provided through the prediction model at each generation.
As we can see, the first-order difference model employs the centroid of the decision space,
and predicts the next centroid for the next time window. Under the dynamic environment,
objective functions change over time, but there is a certain relationship between the two
objectives before and after the change.

Therefore, we can predict the next solution distribution using the information about
the optimal solution before the change. In our proposed second-order difference strategy,
the centroid of the objective space is also taken into account. The difference from the
first-order difference model is that we consider both objective values and solutions in the
decision space. The solutions in DPS and the corresponding objectives in DPF are mapped
to a new two-dimensional mapping space (MS). The x-coordinate of this new plane is the
set of DPS, and the y-coordinate is the average of objective values. Our proposed strategy is
built-in two-dimensional space, and the centroid is the center of the two-dimensional plane
related to the objectives. The mapping relation of the strategy is as Figure 1. Therefore, we

Processes 2021, 9, 911 8 of 23

can define a new CT’, which can be computed by:

CT
′ =

1
max(|PST |, |PFT |)

i=|PST |

∑
i=0

Euclidean[(xi, yi), (xi+1, yi+1)] (7)

where nt and |PFT| are the cardinality of DPS and DPF, respectively; (xi, yi) represents the
vector in two-dimensional space, consisting of the optimal solution and the corresponding
objective function value; and Euclidean() means to obtain the Euclidean distance between
two points in the plane. Similar to the first-order difference model, the location of the
centroid at the next time window T + 1 is predicted using the formulation as follows:

CT+1
′ = CT

′ +
→

CT
′ − CT−1

′ (8)

Figure 1. The mapping relation of the proposed strategy.

After determining the centroid location of the next time window, random strategy
is then applied to the Algorithm 1 presented in this paper. The random strategy is the
random perturbation around the obtained centroid position, so as to obtain a series of
solutions similar to the last change. The radius of random strategy is set to 0.1, which
means that we will take uniformly random points on the plane centered at the centroid
and with the radius. The performance of this strategy can be shown through our next
comparative experiments. The whole process of our proposed strategy combined with
NSGA-III is described in Algorithm 4.

Some similarities and differences exist between our proposed strategy and the first-
order difference model, where the former strategy is based on the latter. Both strategies use
Formula (8) to obtain the next centroid, this is why they are called “difference strategies”,
and the difference between them is the way the centroid is generated. Obviously, the
first-order difference strategy employs the simplest method to generate the centroid by
only considering the center of DPS. However, when facing environmental changes, the
objectives will change in a big or small way and, therefore, should be considered when
looking for the centroid. In this way, the objective space can have a certain relationship
with the last change, so as to predict more accurate solutions. Our algorithm is proposed
based on this background, and the details of the algorithm are given in Algorithm 4.

At the beginning of the evolutionary process, the individuals of the population are
initialized randomly, and the initial population is reevaluated. Then the change detection
process described in Algorithm 3 is conducted. When an environmental change occurs,
the population must be updated to respond to the change. As mentioned in Algorithm
4, the new population is composed of three kinds of individuals: the old solutions, the
prediction solutions obtained by our proposed strategy and the random solutions around
the prediction solutions. In most cases of real-world DMOPs, there are some similarities
between the DPS of the consecutive DMOPs. Therefore, a certain percentage of old solutions
can be reserved for the next population at the new time window. The old solutions

Processes 2021, 9, 911 9 of 23

from the last environment may perform better than reinitialized solutions. Besides, our
prediction solutions and the old solutions are put into the new population uniformly,
and the predicted centroid in the new environment can be described according to (7).
Some random solutions around the predicted centroid are introduced as well, which adds
diversity to the new population.

Algorithm 4 Second-order random strategy combined with NSGA-III

Input: the current population, PT;
the time window, T;
the number of individuals in population, N;
the historic centroid points, CT−1;
the centroid of time window T, CT;
Output: the next population PT+1;
1: Initialize population PT and evaluate the inital population PT;
2: Change detection (PT);
3: if change is detected then
4: while the maximum number of iterations is not reached do
5: for i = 1:N do
6: if mod(i, 3) == 0 then

7: xT+1
i = xT

i +
→

CT
′ − CT−1

′;
8: Random perturbation around xT+1

i ;
9: else
10: xT+1

i = xT
i ;

11: end if
12: Use NSGA-III to optimize xT+1

i and get the next generation population PT+1;
13: end for
14: end while
15: end if
16: T = T + 1;
17: return PT+1.

4. Experiments

All the experiments were conducted on MATLAB R2018a. Intel(R) Core (TM) i3-8100
CPU @ 3.60GHz was used as the hardware environment.

4.1. Benchmark Problems and Performance Metrics

In order to study the performance of our proposed strategies, two parts of the experi-
ments were conducted for DMOPs. In this paper, six benchmarks with different change
types were used for confirmation. The instances and definitions are listed in Table 1, and the
functions have two objectives. The common formula of a bi-objective dynamic benchmark,
which adds the time window parameter in forming the static ZDT [38] problems, can be
described as follows:

min f (x, t) = (f1(xI , t), g(xI I , t) · h(xI I I , f1(xI , t), g(xI I , t), t)) (9)

where xI, xII, and xIII are three different subsets of design variables set x in decision
space. For Fun1, as the environment changes, the DPS of Fun1 changes, whereas the
moving DPF of Fun1 remains unchanged. In addition, the DPF of Fun1 is convex. Some
parameters that do not require introduction include τ, which is the generation counter,
and nt, which represents the number of distinct steps in a fixed t. τT and nt are two
parameters that reflect the frequency and severity of an environmental change, respectively.
In the benchmarks definitions, the time instance t can be computed by t = (1/nt) ∗ (τ/τT).
Different from Fun1, both DPS and DPF of Fun2 change over time, and DPF change
from convex to nonconvex. The convergence speed and reactivity when the environment
changes can be evaluated by Fun3 and Fun5 benchmarks. Specifically, the time-varying

Processes 2021, 9, 911 10 of 23

nonmonotonic dependencies between any two decision variables are introduced in Fun3,
which is similar to the greenhouse system in the real world. As the time window increases,
the dependency between two variables becomes more complicated, and the density of
solutions also changes over time. Therefore, the relation between the decision variables
and the diversity performance can also be assessed by Fun3 for DMOPs. Fun5 is a dynamic
function with dynamic DPFs and DPSs, and the overall objective vectors change between
several modes as the DPS changes. Fun5 is similar to the electric power supply system [39]
in real-world applications. The DPF of Fun4 has a general change trend, which changes
from convex to concave, and the values in both the DPF and DPS differ under different time
windows. For Fun6, the characteristics of the DPS and DPF are totally different. The DPS
is simpler than the DPF of Fun6, which specifically contains some locally linear, concave,
or convex segments. What’s more, the number of local segments is unfixed. The main
characteristics of the six benchmarks mentioned above are summarized in Table 2.

Table 1. The instances and definitions of six benchmarks.

Instance Definition

Fun1 [18]

f1(xI) = x1
g(xI I) = 1 + ∑

xi∈xI I

(xi − G(t))2

h(f1, g) = 1−
√

f1
g

G(t) = sin(0.5πt), t = 1
nt

⌊
τ
τT

⌋
xI = (x1) ∈ [0, 1], xI I = (x2, . . . , xn) ∈ [−1, 1]n−1

Fun2 [18]

f1(xI) = x1
g(xI I) = 1 + ∑

xi∈xI I

xi
2

h(xI I I , f1, g) = 1−
(

f1
g

)(H(t)+ ∑
xi∈xI I I

(xi−H(t))2)

H(t) = 0.75 + 0.7 sin(0.5πt), t = 1
nt

⌊
τ
τT

⌋
xI = (x1) ∈ [0, 1], xI I , xI I I ∈ [−1, 1]n−1

Fun3 [40]

minF(x, t) = (f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xI I , t))(y1 + At sin(Wtπy1))
f2(x, t) = (1 + g(xI I , t))(1− y1 + At sin(Wtπy1))

g(xI I , t) = ∑xi∈xI I
(yi

2 − yi−1)
2, A(t) = 0.05

W(t) = b6 sin(0.5π(t− 1))c, α =
⌊
100 sin2(0.5πt)

⌋
y1 = |x1 sin((2α + 0.5)πx1)|, yi = xi, i = 2, . . . , n
xI = (x1) ∈ [0, 1], xI I = (x2, . . . , xn) ∈ [−1, 1]n−1

Fun4 [41]

f1(xI) = x1
f2(xI I) = g · h

g = 1 + ∑m
i=2 (xi − G(t))2

h = 1− (
f1
g)

H(t)

H(t) = 0.75 · sin(0.5π · t) + 1.25
G(t) = sin(0.5π · t)

xI = (x1) ∈ [0, 1], xI I = (x2, . . . , xn) ∈ [0, 1]

Fun5 [18]

minF(x, t) = (f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xI I , t))(x1 + At sin(Wtπx1))
f2(x, t) = (1 + g(xI I , t))(1− x1 + At sin(Wtπx1))

g(xI I , t) = ∑xi∈xI I
(xi − G(t))2, G(t) = sin(0.05πt)

A(t) = 0.05, W(t) = b6 sin(0.5π(t− 1))c
xI = (x1) ∈ [0, 1], xI I = (x2, . . . , xn) ∈ [−1, 1]n−1

Processes 2021, 9, 911 11 of 23

Table 1. Cont.

Instance Definition

Fun6 [42]

minF(x, t) = (f1(x, t), f2(x, t))T

f1(x, t) = g(xI I , t)(x1 + At sin(Wtπx1))
f2(x, t) = g(xI I , t)(1− x1 + At sin(Wtπx1))

g(xI I , t) = 1 + ∑xi∈xI I
(xi

2 − G(t))2, G(t) = sin(0.05πt)
A(t) = 0.02, Wt = b10G(t)c

xI = (x1) ∈ [0, 1], xI I = (x2, . . . , xn) ∈ [−1, 1]n−1

Table 2. The dynamic characteristics of six benchmarks.

Problem DPS Changes DPF Changes

Fun1 Yes No, the DPF is convex

Fun2 Yes Yes, the DPF changes from convex to
nonconvex

Fun3
Yes, the time-varying

nonmonotonic dependencies
are introduced

Yes

Fun4 Yes Yes, the DPF changes from convex to
concave

Fun5 Yes Yes, the DPF changes its shape over
time

Fun6 Yes, the DPS is rather simple Yes, the DPF is sometimes linear, and
sometimes concave or convex

Based on the benchmarks above, we tested our proposed algorithm under two differ-
ent dynamic parameters. We set the change severity, nt, to 5 and 10, and set the change
frequency τT to 5, 10, and 20 respectively, which represents severe, moderate, and slight
environmental changes. Therefore, we obtained six different sets of parameter values,
namely (5, 5), (5, 10), (5, 20), (10, 5), (10, 10), and (10, 20). Each benchmark has six different
cases with different parameters, and therefore, there are total of 36 cases in the six bench-
marks. Then, six benchmark problems with different parameters were conducted, and three
different dynamic metrics were employed to evaluate the performance of SDNSGA-III.

As we know, there are various performance metrics to assess the algorithm, such as
inverted generational distance (IGD), generational distance (GD), and hypervolume (HV).
For dynamic environment, a modified version of the IGD, HV, and GD is employed to
evaluate the performance of DMOEAs. The MIGD metric proposed by Zhou et al. [43] is
the dynamic version of IGD, which introduces the time window parameter, whereby the
basic definition of MIGD metric is the average of IGD over a period of time. The definition
of IGD can be described as follows. Let S be the solution set obtained by the algorithm,
and P* be a set of reference points that is uniformly sampled from DPF. Therefore, we can
calculate IGD as:

IGD(S, P∗) =
∑x∈P∗ miny∈Sdis(x, y)

|P∗| (10)

where dis(x, y) means the Euclidean distance from x in reference set P* to y in solution set
S. Both the convergence and diversity of an algorithm can be assessed by computing IGD
at the same time. In addition, the smaller the IGD value is, the better the comprehensive
performance of an algorithm. This is similar to a MIGD metric. The MIGD metric we used
to evaluate DMOEAs can be formulated as:

MIGD =
1
|T|∑t∈T

IGD(S, P∗) (11)

Processes 2021, 9, 911 12 of 23

The HV is also one of the frequently used evaluation metrics, which represents the
volume of the region that is rounded by the non-dominated solution set obtained by the
algorithm and the reference points. HV can be described as:

HV(S∗, vi) = δ(∪|S
∗ |

i=1 vi) (12)

where δ is a Lebesgue measure to caculate volume; |S*| is the number of non-dominated
solutions sets; and vi represents the super volume composed of the reference points and
the i-th solution in the solution set. The MHV [44] metric is a modified dynamic version of
the static HV metric, which is formulated as:

MHV =
1
|T|∑t∈T

HV(S∗, vi) (13)

The metric GD measures the diversity of an algorithm and describes the average of the
minimum Euclidean distance from each point in the solution set S to the reference set P*.
Under dynamic environments, the MGD metric is proposed to measure the performance of
an algorithm instead of GD. Similar to MIGD and MHV, MGD is the modified version of
GD, which can be defined as:

GD(S, P∗) =

√
∑y∈S minx∈P∗dis(x, y)2

|P| (14)

MGD =
1
|T|∑t∈T

GD(S, P∗) (15)

In our experiments, we used MIGD, MHV, and MGD metrics to measure the perfor-
mance of our proposed SDNSGA-III algorithm. T refers to a set of discrete time instances
in a single run. Further, |T| is the cardinality of T in the definitions of MIGD, MHV, and
MGD. Our experiments were mainly conducted to measure the performance of NSGA-III
combined with our proposed strategies. The experiments were divided into two parts: (1)
the to compare the results of SDNSGA-III and the other four popular algorithms, and (2) to
compare NSGA-III with different strategies to prove the effectiveness of the second-order
difference strategy and random strategy. The general parameters in all algorithms are
presented in Table 3.

Table 3. The general parameters of all algorithms.

Symbol Meaning Value

N population size 100
M the number of objectives 2
D dimensions of decision vectors 10

FEs fitness evaluation times 10,000
T the time window 20
R number of runs 30

4.2. Comparative Study for the Proposed Algorithm

Our proposed algorithm (SDNSGA-III) was compared with four state-of-the-art al-
gorithms, including NSGA-III [17], DNSGA-II-A [21], MOEA/D-FD [20], and a multi-
objective optimization framework (LSMOF) [45]. The comparison between SDNSGA-III
and NSGA-III was made to prove the performance of our proposed strategies. Based
on the differences in the performance metrics, we can determine the results of whether
our second-order strategy and random strategy can obtain better convergence and di-
versity. DNSGA-II-A [21] and MOEA/D-FD [20] are DMOEAs that are primarily deal
with dynamic problems. Particularly, DNSGA-II-A [21] introduces some new random
individuals when a new population is generated. When merging the parent and child

Processes 2021, 9, 911 13 of 23

population into the next bigger population, all individuals are re-evaluated through the
benchmarks. MOEA/D-FD [20] is a modified version of the original MOEA/D, which
uses the first-order difference model. LSMOF reformulates the problems, tracks the Pareto
optimal set directly, and also accelerates the computational efficiency of the multi-objective
evolutionary algorithm.

The data in Table 1 (the first table in Appendix A) show the obtained MGD values and
standard deviations over 30 runs. The last column in Table 1 means the percentage differ-
ence between SDNSGA-III and other four comparative algorithms. The positive (negative)
value shows the performance of SDNSGA-III is better (worse) than the comparing algo-
rithm. The performance evaluation was conducted at the 5% significance level. In Table 1,
the results are recorded as “+”, “−”, and “=” for when SDNSGA-III performs significantly
better than, worse than, and equivalent to the corresponding algorithm respectively. The
bold font indicates that the algorithm has the best diversity on this benchmark. From
Table 1, it is obvious that SDNSGA-III performed better than the other four algorithms in
most cases, which means it has a better tracking ability of DPS and DPF. Moreover, the
SDNSGA-III values in Table 1 are significantly better than those of NSGA-III, sufficiently
proving that the second-order and random strategies improve the performance of NSGA-III
for dealing with dynamic problems. Besides, from the perspective of different problems,
SDNSGA-III performed best in Fun1, Fun4 and Fun6, while the performance of SDNSGA-
III was roughly the same on Fun2 and Fun3. This means that our proposed strategy is
more suitable for dynamic problems whose DPS changes. Although the performance on
other problems was worse than on Fun1, Fun4 and Fun6, about 90% of the results are
best among the five comparative algorithms. In general, our proposed strategy worked
well for different DMOPs. What’s more, when change severity was relatively smooth
(nt = 10), the five sixth values of SDNSGA-III were better than the other four algorithms. In
addition, when the change frequency was fast (τT = 5), all results of the other comparative
algorithms were worse than those of SDNSGA-III. Therefore, it can be suggested that our
proposed strategy can obtain the best diversity performance of the population when the
change is smooth and fast. The reason for this result is that when the change frequency
is fast, our proposed strategies enhance the search efficiency and accuracy of tracking the
moving DPF.

In order to investigate the convergence process of the algorithms, the MIGD, MHV, and
MGD trends of Fun1–6 with a fixed nt and τT were investigated, as shown in Figures 2–4.
In Figure 2a–f, the overall trend was obviously downward. A total of 10 points were
sampled randomly within a single run, and the evaluation numbers was set to 10,000. As
the evaluations increased, the metrics of all five algorithms tend to become relatively stable.
Among the compared algorithms, generally speaking, SDNSGA-III reached a better MIGD
value in less time, as observed in Figure 2a–d,f. For Fun1 and Fun2, DNSGAII-A and
MOEAD-FD obtained a lower MIGD at the beginning of the evaluations, and our proposed
SDNSGA-III reached almost the same value in the later stage of evaluations. In Figure 3,
contrary to MIGD, the general tendency of MHV exhibited an increase, while the MHV
value of SDNSGA-III was higher than the other comparative algorithms observably on
Fun1, Fun3, and Fun5. SDNSGA-III reached almost the same MHV as MOEAD-FD at the
end of evaluations in Figure 3b,d,f, which means SDNSGA-III has a similar tracking ability
with MOEAD-FD on Fun2, Fun4, and Fun6. The overall trend of MGD in Figure 4 is similar
to MIGD, and SDNSGA-III performed more stable than the other comparative algorithms.
Figures 2–4 further reveal that our proposed SDNSGA-III has a great improvement in
tracking DPF and DPS compared with NSGA-III, and SDNSGA-III performed more stable
than other algorithms with a steady tracking ability regardless of the environmental change.

Processes 2021, 9, 911 14 of 23

Figure 2. The MIGD trend of five algorithms with nt = 10, τT = 20. (a–f) are MIGD trend graphs of six functions, respectively.

Processes 2021, 9, 911 15 of 23

Figure 3. The MHV trend of five algorithms with nt = 10, τT = 20. (a–f) are MHV trend graphs of six functions, respectively.

Processes 2021, 9, 911 16 of 23

Figure 4. The MGD trend of five algorithms with nt = 10, τT = 20. (a–f) are MGD trend graphs of six functions respectively.

The statistical results of six benchmarks and six parameters on MIGD, MHV, and
MGD are recorded in Tables 4 and 5 respectively. Among the six different benchmarks,
SDNSGA-III reached 18 best results on Fun1, which has dynamic DPS and static DPF. In
terms of the six different parameters, our proposed SDNSGA-III achieved the best metric
values on the severe change severity (nt = 5) and the slow change frequency (τT = 20).
The performance of SDNSGA-III was nearly the same on the rest of the five parameters.
Generally, SDNSGA-III is more suitable for DMOPs, since it has a relatively smooth change

Processes 2021, 9, 911 17 of 23

or fixed DPF. This can be attributed to the prediction strategy that can achieve a centroid
location more accurately with a slight change, while the prediction error increases with a
severe and fast change. Even so, SDNSGA-III performed better than the other comparative
algorithms on most test instances. To further evaluate the performances of the second-
order strategy and random strategy, the comparisons between the two are discussed in the
next section.

Table 4. The statistical results of six benchmarks on different metrics.

Metrics Fun1 Fun2 Fun3 Fun4 Fun5 Fun6

MIGD 6 3 5 4 4 6
MHV 6 6 5 4 4 4
MGD 6 5 5 6 4 6
Total 18 14 15 14 12 16

Table 5. The statistical results of six parameters on different metrics.

Metrics (5,5) (5,10) (5,20) (10,5) (10,10) (10,20)

MIGD 3 5 6 5 5 4
MHV 5 5 6 5 4 5
MGD 5 5 5 5 6 6
Total 13 15 17 15 15 15

4.3. Comparative Study for Two Proposed Strategies

In the comparative study, the performances of the second-order difference strategy
and random strategy were analyzed. NSGA-IIIs is the algorithm with the second-order
difference strategy without random strategy, while NSGA-IIIr incorporates the random
strategy without the second-order difference strategy. The main process of NSGA-IIIr is to
first initialize the population, then use NSGA-III to optimize individuals at each generation.
When a change is detected, random perturbation is conducted around the optimal solution
of the previous generation. The comparative results show the efficiency of the second-order
difference strategy and random strategy in SDNSGA-III.

Table 2 (the second table in Appendix A) depicts the MIGD values and standard
deviations obtained by the four algorithms over 30 runs. In the table, about 67% of
the results clearly reveal that the performance of SDNSGA-III is better than the other
three comparative algorithms. In general, both NSGA-IIIs and NSGA-IIIr algorithms
demonstrated little difference in performance. However, it is obvious that SDNSGA-
III, which combines both strategies, performed best among all four algorithms. Besides,
NSGA-IIIr performed mostly better than NSGA-IIIs in Fun3 and Fun6. In other words,
the random strategy improves the diversity of SDNSGA-III in a dynamic environment.
Furthermore, NSGA-IIIs exhibited better values than NSGA-IIIr with a smooth change
severity and fast change frequency. This proves that our proposed second-order difference
strategy could track the moving DPS and DPF directly, and the random strategy can
improve the diversity ability of NSGA-III on DMOPs. Since random strategy can better
adapt to dynamic characteristics for DMOPs, the SDNSGA-III algorithm exhibited the best
comprehensive performance among all comparative algorithms.

Tables 6 and 7 include the statistical results from different perspectives, including the
different benchmarks and parameters. In the tables, “a/b/c” represents the number of
best MIGD, MHV, and MGD metric values, respectively. In Table 6, the data obviously
show that SDNSGA-III combined with the two strategies performed best, and a single
NSGA-III performed worst among the four comparative algorithms. NSGA-IIIs showed
an obviously better performance than NSGAIIIr on Fun2 and Fun4. For the benchmarks
of Fun3 and Fun6, NSGA-IIIr performed better than NSGA-IIIs, and both of algorithms
performed the same on Fun1 and Fun5. These results demonstrate that SDNSGA-III
effectively incorporates second-order difference strategy and random strategy to achieve

Processes 2021, 9, 911 18 of 23

the best metric values. It is pertinent to note that the former strategy is more applicable to
DMOPs whose DPS and DPF changes from convex like Fun2 and Fun4. When dealing with
more complex DMOPs, like Fun3 and Fun6, whose DPS and DPF change irregularly, the
latter strategy behaves better. Table 7 represents the statistical results of the different change
frequencies and change severities. When the change severity nt was fixed to 10 and the
change frequency τT was set to 20, SDNSGA-III reached the best metric values. In addition,
the performance of SDNSGA-III with higher change severity and higher change frequency
was better than the other comparative algorithms. When nt and τT change, the random
strategy can ensure the diversity in a population, while a single second-order strategy
cannot track the moving DPF accurately. The statistical data in Tables 6 and 7 illustrate that
combining the second-order difference strategy and random strategy is indeed effective to
solve DMOPs better.

Table 6. The statistical results of six benchmarks on different metrics.

Algorithms Fun1 Fun2 Fun3 Fun4 Fun5 Fun6

SDNSGA-III 5/5/4 3/3/4 4/5/3 3/4/3 3/2/3 4/3/3
NSGA-III 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
NSGA-IIIs 1/0/1 2/3/1 0/0/0 2/2/3 2/2/1 0/0/0
NSGA-IIIr 0/1/1 1/0/1 2/1/3 1/0/0 1/2/2 2/3/3

Table 7. The statistical results of six parameters on different metrics.

Algorithms (5,5) (5,10) (5,20) (10,5) (10,10) (10,20)

SDNSGA-III 2/2/2 2/5/4 4/3/2 4/5/4 5/3/2 5/4/6
NSGA-III 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
NSGA-IIIs 3/3/2 1/0/1 0/0/1 1/0/1 1/2/1 1/2/0
NSGA-IIIr 1/1/2 3/1/1 2/3/3 1/1/1 0/1/3 0/0/0

5. Conclusions

In this study, we propose a novel algorithm based on NSGA-III, which incorporates
a second-order difference strategy and random strategy to solve DMOPs. These two
strategies are specifically employed to predict the next centroid location based on its his-
torical locations and random disturbances around the predicted centroid location when
change is detected. Moreover, the performance of SDNSGA-III was validated using dif-
ferent benchmarks and different metrics via testing on different change frequencies and
change severities. Compared with four other state-of-the-art evolutionary algorithms, our
SDNSGA-III can obtain a better convergence speed and maintain diversity of a population
when tracking the moving DPS and DPF. In addition, a comparison between the two
proposed strategies was conducted to verify their effectiveness. It was found that the
second-order difference strategy and random strategy have the ability to find the moving
DPF, and SDNSGA-III can maintain the diversity of a population to respond to environmen-
tal change. In addition, the further innovations about prediction can be inspired through
the proposed second difference strategy.

Despite our promising findings, some issues need to be further addressed. For exam-
ple, more benchmarks should be employed to evaluate the performance of SDNSGA-III.
Moreover, further studies are suggested for other state-of-the-art algorithms incorporated
with second-order difference and random strategies to show their ability to enhance search-
ing efficiency. The second-order difference strategy can be incorporated with other effective
frameworks to increase the accuracy of prediction at the stage of change response. What’s
more, we tested our strategies only on two-objective benchmarks in this work. There-
fore, we plan to focus on more than two-objective dynamic optimization problems in
future studies.

Processes 2021, 9, 911 19 of 23

Author Contributions: H.Z.: Conceptualization, methodology, software, visualization, investigation,
writing—original draft preparation; G.-G.W.: supervision, validation, data curation, reviewing and
editing; J.D.: visualization, reviewing and editing; A.H.G.: project administration, reviewing and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, Grant Num-
bers U1706218, 41576011, 41706010, and 61503165.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The MGD values and standard deviations obtained by five algorithms.

Problem (nt, τT) SDNSGA-
III NSGA-III DNSGA-II-

A
MOEA/D-

FD LSMOF Percentage Difference

Fun1

(5,5) 9.7641e-5
(2.05e-5)

8.3088e−1
(2.10e−1) −

1.8830e−4
(2.55e−5) −

5.9543e−4
(1.26e−4) −

3.4402e−4
(8.51e−5) −

99.99%, 48.15%,
83.60%, 71.62%

(5,10) 1.0885e−4
(2.53e−5)

2.5769e−1
(1.35e−1) −

1.9373e−4
(3.34e−5) −

6.2599e−4
(1.63e−4) −

3.3416e−4
(5.25e−5) −

99.96%, 43.81%,
82.61%, 67.43%

(5,20) 7.2249e−5
(1.40e−5)

8.3223e−1
(2.49e−1) −

1.5780e−4
(2.44e−5) −

4.6507e−4
(9.94e−5) −

1.6833e−4
(3.98e−5) −

99.99%, 54.21%,
84.46%, 57.08%

(10,5) 9.2895e−5
(2.21e−5)

1.6212e−1
(3.82e−2) −

1.8772e−4
(3.37e−5) −

6.2374e−4
(1.69e−4) −

2.9641e−4
(7.04e−5) −

99.94%, 50.51%,
85.11%, 68.66%

(10,10) 9.4192e−5
(1.79e−5)

1.8184e−1
(5.75e−2) −

1.9987e−4
(3.70e−5) −

6.0922e−4
(1.70e−4) −

3.5548e−4
(9.81e−5) −

99.95%, 52.87%,
84.54%, 73.50%

(10,20) 9.6531e−5
(1.98e−5)

2.7691e−1
(9.54e−2) −

1.9788e−4
(3.50e−5) −

6.2510e−4
(1.48e−4) −

3.2505e−4
(7.25e−5) −

99.97%, 51.22%,
84.56%, 70.30%

Fun2

(5,5) 1.5312e−2
(3.99e−5)

1.3209e+0
(3.64e−1) −

5.6395e−2
(7.95e−4) −

5.6148e−2
(2.25e−3) −

1.5518e−2
(2.13e−4) −

98.84%, 72.85%,
72.73%, 1.33%

(5,10) 2.9755e−2
(4.91e−4)

1.1544e+0
(2.13e−1) −

4.9951e−2
(3.24e−4) +

5.4658e−2
(4.02e−3) −

3.0794e−2
(4.69e−4) −

97.42%, 40.43%,
45.56%, 3.37%

(5,20) 1.2032e−4
(1.26e−4)

2.7577e−1
(7.57e−2) −

1.6799e−4
(7.21e−5) −

8.6767e−4
(7.26e−4) −

5.0816e−2
(1.39e−4) −

99.96%, 28.38%,
86.13%, 99.76%

(10,5) 5.1443e−2
(4.63e−6)

1.2241e+0
(3.38e−1) −

5.6449e−2
(5.87e−4) −

5.4444e−2
(2.26e−3) −

7.9690e−3
(1.07e−4) +

95.80%, 8.87%,
5.51%, −545.54%

(10,10) 1.5329e−2
(8.66e−5)

2.2435e−1
(4.74e−2) −

1.5834e−2
(1.26e−4) −

1.6239e−2
(3.13e−4) −

1.6044e−2
(2.18e−4) −

93.17%, 3.19%,
5.60%, 4.46%

(10,20) 2.9301e−2
(2.01e−5)

5.0671e−1
(1.11e−1) −

3.1420e−2
(3.74e−4) −

3.2043e−2
(5.79e−4) −

3.1609e−2
(3.73e−4) −

94.22%, 6.74%,
8.56%, 7.30%

Fun3

(5,5) 1.4966e−2
(7.01e−3)

2.2557e−1
(3.44e−2) −

1.5307e−2
(7.32e−3) −

3.8589e−2
(6.69e−4) −

2.1146e−2
(4.48e−3) −

93.37%, 2.23%,
61.22%, 29.23%

(5,10) 1.8975e−2
(3.09e−3)

2.2439e−1
(3.65e−2) −

1.8150e−2
(5.22e−4) =

4.0220e−2
(5.76e−4) −

2.2850e−2
(3.70e−3) −

91.54%, −4.55%
52.82%, 16.96%

(5,20) 1.4379e−2
(3.98e−3)

2.2734e−1
(5.27e−2) −

4.0261e−2
(1.07e−3) −

3.4202e−2
(7.02e−3) −

2.0892e−2
(3.83e−3) −

93.68%, 64.29%,
57.96%, 31.17%

(10,5) 1.4928e−2
(5.67e−3)

2.0592e−1
(4.43e−2) −

3.7969e−2
(5.04e−4) −

3.2770e−2
(5.84e−3) −

2.0691e−2
(3.76e−3) −

92.75%, 60.68%,
54.45%, 27.85%

(10,10) 1.3473e−2
(6.74e−4)

2.1656e−1
(5.06e−2) −

1.6858e−2
(8.05e−3) −

3.2085e−2
(8.06e−3) −

2.8596e−2
(4.29e−3) −

93.78%, 20.08%,
58.01%, 52.89%

(10,20) 1.4165e−2
(5.29e−4)

2.2959e−1
(6.38e−2) −

1.6997e−2
(8.25e−3) =

3.5214e−2
(5.84e−3) −

2.1800e−2
(1.92e−3) −

93.83%, 16.66%,
59.77%, 35.02%

Processes 2021, 9, 911 20 of 23

Table A1. Cont.

Problem (nt, τT) SDNSGA-
III NSGA-III DNSGA-II-

A
MOEA/D-

FD LSMOF Percentage Difference

Fun4

(5,5) 5.7478e−5
(3.03e−5)

3.0586e+0
(5.11e−1) −

1.2177e−4
(2.95e−5) −

5.9951e−4
(2.18e−4) −

1.2788e−4
(1.11e−4) −

100.00%, 52.80%,
90.41%, 55.05%

(5,10) 9.8560e−6
(6.66e−6)

3.0143e+0
(5.17e−1) −

8.7865e−5
(3.11e−5) −

7.3340e−4
(2.66e−4) −

1.1863e−4
(3.68e−5) −

100.00%, 88.78%,
98.66%, 91.69%

(5,20) 1.7514e−4
(3.61e−5)

1.1872e+0
(4.54e−1) −

2.0144e−4
(3.60e−5) −

1.3375e−3
(3.92e−4) −

3.3894e−4
(1.37e−4) −

99.99%, 13.06%,
86.91%, 48.33%

(10,5) 8.6286e−6
(4.66e−6)

3.2288e+0
(7.88e−1) −

1.0346e−4
(3.86e−5) −

8.5105e−4
(4.65e−4) −

1.0690e−4
(3.37e−5) −

100.00%, 91.66%,
98.99%, 91.93%

(10,10) 1.7192e−4
(3.61e−5)

8.0273e−1
(2.86e−1) −

1.9120e−4
(2.72e−5) −

1.2319e−3
(5.49e−4) −

3.0479e−4
(1.20e−4) −

99.98%, 10.08%,
86.04%, 43.59%

(10,20) 1.5884e−4
(4.62e−5)

6.9277e−1
(2.27e−1) −

2.0395e−4
(2.67e−5) −

1.3210e−3
(3.97e−4) −

2.8649e−4
(8.88e−5) −

99.98%, 22.12%,
87.98%, 44.56%

Fun5

(5,5) 2.2038e−1
(2.09e−1)

6.9385e−1
(1.30e−1) −

8.8662e−1
(2.03e−1) −

1.3465e−2
(5.94e−5) +

9.6630e−1
(1.22e−1) −

68.24%, 75.14%
−1536.69%, 77.19%

(5,10) 1.3050e−2
(5.39e−5)

2.2280e−1
(5.30e−2) −

1.3435e−2
(2.36e−4) −

1.3153e−2
(2.04e−4) −

1.3589e−2
(1.58e−4) −

94.14%, 2.87%,
0.78%, 3.97%

(5,20) 1.2587e−2
(2.49e−5)

9.3152e−1
(1.74e−1) −

1.2475e−2
(2.03e−4) +

1.2611e−2
(2.55e−5) −

1.2590e−2
(2.18e−4) =

98.65%, −0.90%,
0.19%, 0.02%

(10,5) 1.3049e−2
(4.49e−5)

2.0971e−1
(3.26e−2) −

1.3518e−2
(1.89e−4) −

1.3240e−2
(2.93e−4) −

1.3537e−2
(2.81e−4) −

93.78%, 3.47%,
1.44%, 3.60%

(10,10) 8.0280e−3
(2.85e−6)

1.4576e+0
(2.94e−1) −

1.0723e+0
(1.56e−1) −

8.0422e−3
(1.63e−5) −

4.3435e−1
(2.46e−1) −

99.45%, 99.25%,
0.18%, 98.15%

(10,20) 1.3176e−2
(1.01e−3)

8.7853e−1
(1.33e−1) −

7.4932e−1
(8.50e−2) −

1.3472e−2
(9.12e−5) =

4.1628e−1
(2.99e−1) −

98.50%, 98.24%,
2.20%, 96.83%

Fun6

(5,5) 1.4959e−2
(5.61e−3)

2.2469e−1
(5.33e−2) −

1.7703e−2
(8.50e−3) −

3.7265e−2
(6.28e−4) −

2.1705e−2
(2.33e−3) −

93.34%, 15.50%,
59.86%, 31.08%

(5,10) 1.3725e−2
(5.89e−4)

2.1227e−1
(3.26e−2) −

1.8282e−2
(9.14e−3) −

3.7403e−2
(6.66e−4) −

2.1408e−2
(1.84e−3) −

93.53%, 24.93%,
63.31%, 35.89%

(5,20) 1.3892e−2
(7.75e−4)

2.2927e−1
(7.10e−2) −

1.8479e−2
(8.87e−3) −

3.6830e−2
(3.22e−3) −

2.1563e−2
(2.41e−3) −

93.94%, 24.82%,
62.28%, 35.57%

(10,5) 1.4122e−2
(1.49e−3)

2.1570e−1
(3.32e−2) −

1.5653e−2
(5.02e−3) −

3.5765e−2
(5.70e−3) −

2.2094e−2
(2.74e−3) −

93.45%, 9.78%,
60.51%, 36.08%

(10,10) 1.4963e−2
(6.00e−3)

2.1200e−1
(3.18e−2) −

1.6425e−2
(6.86e−3) −

3.6488e−2
(4.24e−3) −

2.1332e−2
(2.62e−3) −

92.94%, 8.90%,
58.99%, 29.86%

(10,20) 1.3778e−2
(6.56e−4)

2.1564e−1
(3.12e−2) −

1.6983e−2
(7.13e−3) −

3.6915e−2
(2.32e−3) −

2.1979e−2
(2.30e−3) −

93.61%, 18.87%,
62.68%, 7.31%

Table A2. The MIGD values and standard deviations obtained by four algorithms.

Problem (nt, τT) SDNSGA-III NSGA-III NSGA-IIIs NSGA-IIIr Percentage Difference

Fun1

(5,5) 4.1173e−3
(7.59e−5)

1.0619× 10+0
(3.04e−1) −

5.4190e−3
(7.05e−3) −

4.4643e−3
(2.05e−3) − 99.61%, 24.02%, 7.77%

(5,10) 4.1621e−3
(1.09e−4)

3.1543e−1
(6.21e−2) −

4.1246e−3
(6.60e−5) +

4.7086e−3
(9.61e−4) − 98.68%, −0.91%, 11.61%

(5,20) 4.0346e−3
(6.50e−5)

9.0279e−1
(2.77e−1) −

4.0621e−3
(1.80e−4) −

4.0917e−3
(2.52e−4) − 99.55%, 0.68%, 1.40%

(10,5) 4.1143e−3
(1.10e−4)

3.1175e−1
(4.65e−2) −

4.1199e−3
(5.87e−5) −

4.1204e−3
(7.92e−5) − 98.68%, 0.14%, 0.15%

(10,10) 4.1051e−3
(7.77e−5)

2.9676e−1
(4.29e−2) −

4.1788e−3
(2.68e−4) −

4.1059e−3
(6.46e−5) − 98.62%, 1.76%, 0.02%

(10,20) 4.1219e−3
(8.22e−5)

3.2164e−1
(6.44e−2) −

4.1977e−3
(7.97e−5) −

4.1297e−3
(8.09e−5) − 98.72%, 1.81%, 0.19%

Fun2
(5,5) 5.2642e−1

(3.66e−6)
1.8119e+0

(4.16e−1) −
5.2047e−1

(4.95e−3) +
5.2795e−1

(5.98e−3) − 70.95%, −1.14%, 0.29%

(5,10) 5.2642e−1
(7.13e−6)

1.5026e+0
(2.98e−1) −

3.0454e−1
(1.22e−3) +

3.0438e−1
(1.73e−3) + 64.97%, −72.86%,72.95%

Processes 2021, 9, 911 21 of 23

Table A2. Cont.

Problem (nt, τT) SDNSGA-III NSGA-III NSGA-IIIs NSGA-IIIr Percentage Difference

(5,20) 4.1727e−3
(1.60e−4)

6.5787e−1
(1.70e−1) −

5.2028e−1
(4.53e−3) −

5.2708e−1
(6.02e−3) − 99.37%, 99.20%, 99.21%

(10,5) 5.2642e−1
(3.09e−6)

1.8949e+0
(2.94e−1) −

7.8633e−2
(1.47e−4) +

7.8664e−2
(1.37e−4) + 72.22%,−569.46%,−569.20%

(10,10) 1.5659e−1
(1.74e−4)

5.1829e−1
(6.53e−2) −

1.5659e−1
(1.79e−4) =

1.5660e−1
(1.74e−4) − 69.79%, 0.00%, 0.01%

(10,20) 3.0300e−1
(1.75e−4)

9.4884e−1
(1.59e−1) −

3.0392e−1
(1.08e−4) −

3.0397e−1
(1.69e−4) − 68.07%, 0.30%, 0.32%

Fun3

(5,5) 1.3632e−1
(7.43e−3)

5.6611e−1
(4.71e−2) −

3.2547e−1
(5.79e−4) −

1.3567e−1
(6.25e−3) + 75.92%, 58.12%, −0.48%

(5,10) 1.7548e−1
(4.89e−3)

6.6592e−1
(5.97e−2) −

2.8207e−1
(8.26e−4) −

1.2592e−1
(6.82e−3) + 73.65%, 37.79%, −39.36%

(5,20) 1.1587e−1
(3.98e−3)

5.2969e−1
(6.02e−2) −

2.7057e−1
(5.31e−4) −

2.1101e−1
(4.50e−3) − 78.12%, 57.18%, 45.09%

(10,5) 1.2918e−1
(4.39e−3)

5.6899e−1
(4.38e−2) −

3.2018e−1
(2.57e−4) −

1.6741e−1
(4.48e−2) − 77.30%, 59.65%, 22.84%

(10,10) 1.1544e−1
(3.43e−3)

5.3525e−1
(4.65e−2) −

3.8872e−1
(3.76e−4) −

1.8442e−1
(2.78e−3) − 78.43%, 70.30%, 37.40%

(10,20) 1.3219e−1
(2.41e−3)

5.2812e−1
(4.92e−2) −

3.0209e−1
(4.61e−4) −

1.3372e−1
(3.65e−3) − 74.97%, 56.24%, 1.14%

Fun4

(5,5) 5.5170e−3
(6.27e−3)

3.8735e+0
(1.09e+0) −

5.0968e−3
(6.25e−3) +

8.4618e−3
(1.82e−2)− 99.86%, −8.24%, 34.80%

(5,10) 3.8147e−3
(5.02e−6)

3.9172e+0
(8.90e−1) −

7.7584e−3
(1.18e−2) −

3.8147e−3
(5.56e−6) = 99.90%, 50.83%, 0.00%

(5,20) 4.4876e−3
(2.97e−4)

1.2906e+0
(4.14e−1) −

7.0802e−3
(1.09e−2) −

4.4741e−3
(2.72e−4) + 99.65%, 36.62%, −0.30%

(10,5) 3.8136e−3
(3.49e−6)

3.8130e+0
(1.09e+0) −

7.0585e−3
(6.68e−3) −

3.8357e−3
(1.05e−4) − 99.90%, 45.97%, 0.58%

(10,10) 6.7897e−3
(1.31e−2)

1.0657e+0
(2.65e−1) −

4.7422e−3
(2.40e−3) +

4.9961e−3
(2.52e−3) + 99.36%, −43.18%, −35.90%

(10,20) 4.2404e−3
(2.54e−4)

9.7821e−1
(2.73e−1) −

4.3661e−3
(4.04e−4) −

4.7208e−3
(2.26e−3) − 99.57%, 2.88%, 10.18%

Fun5

(5,5) 1.3278e−1
(3.93e−2)

5.1958e−1
(9.60e−2) −

1.0330e−1
(7.55e−4) +

1.1789e−1
(1.56e−2) + 74.44%, −28.54%, −12.63%

(5,10) 1.0815e−1
(9.75e−5)

4.6938e−1
(7.18e−2) −

1.0816e−1
(1.38e−4) −

1.0816e−1
(1.08e−4)− 76.96%, 0.01%, 0.01%

(5,20) 1.1799e−1
(8.65e−6)

1.5532e+0
(2.29e−1) −

1.1814e−1
(7.71e−5) −

1.1899e−1
(3.72e−6) − 92.40%, 0.13%, 0.84%

(10,5) 1.0815e−1
(1.04e−4)

4.6754e−1
(6.52e−2) −

1.0816e−1
(1.27e−4) −

1.0813e−1
(1.07e−4) + 76.87%, 0.01%, −0.02%

(10,10) 7.0561e−2
(3.46e−5)

1.2441e+0
(3.16e−1) −

8.1913e−2
(3.05e−2) −

7.0571e−2
(4.43e−5) − 94.33%, 13.86%, 0.01%

(10,20) 1.0723e−1
(1.59e−2)

6.1270e−1
(1.42e−1) −

1.0480e−1
(7.60e−3) +

1.0624e−1
(8.21e−3) + 82.50%, −2.32%, −0.93%

Fun6

(5,5) 1.3247e−1
(2.20e−3)

5.4546e−1
(5.54e−2) −

3.0250e−1
(1.09e−3) −

1.3344e−1
(4.59e−3) − 75.71%, 56.21%, 0.73%

(5,10) 1.3335e−1
(2.65e−3)

5.5036e−1
(5.77e−2) −

3.0202e−1
(6.73e−4) −

1.3311e−1
(3.58e−3) + 75.77%, 55.85%, −0.18%

(5,20) 1.3316e−1
(3.31e−3)

5.2619e−1
(3.90e−2) −

3.0203e−1
(1.57e−3) −

1.3299e−1
(2.78e−3) + 74.69%, 55.91%, −0.13%

(10,5) 1.3188e−1
(2.01e−3)

5.4484e−1
(4.25e−2) −

3.0142e−1
(3.73e−3) −

1.3242e−1
(1.94e−3) − 75.79%, 56.25%, 0.41%

(10,10) 1.3393e−1
(3.40e−3)

5.4706e−1
(4.81e−2) −

3.0204e−1
(5.06e−4) −

1.3588e−1
(1.54e−2) − 75.52%, 55.66%, 1.44%

(10,20) 1.3261e−1
(2.65e−3)

5.3520e−1
(5.56e−2) −

3.0204e−1
(7.68e−4) −

1.3396e−1
(4.10e−3) − 75.22%, 56.10%, 1.01%

Processes 2021, 9, 911 22 of 23

References
1. Zhang, Q.; Li, H. MOEA/D: A Multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,

11, 712–731. [CrossRef]
2. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
3. Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans. Cybern. 2019, 49,

542–555. [CrossRef] [PubMed]
4. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014, 274, 17–34. [CrossRef]
5. Gao, D.; Wang, G.-G.; Pedrycz, W. Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection

mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [CrossRef]
6. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [CrossRef]
7. Jing, S.; Zhuang, M.; Gong, D.; Zeng, X.; Li, J.; Wang, G.-G. Interval multi-objective optimization with memetic algorithms. IEEE

Trans. Cybern. 2020, 50, 3444–3457.
8. Chen, S.; Chen, R.; Wang, G.-G.; Gao, J.; Sangaiah, A.K. An adaptive large neighborhood search heuristic for dynamic vehicle

routing problems. Comput. Electr. Eng. 2018, 67, 596–607. [CrossRef]
9. Hu, Y.; Ou, J.; Zheng, J.; Zou, J.; Yang, S.; Ruan, G. Solving dynamic multi-objective problems with an evolutionary multi-

directional search approach. Knowl.-Based Syst. 2020, 194, 105175. [CrossRef]
10. Luo, W.; Sun, J.; Bu, C.; Liang, H. Species-based Particle Swarm optimizer enhanced by memory for dynamic optimization. Appl.

Soft Comput. 2016, 47, 130–140. [CrossRef]
11. Nakano, H.; Kojima, M.; Miyauchi, A. An artificial bee colony algorithm with a memory scheme for dynamic optimization

problems. In Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC), Sendai, Japan, 25–28 May 2015;
pp. 2657–2663.

12. Rong, M.; Gong, D.; Zhang, Y.; Jin, Y.; Pedrycz, W. Multidirectional prediction approach for dynamic multiobjective optimization
problems. IEEE Trans. Cybern. 2019, 49, 3362–3374. [CrossRef]

13. Rong, M.; Gong, D.; Pedrycz, W.; Wang, L. A multimodel prediction method for dynamic multiobjective evolutionary optimization.
IEEE Trans. Evol. Comput. 2019, 24, 290–304. [CrossRef]

14. Wu, X.; Wang, S.; Pan, Y.; Shao, H. A knee point-driven multi-objective artificial flora optimization algorithm. Wirel. Netw. 2020,
1–11. [CrossRef]

15. Peng, Z.; Zheng, J.; Zou, J. A population diversity maintaining strategy based on dynamic environment evolutionary model for
dynamic multiobjective optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC), Beijing,
China, 6–11 July 2014; pp. 274–281.

16. Liu, M.; Zheng, J.; Wang, J.; Liu, Y.; Lei, J. An adaptive diversity introduction method for dynamic evolutionary multiobjective
optimization. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (IEEE CEC), Beijing, China, 6–11 July 2014;
pp. 3160–3167.

17. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting
approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]

18. Farina, M.; Deb, K.; Amato, P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications. IEEE
Trans. Evol. Comput. 2004, 8, 425–442. [CrossRef]

19. Emmerich, M.T.M.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat.
Comput. 2018, 17, 585–609. [CrossRef] [PubMed]

20. Cao, L.; Xu, L.; Goodman, E.D.; Li, H. A first-order difference model-based evolutionary dynamic multiobjective optimization.
In Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, Shenzhen, China, 10–13 November 2017;
pp. 644–655.

21. Deb, K.; Karthik, S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on
hydro-thermal power scheduling. In Proceedings of the International Conference Evolutionary Multi-Criterion Optimization,
Matsushima, Japan, 5–8 March 2007; pp. 803–817.

22. Yen, G.; Lu, H. Dynamic multiobjective evolutionary algorithm: Adaptive cell-based rank and density estimation. IEEE Trans.
Evol. Comput. 2003, 7, 253–274. [CrossRef]

23. Wang, Y.; Yu, J.; Yang, S.; Jiang, S.; Zhao, S. Evolutionary dynamic constrained optimization: Test suite construction and algorithm
comparisons. Swarm Evol. Comput. 2019, 50, 100559. [CrossRef]

24. Macias-Escobar, T.; Cruz-Reyes, L.; Fraire, H.; Dorronsoro, B. Plane separation: A method to solve dynamic multi-objective
optimization problems with incorporated preferences. Future Gener. Comp. Syst. 2019, 110, 864–875. [CrossRef]

25. Zou, F.; Yen, G.G.; Tang, L. A knee-guided prediction approach for dynamic multi-objective optimization. Inf. Sci. 2020, 509,
193–209. [CrossRef]

26. Zhou, A.; Jin, Y.; Zhang, Q.; Sendhoff, B.; Tsang, E. Prediction-based population re-initialization for evolutionary dynamic multi-
objective optimization. In Proceedings of the International Conference Evolutionary Multi-Criterion Optimization, Matsushima,
Japan, 5–8 March 2007; pp. 832–846.

27. Hatzakis, I.; Wallace, D. Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach. In
Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 8–12 July 2006; pp. 1201–1208.

http://doi.org/10.1109/TEVC.2007.892759
http://doi.org/10.1109/4235.996017
http://doi.org/10.1109/TCYB.2017.2780274
http://www.ncbi.nlm.nih.gov/pubmed/29990274
http://doi.org/10.1016/j.ins.2014.02.123
http://doi.org/10.1109/TFUZZ.2020.3003506
http://doi.org/10.1007/s00521-015-1923-y
http://doi.org/10.1016/j.compeleceng.2018.02.049
http://doi.org/10.1016/j.knosys.2019.105175
http://doi.org/10.1016/j.asoc.2016.05.032
http://doi.org/10.1109/TCYB.2018.2842158
http://doi.org/10.1109/TEVC.2019.2925358
http://doi.org/10.1007/s11276-019-02228-8
http://doi.org/10.1109/TEVC.2013.2281535
http://doi.org/10.1109/TEVC.2004.831456
http://doi.org/10.1007/s11047-018-9685-y
http://www.ncbi.nlm.nih.gov/pubmed/30174562
http://doi.org/10.1109/TEVC.2003.810068
http://doi.org/10.1016/j.swevo.2019.100559
http://doi.org/10.1016/j.future.2019.10.039
http://doi.org/10.1016/j.ins.2019.09.016

Processes 2021, 9, 911 23 of 23

28. Liu, X.-F.; Zhou, Y.-R.; Yu, X.; Lin, Y. Dual-archive-based particle swarm optimization for dynamic optimization. Appl. Soft
Comput. 2019, 85, 105876. [CrossRef]

29. Gong, D.; Xu, B.; Zhang, Y.; Guo, Y.; Yang, S. A similarity-based cooperative co-evolutionary algorithm for dynamic interval
multiobjective optimization problems. IEEE Trans. Evol. Comput. 2020, 24, 142–156. [CrossRef]

30. Wang, C.; Yen, G.G.; Jiang, M. A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization. Swarm
Evol. Comput. 2020, 56, 100695. [CrossRef]

31. Chang, R.-I.; Hsu, H.-M.; Lin, S.-Y.; Chang, C.-C.; Ho, J.-M. Query-based learning for dynamic Particle Swarm optimization. IEEE
Access 2017, 5, 7648–7658. [CrossRef]

32. Liang, Z.; Wu, T.; Ma, X.; Zhu, Z.; Yang, S. A dynamic multiobjective evolutionary algorithm based on decision variable
classification. IEEE Trans. Cybern. 2020, 1–14. [CrossRef]

33. Wang, Z.; Zhang, J.; Yang, S. An improved particle Swarm optimization algorithm for dynamic job shop scheduling problems
with random job arrivals. Swarm Evol. Comput. 2019, 51, 100594. [CrossRef]

34. Luna, F.; Zapata-Cano, P.H.; González-Macías, J.C.; Valenzuela-Valdés, J.F. Approaching the cell switch-off problem in 5G
ultra-dense networks with dynamic multi-objective optimization. Future Gener. Comput. Syst. 2020, 110, 876–891. [CrossRef]

35. Zhou, X.; Wang, X.; Huang, T.; Yang, C. Hybrid intelligence assisted sample average approximation method for chance constrained
dynamic optimization. IEEE Trans. Ind. Inform. 2020, 1. [CrossRef]

36. Chang, L.; Piao, S.; Leng, X.; Hu, Y.; Ke, W. Study on falling backward of humanoid robot based on dynamic multi objective
optimization. Peer Peer Netw. Appl. 2020, 13, 1236–1247. [CrossRef]

37. Cabrera, A.; Acosta, A.; Almeida, F.; Blanco, V.; Perez, A.C. A dynamic multi-objective approach for dynamic load balancing in
heterogeneous systems. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2421–2434. [CrossRef]

38. Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8,
173–195. [CrossRef] [PubMed]

39. Kong, W.; Chai, T.; Yang, S.; Ding, J. A hybrid evolutionary multiobjective optimization strategy for the dynamic power supply
problem in magnesia grain manufacturing. Appl. Soft Comput. 2013, 13, 2960–2969. [CrossRef]

40. Jiang, S.; Yang, S. Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons. IEEE Trans.
Cybern. 2016, 47, 198–211. [CrossRef]

41. Goh, C.-K.; Tan, K.C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans.
Evol. Comput. 2008, 13, 103–127. [CrossRef]

42. Jiang, S.; Yang, S.; Yao, X.; Tan, K.C.; Kaiser, M.; Krasnogor, N. Benchmark problems for CEC2018 competition on dynamic
multiobjective optimisation. In Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC), Rio de Janeiro,
Brazil, 8–13 July 2018; pp. 1–8.

43. Zhou, A.; Jin, Y.; Zhang, Q. A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans.
Cybern. 2014, 44, 40–53. [CrossRef]

44. Jiang, S.; Yang, S. A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Trans.
Evol. Comput. 2016, 21, 65–82. [CrossRef]

45. He, C.; Li, L.; Tian, Y.; Zhang, X.; Cheng, R.; Jin, Y.; Yao, X. Accelerating large-scale multiobjective optimization via problem
reformulation. IEEE Trans. Evol. Comput. 2019, 23, 949–961. [CrossRef]

http://doi.org/10.1016/j.asoc.2019.105876
http://doi.org/10.1109/TEVC.2019.2912204
http://doi.org/10.1016/j.swevo.2020.100695
http://doi.org/10.1109/ACCESS.2017.2694843
http://doi.org/10.1109/TCYB.2020.2986600
http://doi.org/10.1016/j.swevo.2019.100594
http://doi.org/10.1016/j.future.2019.10.005
http://doi.org/10.1109/TII.2020.3006514
http://doi.org/10.1007/s12083-019-00858-5
http://doi.org/10.1109/TPDS.2020.2989869
http://doi.org/10.1162/106365600568202
http://www.ncbi.nlm.nih.gov/pubmed/10843520
http://doi.org/10.1016/j.asoc.2012.02.025
http://doi.org/10.1109/TCYB.2015.2510698
http://doi.org/10.1109/tevc.2008.920671
http://doi.org/10.1109/TCYB.2013.2245892
http://doi.org/10.1109/TEVC.2016.2574621
http://doi.org/10.1109/TEVC.2019.2896002

	Introduction
	Background and Related Work
	Problem Formulation
	Evolutionary Algorithms for DMOPs

	NSGA-III and Proposed Strategies
	NSGA-III
	Change Detection
	Second-Order Difference and Random Strategies

	Experiments
	Benchmark Problems and Performance Metrics
	Comparative Study for the Proposed Algorithm
	Comparative Study for Two Proposed Strategies

	Conclusions
	
	References

