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Abstract: Four flat-sheet submerged anaerobic membrane bioreactors ran for 242 days on a simu-
lated domestic wastewater with low Chemical Oxygen Demand (COD) and high suspended solids.
Organic loading was maintained around 1.0 g COD L−1 day−1, while solids retention time (SRT) was
varied from 20–90 days. This was achieved at a constant membrane flux, maintained by adjusting
transmembrane pressure (TMP) in the range 1.8–9.8 kPa. Membrane fouling was assessed based
on the required TMP, with mixed liquors characterised using capillary suction time, frozen image
centrifugation and quantification of extracellular polymeric substances (EPS). SRT had a significant
effect on these parameters: fouling was least at an SRT of 30 days and highest at 60 days, with
some reduction as this extended to 90 days. Operation at SRT < 30 days showed no further benefits.
Although operation at a short SRT was optimal for membrane performance it led to lower specific
methane productivity, higher biomass yields and higher effluent COD. Short SRT may also have
accelerated the loss of essential trace elements, leading to reduced performance under these condi-
tions. A COD-based mass balance was conducted, including both biomass and methane dissolved in
the effluent.

Keywords: anaerobic membrane bioreactors; ambient temperature; membrane fouling; mean cell
residence time; wastewater treatment

1. Introduction

Anaerobic technologies for wastewater treatment may offer advantages over aerobic
systems, as they produce methane-rich biogas and have much lower sludge yields [1,2].
Anaerobic processes are normally operated at around 35 ◦C, which is known to be an
optimum for maintaining a high metabolic activity [3]. It is, however, rarely economical to
work at this temperature when treating low-strength municipal wastewaters, as the energy
yield may be lower than the parasitic energy demand for heating [4].

Although it is well-known that lower temperatures reduce the rate of biological reac-
tion, there is increasing awareness that effective operation is possible using retained and
acclimated biomass [5]. Lower temperature operation does, however, raise other issues such
as the increased solubility of methane in the effluent stream; potentially lower removal effi-
ciencies for Chemical Oxygen Demand (COD); and an increase in water viscosity that can
reduce the membrane flux and change the settling characteristics of biological solids [3,6–9].
The development of the anaerobic membrane bioreactor (AnMBR) has made it possible to
produce high-quality effluents while operating at ambient temperatures and at a reasonably
short hydraulic retention time (HRT). A number of reviews [10–12] have demonstrated
a growing interest in the application of AnMBRs to a variety of wastewater types. The
successful treatment of real and simulated municipal wastewaters with biogas produc-
tion in AnMBR at operating temperatures as low as 15 ◦C has been demonstrated [13,14].
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Yet, there still remain considerable knowledge gaps and technical challenges before the
technology can become more widely adopted at full scale [10,15].

The retention of biomass in an AnMBR allows mixed liquor suspended solids (MLSS)
concentrations to be maintained without carry-over of solids into the effluent; it also gives
the potential for selecting the MLSS concentration for optimum organic matter degradation
and membrane performance [7,15]. The decoupling of solids retention time (SRT) from
HRT provides a way to control the mean cell residence time (MCRT) in the reactor [8].
This approach to process control has been used extensively in aerobic wastewater treat-
ment, as MCRT is the reciprocal of biomass growth rate and, therefore, directly influences
both metabolic activity and sludge yield [16]. The simplest way to control MCRT, and,
therefore, gain kinetic control over the treatment process, is through proportional biomass
wastage [17]. This important kinetic control parameter has not, however, been widely used
in anaerobic systems, even though MCRT has been shown to influence the production
of extracellular polymeric substances (EPS) and soluble microbial products [3,18]. These
are particularly important in submerged AnMBR (SAnMBR), where the membrane is
directly immersed in the mixed liquor, and both EPS and soluble microbial products are
known to affect membrane fouling [19,20]. In aerobic treatment systems, it is thought that
a long MCRT reduces the concentration of EPS and soluble microbial products and because
these are considered to be more critical in inducing membrane fouling than is the MLSS
concentration, a long MCRT is usually chosen for operation [3,20,21].

Relatively few AnMBR studies to date have used MCRT or solids retention time (SRT)
as a control parameter, while many have operated at very extended or near-infinite solids
retention times, with the SRT in some cases determined only by the need to remove small
volumes of MLSS for analysis. Studies in which SRT has been varied, however, have
not always run for long enough to reach steady-state conditions: this is often defined
as operation for at least 3 SRT. Without this, it is unlikely that MLSS properties will be
representative in each case. Baek et al. [22] operated a 10-L AnMBR with a sidestream
membrane filter on settled municipal wastewater over a range of SRT from 19–217 days but
only achieved 3 SRT at the lowest value of 19 days. Yeo and Lee [23] tested SRT of 20 and
40 days in a 5-L SAnMBR operated at 23 ◦C on a feed of glucose at 5 g COD L−1. It is likely
that only 1 SRT was achieved in each case, although the duration of this experiment was not
explicitly stated. Dong et al. [24,25] used the bench and pilot-scale AnMBRs with external
hollow fibre membrane (HFM) units fed on municipal wastewater at 23 ◦C. They tested
SRT of 100, 70 and 40 days, but none of these appear to have run for 3 SRT. Thanh et al. [26]
reduced the SRT from 100 to 75, 50 and then 25 days over a 60-day period in a flat-sheet
SAnMBR at 35 ◦C fed on dilute synthetic wastewater. Yurtsever et al. [27] treated high-
salinity synthetic textile wastewater in aerobic and anaerobic flat-sheet MBRs at 60-days,
30-days and near-infinite SRT, but in each case for much less than 3 SRT. Ji et al. [28] altered
the SRT from 53 days to near-infinite in response to changes in MLSS caused by varying
load: this is a familiar alternative method for process control in aerobic systems, but they
did not attempt to use SRT itself as a control parameter.

A small number of studies using SRT as the main control parameter have run for
long enough to approach steady-state operation. In some cases, these have used high-
strength effluents under mesophilic conditions. Dereli et al. [29,30] operated two mesophilic
cross-flow AnMBR on high-strength corn stillage for 3 months at SRT of 20 and 30 days,
respectively, then ran for a further 3 months at a 50-day SRT. Szabo-Corbacho et al. [31]
investigated the effect of SRT in a crossflow AnMBR treating high-strength synthetic dairy
wastewater at 35 ◦C and completed ~3 SRT at 20 and 40-day SRT. Pacheco-Ruiz et al. [32]
used a low-to-intermediate strength synthetic wastewater at 36 ◦C and showed that a
short SRT gave enhanced membrane performance but resulted in lower specific methane
production and higher waste sludge yield. Very few such studies have used low-strength
wastewaters at lower temperatures, however, and the limited results to date have been
conflicting. When treating synthetic low-strength wastewater in a flat-sheet membrane at
25–30 ◦C, Huang et al. [33] noted that a longer SRT led to greater fouling when using the
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same AnMBR to treat municipal wastewater, however, they also found higher fouling at a
short SRT [34]. While more studies are coming through using real municipal wastewaters,
at ambient temperatures, and/or in larger-scale systems [1,6,15,24,35], data interpretation
and performance prediction can be challenging due to the number of influencing variables.
This is especially the case where multiple factors can alter simultaneously [3,4,7], and there
is thus a clear need for studies focusing on the effects of individual parameters such as SRT.

The current research aimed to assess the effect of changes in SRT on the performance
of a SAnMBR treating low-strength wastewater at 20 ◦C, and, in particular, the influence on
membrane fouling, sludge yield, COD removal efficiency, and physico-chemical properties
of the MLSS once steady-state operation has been achieved. The results may thus contribute
towards resolving some conflicting reports in the literature and could help to establish
MCRT or SRT as a principal control parameter for anaerobic wastewater treatment systems,
in much the same way as it is considered the control parameter of choice in aerobic systems.

2. Materials and Methods
2.1. SAnMBR Design and Operation

Four SAnMBRs (S1, S2, S3 and S4) were used, in which the transmembrane pressure
(TMP) was applied via a gravity head [28]. Each SAnMBR had a working volume of
9.6 L, with 2.1 L of headspace (Figure 1). Each was fitted with a chlorinated polyethylene
flat-plate membrane cartridge (Type 203, Kubota Corporation, Osaka, Japan) with nominal
pore size 0.4 µm and effective surface area 0.113 m2, at a membrane packing density
of 0.012 m2 L−1. The SAnMBRs were fed continuously with the chilled substrate at a
controlled flow achieved by maintaining a constant head differential with the outlet from
the membrane cartridge lumen. The driving force for the passage of effluent through the
membrane was thus gravity-induced, and the TMP could be altered within a range of
1.8–9.8 kPa by changing the differential head. The SAnMBRs could thus be operated at a
constant membrane flux, allowing control of the organic loading rate to be maintained as
the membranes became progressively fouled. Flow was measured on a weighing scale with
32 kg capacity and readable to 1.0 g (Model CBK 32, Adam Equipment Co Ltd., Milton
Keynes, UK), with the weight of collected permeate logged automatically at 5 min intervals.
The internal headspace pressure was maintained at around 0.3 kPa, with biogas released
via a fermentation gas lock into a gas-impermeable collection bag.

In situ cleaning of the membrane was achieved by recirculating headspace biogas
at approximately 0.57 L L−1 of reactor min−1 (corresponding to 48.5 L min−1 m−2 of
membrane surface area) using a stainless-steel sparger and a diaphragm pump (AIRPO,
Ningbo forever Electronic Appliances Co Ltd., Ningbo, Zheijiang, China). This gas flow
also maintained the mixed liquor in suspension. SAnMBR temperature during the experi-
mental period was maintained at 20.5 ± 0.5 ◦C by a stainless-steel internal heat exchange
coil coupled with a thermocirculator (FC15 and FH15V, Grant Instruments Europe BV,
Amsterdam, Netherlands). Feed and SAnMBR temperature were continuously recorded
by solid-state IC temperature probes (LM35DZ, Texas Instruments, Dallas, TX, USA) and a
datalogger (Model U3-LV, Labjack Corporation, Lakewood, CO, USA).

2.2. Inoculum and Substrate

The substrate used was a synthetic wastewater [36], which was prepared fresh each
day as a concentrate and diluted to the required working strength. It was designed to give
a C:N:P ratio of around 100:20:4 and solids contents similar to those of typical municipal
wastewaters [37,38].

The four AnMBRs were seeded from a mesophilic anaerobic digester at a municipal
wastewater treatment plant in Southampton, UK, and the headspace was purged with
nitrogen. To allow temperature acclimatisation they were initially fed with the concentrated
substrate at an organic loading rate (OLR) of 0.5 g COD L−1 day−1 for 48 days (not counted
as part of the trial). A total of 50% of the MLSS was then removed and replaced by tap water
to reduce the solids content. From this point onwards (taken as day 0 of the experimental
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period) the SAnMBRs were fed with substrate prepared by diluting the concentrate to the
required COD strength. The SAnMBRs were then run at different SRTs in 3 experimental
phases (EP), giving a total operational period of 242 days. Details of the applied SRT, TMP
and other operational parameters are given in Table A1.

Two trace element stock solutions were used containing (g L−1): Al 0.1, B 0.1, Co 1.0,
Cu 0.1, Fe 10.0, Mn 1.0, Ni 1.0, Zn 1.0; and Se 0.1, Mo 0.1, W 0.1.
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2.3. Performance and Stability

Membrane performance was evaluated on the basis of the flux achieved at constant
TMP, calculated as described in Pacheco-Ruiz et al. [36]. SAnMBR performance and
operational stability were assessed on the basis of COD percentage conversion, specific
methane production (SMP) per g of COD removed, MLSS and mixed liquor volatile
suspended solids (MLVSS) concentrations, mixed liquor pH, EPS content and composition,
capillary suction time (CST) (Triton Electronics Ltd., Dunmow, Cambridge, UK), and frozen
image centrifugation (FIC) (Triton Electronics, UK). FIC uses a technique in which a ‘frozen
image’ of the sample is generated by matching the frequency of a stroboscopic light to the
centrifuge rotor speed, allowing measurement of the height of the solid-liquid interface in
real time without interrupting the test. The centrifugation speed was fixed at 660 ± 10 rpm
with observations made every minute up to 8 min. COD of fresh feed, feed after chilled
storage for 24 h, and AnMBR effluent was measured using a closed-tube reflux method
with titrometric end-point determination [39]. Biogas composition was analysed by gas
chromatography (GP-3400, Varian Inc., Palo Alto, CA, USA) using 36% CO2 with 64% CH4
(v/v) (BOC, Guildford, Surrey, UK) as a standard gas. Biogas volumes were determined by
a weight-type gasometer [40] and are reported at standard temperature and pressure (STP,
0 ◦C and 101.3 kPa).

Organic loading rate (OLR) and SMP were calculated using the average of the COD
values for the fresh and stored feed. The reported SMP value includes both methane in gas



Processes 2021, 9, 1525 5 of 25

collected from the reactor headspace and dissolved methane in the effluent. This allows
comparison of SAnMBR performance under different sconditions since the proportion of
methane that leaves the system in the effluent will differ at different flux rates. Dissolved
methane content was estimated based on Henry’s Law using 20 ◦C saturation concentration.
The resulting average value 29.0 mL CH4 L−1 was confirmed by empirical measurement,
using the method in Walsh and McLaughlan [41].

MLSS and MLVSS concentrations were quantified using Standard Method 2540-D [42].
pH measurements were made using a pH meter (3310, Jenway Ltd., London, UK) calibrated
in pH 4, 7 and 9.2 buffers (Fisher Scientific UK Ltd., Loughborough, Leicestershire, UK).
For the COD mass balance, the only input was influent COD while outputs were taken as
effluent COD, COD in gaseous or dissolved methane and COD in biomass. The last of these
was estimated from daily MLSS removal (g MLVSS day−1) divided by the average ratio of
COD/VSS in the mixed liquor (g COD g−1 MLVSS). COD balances did not consider changes
in stored biomass, as small errors in MLSS and MLVSS measurement could introduce large
variations in the overall result. Thus the COD balances were only valid for steady-state
conditions or other periods with stable solids contents. The COD value of methane was
taken as 2.855 g COD L−1 CH4 based on stoichiometric considerations.

EPS was extracted using the formaldehyde plus NaOH procedure [43], modified in
accordance with Domínguez et al. [44] and Liang et al. [45] to enable identification of
bound and soluble components. Soluble EPS was extracted by centrifugation of mixed
liquor, as suggested by Chabaliná et al. [46]. EPS composition was quantified by measuring
the concentration of carbohydrate and protein using colorimetric methods. Carbohydrate
was determined by the phenol-sulphuric acid method [47], using a glucose standard.
Protein contents were analysed according to the modified Lowry Folin–Ciocalteu method
suggested by Frølund et al. [48], with bovine serum albumin as a standard.

3. Results and Discussion
3.1. Operational Performance

Figure 2 presents graphical data on the operation and performance of the four AnMBRs
during the 242-day experimental period, with results summarised in Tables A1 and A2.
Discussion of key parameters in relation to operating conditions during each phase of the
experimental period is provided below.

3.1.1. Membrane Flux, TMP, MLSS, HRT and OLR

Start-up (days 0–59). After the 48-day temperature acclimatisation phase and follow-
ing dilution, the MLSS in each SAnMBR was initially 16.2 g L−1. No sludge was wasted for
the next 10 days, after which time proportional wasting was introduced with the aim of
applying a SRT of 90 days (Figure 2a). In the following period, a number of changes were
made to the TMP and feed concentration in order to find a combination of conditions that
allowed acclimatisation to an increase in OLR. The TMP was initially set at 7 kPa, giving
an initial flux of 16.1 L m−2 h−1, which after 5 days had decreased to 10.2–11.0 L m−2 h−1

(Figure 2b). This high flux produced short HRTs with low COD removal rates of between
54–64%, and on day 9 TMP was reduced from 7.0 to 2.5 kPa with the aim of reducing the
flux (Figure 2c). The flux remained high, however, at around 9.9–10.6 L m−2 h−1. Thus to
avoid organic overloading, the COD of the feed was reduced to around 160 mg L−1. The
pH immediately rose to 6.9–7.0, and the COD removal rate increased to 74–80%. The OLR
was subsequently increased to 0.9, 1.0, 1.1 and 1.5 g COD L−1 day−1 stepwise at 3-day
intervals by increasing the feed concentration. This led to changes in gas composition,
with a higher methane content indicating greater biogas production, but the last increment
in OLR resulted in a fall in pH to 6.6 and a decline in %COD removal. The OLR was,
therefore, reduced on day 22 to 0.75 g COD L−1 day−1 by reducing the feed concentration,
whilst the flux was maintained at 8.0–8.8 L m−2 h−1. To improve COD removal, on day
28, the flux was then further reduced to around 6 L m−2 h−1 by reducing the TMP to
2.2 kPa (Figure 2c), and from this time onward, SAnMBR performance improved to a
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point where between day 40 and 52 the OLR was successfully raised to 1.0 g COD L−1

day−1. By day 60, stability had been achieved in all four SAnMBRs, with flux rates between
6.3–6.7 L m−2 h−1, and MLSS contents from 12.4–12.7 g L−1 (Figure 2d), COD removal
rates between 88–93% (Figure 2e), and stable biogas composition and production. At this
point, the start-up phase was considered complete.

Experimental phase 1 (EP1, days 60–111). On day 60, the SRT was reduced to 30,
45 and 60 days in S1, S2 and S3, respectively, by increasing the volume of mixed liquor
removed each day, while the SRT in S4 remained unchanged at 90 days. At the start of
this phase, the TMP in all four SAnMBR was 2.5 kPa, while flux rates were 6.7, 6.4, 6.3 and
6.4 L m−2 h−1 in S1, S2, S4 and S4, respectively (Figure 2b,c). As the flux gradually declined,
TMP was adjusted in each SAnMBR individually, with the aim of stabilising at a value of
around 5 L m−2 h−1. Feed concentrations were also modified slightly with respect to the
achieved flux, with the aim of providing a consistent OLR of around 1 g COD L−1 day−1.
The amount of adjustment applied during this phase was, however, much less than that
required in the start-up period.

By day 67, the effect of the applied changes in SRT was already evident in S3, where the
onset of membrane fouling was indicated by the need for substantial increases in TMP to
maintain a flux of 5 L m−2 h−1. Similar behaviour soon followed in S2 and S4, which from
day 80 also needed higher TMPs to achieve the target flux value, while in S1 it became neces-
sary to reduce the TMP as the flux was increasing. At this stage, it was concluded that a flux
of 5 L m−2 h−1 was too high for these experimental conditions. On day 100, the target was,
therefore, reduced to 4 L m−2 h−1, achieved by applying reduced TMPs of 1.8, 2.9, 4.3 and
2.2 kPa in S1, S2, S3 and S4, respectively (Figure 2c). This gave HRTs of approximately 20 h
and a OLR of around 1.0 g COD L−1 day−1, at an average COD concentration in the feed of
860 ± 23 mg COD L−1. Minor variations in feed concentration here were caused by slight
day-to-day variations in batch preparation and in analytical results, with no further delib-
erate adjustments being made to influent strength. In S1, S2 and S4 a flux of 4 L m−2 h−1

was maintained at constant TMP until the end of EP-1. In contrast, the flux in S3 continued
falling irrespective of increases in the TMP, which at the end of this phase had reached
6.3 kPa (Figure 2c), giving a final OLR of 0.9 g COD L−1 day−1 at an HRT of 22.5 h in
this reactor. The changes in SRT were also reflected in MLSS concentrations, with values
between 12.4–12.7 g L−1 in all SAnMBR at the start of the phase diverging to 6.2, 7.3, 8.7
and 11.7 g L−1 in S1, S2, S3 and S4, respectively (Figure 2d).

Experimental phase 2 (EP-2, days 112–160). In response to the changes observed in
EP-1, at the beginning of EP-2 the SRT in S3 was reduced in one step from 60 to 30 days, at
an initial TMP of 6.3 kPa. S1, S2 and S4 remained at their previous SRT of 30, 45 and 90 days
with corresponding initial TMPs of 1.7, 2.9 and 2.2. While flux in S1 and S2 remained
steady at 4 L m−2 h−1 without any adjustment of TMP, flux in S3 continued falling, despite
continuing rises in TMP (Figure 2c). On day 143, the TMP in S3 reached the limiting value
of 9.8 kPa, at a flux rate of 3.6 L m−2 h−1. The flux in S4 remained steady until day 115 when
it began to decline, necessitating increases in the TMP. By day 160, S4 had also reached
the maximum TMP at a flux of 3.2 L m−2 h−1 (Figure 2b). In S1 and S2, the constant flux
rates resulted in stable HRT of around 20.5 h and an OLR of 1.0 g COD L−1 day−1 for both
SAnMBRs. In contrast the continuous decline in flux in S3 and S4 led to higher HRTs of
28.5 and 26.6 h with OLR of 0.7 and 0.8 g COD L−1 day−1, respectively, at the end of EP-2.

MLSS concentrations in this phase continued to reflect the different SRT, with values in
S1 and S2 stabilising at around 4.4 and 5.8 g L−1, respectively (Figure 2d). The fall in MLSS
in S3 reflected the change in SRT to 30 days at the start of the phase, and the reduction in
applied OLR due to lower flux, which resulted in a MLSS concentration of 4.3 g L−1 in S3
at the end of EP-2. MLSS concentrations in S4 initially stabilised at 10.8 g L−1 (Figure 2d)
but by the end of the phase had fallen to 9.5 g L−1 as a result of the decrease in flux rate
and consequently in OLR.
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At the end of EP-2, S1 had completed 101 days (equivalent to 3.4 solid retention times)
at a 30-day SRT and was, therefore, regarded as having achieved steady-state operation in
these conditions.

Experimental phase 3 (EP-3, days 161–242). At the start of this phase, SRT was reduced
to 20 days in S1, maintained at 45 days in S2 and at 30 days in S3, and reduced to 30 days
in S4. At this point, S4 had completed only 160 days at a 90-day SRT, equivalent to 1.78
solid retention times or approximately 83% washout of the MLSS originally present at the
start of EP-1, but it was clear that operation was no longer sustainable within the limits of
the target flux and TMP. As an alternative to the slow reduction in MLSS content occurring
in S3, however, MLSS in S4 was reduced abruptly from 9.1 to 7.2 mg L−1, targeting a value
close to that expected for a 30-day SRT.

In the case of S4, this reduction was achieved by removing a known volume of
mixed liquor and replacing it with influent, to maintain a constant working volume in the
SAnMBR. The process was repeated on four consecutive days, until the MLSS concentration
approached the target value. The daily volume of mixed liquor replaced was 700 mL on
days 160 and 161, and 400 mL on days 162 and 163.

In S1 at a 20-day SRT, the flux during this phase was successfully maintained at
4 L m−2 h−1, with only a slight TMP increase to 2.2 kPa. In contrast, flux in S2 at a 45-day
SRT remained steady at 4 L m−2 h−1 until day 180 when it began to fall, necessitating
repeated increases in TMP (Figure 2c). By day 216, TMP in S2 had reached the limiting
value of 9.8 kPa, and from then on flux continued gradually to decline, stabilising at around
3.2 L m−2 h−1 by the end of EP-3. Flux in S3 at a 30-day SRT continued to fall (Figure 2b),
reaching its lowest value of 2.7 L m−2 h−1 on day 183. After this it slowly recovered, up to
the 4 L m−2 h−1 target by day 228 (Figure 2b). Over the next 5 days, TMP in S3 was reduced
to 6.5 kPa, while flux remained steady at 4.1 L m−2 h−1 to the end of the experiment.

The sharp reduction in MLSS in S4 produced an immediate increase in flux, reaching
4 L m−2 h−1 by day 200 (Figure 2b). Over the next 10 days, the TMP was reduced to 3.8 kPa,
while a steady flux of 4.1 L m−2 h−1 was maintained until the end of EP-3.

In S1 at a 20-day SRT, the HRT and OLR remained steady at around 21.0 h and
1.0 g COD L−1 day−1. Similar values were also achieved in S3 and S4 at a 30-day SRT
once they approached the same sustainable rate of 4 L m−2 h−1. In S2 at a 45-day SRT a
continuing slow decline in flux increased the HRT to 26.3 h with a corresponding fall in
OLR to 0.8 g COD L−1 day−1 by the end of the phase.

At the end of EP-3, reactors S1, S2 and S3 had, respectively, completed 82, 183 and
131 days at 20-, 45- and 30-day SRT (equivalent to 4.1, 4.1 and 4.4 solid retention times in
each case), making the results representative of steady-state operation in these conditions.
S4 had completed 82 days at a 30-day SRT, corresponding to 2.73 solid retention times
with removal of around 93.5% of the MLSS present at the start of EP-3. It was, therefore,
regarded as approaching steady-state operation.

The above results indicate the complexity of interactions between SRT, required
TMP, flux, MLSS, HRT and OLR, and factors associated with this are discussed in the
following sections.

3.1.2. COD Removal Rates and TE Requirements

During the start-up period COD removal initially showed quite a high variability,
which stabilised towards the end of the period. COD removal rates were similar in all four
SAnMBRs for the first 20 days of EP-1 at 89–92% (Figure 2e). Differences in SRT began
to affect COD removal during EP-1, however, with S1, S2, S3 and S4 at 30-, 45-, 60- and
90-day SRTs reaching the end of the phase with removal rates of 88%, 92%, 96% and 98%,
respectively. In EP-2, COD removal rates in S1, S2 and S4 stabilised at 85 ± 2%, 93 ± 1%
and 96 ± 1%, respectively. In contrast, the removal rate for S3, in which the SRT had been
reduced from 60 to 30 days, fell steadily from 95% to 91%.

In the first 40 days of EP-3, there was a slight decrease in COD removal in all four
SAnMBRs (Figure 2e), followed by significant falls of 8% and 20% in S1 and S3, respectively,
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between days 204 and 222. It was hypothesised that this was due to a lack of trace elements
(TE), since the shorter SRT in these reactors meant they had the highest overall biomass
turnover, and thus the greatest risk of depletion of essential micro-nutrients. Based on
this, for a 3-day period from day 223, trace elements were added to the feed for all four
SAnMBRS at a dosage of 0.1 mL of each TE solution per litre of dilute influent. This led to
an immediate rise in COD removal in all SAnMBRs, which stabilised at 92%, 97%, 95% and
96% in S1, S2, S3 and S4, respectively, by the end of EP-3. It was, therefore, likely that some
of the decline in COD removal during this period was due to TE deficiencies, but removal
rates after the TE supplementation were still slightly lower at the shorter SRTs. Other
authors [30,31] have also reported slightly higher COD removal rates at longer SRT, though
these studies involved high-strength substrates. In contrast, Huang et al. [33] observed
no significant differences in COD removal rates for low-strength synthetic wastewater at
30-day, 60-day and near-infinite SRT.

Determination of TE requirements in AnMBR is likely to be especially challenging due
to the combined effects of uncoupled liquid and solid retention times with uncertainties on
bioavailability and partitioning. A number of studies have reported the addition of trace
elements to feed without providing detailed justifications of the concentration or dosages
used [14,19,23,33,49]. Yu et al. [50] investigated the effects of individual and combined TE
supplementation on samples from the methanogenic reactor in a 2-phase AnMBR treating
industrial starch wastewater at 37 ◦C.

They reported little effect from low doses, but with an SRT of 200 days and inoculum
from a municipal sewage treatment plant, it is possible that washout of some TE to critical
levels had not yet occurred. Sierra et al. [51] looked at the partitioning of trace elements
B, Co, Cu, Mg, Mn, Mo, Ni, Se and W and at the effect of additional supplementation
with Co and W in an AnMBR treating a highly saline phenolic wastewater. Additional
Co had little effect, but W was beneficial. Doubling the overall TE dose also improved
performance, and they concluded that bioavailability and partitioning were affected by
high salinity. Thanh et al. [26] examined the effects of HRT, SRT and pH on bioavailability
and speciation of Co, Fe, Mn, Mo, Ni and Zn. When reducing the SRT from 100 to 75, 50
and then 25 days over a 60-day period, they found varying depletion rates for different
metals depending on affinity and previous accumulation. While the total trace metal
content fell with the reduction in MLSS, this was partly countered by a change in speciation
towards more bioavailable forms for all metals except Mn and Ni. While these studies
have shown the importance of TE in ANMBR, relationships between TE, SRT and other
operating parameters and optimum dosing strategies for these systems are likely to be key
areas for future work [51,52].

3.1.3. COD Balances and Dissolved Methane

COD balances (shown in Figure 3) indicated that a substantial fraction of the COD
was converted to methane, including a considerable proportion dissolved in the effluent.
The response to the addition of TE on day 223 can also be clearly seen. COD balances for
steady-state periods closed at between 92–96% in this work.

Small errors in COD balances are typical, and studies reporting better closure tend
to operate with higher strength substrates and/or temperatures or at a larger scale [31].
Closures of 93–94% were obtained for a 20-L SAnMBR treating municipal wastewater at
25 ◦C at HRT from 4–12 h [28], while a slight excess of around 101% was reported for a
5 m3 SAnMBR operating at the same temperature on a similar municipal effluent [1]. The
missing fraction in the COD balance could be attributable in part to small quantities of
biogas leaving the SAnMBRs through the permeate line in gaseous form as bubbles [36]
and by any H2S fraction in the biogas. H2S was not taken into account in the COD bal-
ance as concentrations in the biogas were considered to be low, but the inclusion of this
component may be essential in the treatment of protein- or sulphate-rich wastewaters [53].
Using Henry’s Law to estimate the amount of CH4 in the effluent may also lead to un-
derestimation, as the calculation assumed a saturation concentration, while the elevated
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TMP could cause additional dissolution and apparent methane supersaturation in the
effluent [8]. In such cases, the actual volume of dissolved methane lost would be greater
than the estimated value, especially at lower operating temperatures where saturation
concentrations are higher. Differences between observed and simulated mass flows of
methane in pilot and bench-scale sidestream AnMBRs treating screened municipal wastew-
ater at ambient temperature were attributed to oversaturation [24], but were insufficient
to account for errors of ~20% in COD balances, which may have been linked to the ab-
sence of steady-state conditions as well as to the reduction of sulphates and ferric iron.
Methane oversaturation was also reported in a pilot-scale gas-sparged sidestream An-
MBR operating on screened municipal wastewater at temperatures of 18.8–31.5 ◦C [12].
Yeo and Lee [23] noted variations in dissolved methane content with SRT in SAnMBR at
23 ◦C fed on glucose at 5.2 g COD L−1 with an HRT of 10 days. They reported oversatura-
tion of methane and a lower biogas methane percentage at a 20-day SRT and presented
COD-based balances closing at 3% and 7% for the 20 and 40-day SRT, respectively.
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3.1.4. Specific Methane Productivity

Biogas composition for all SAnMBRs remained stable throughout the three experimen-
tal phases at 78% CH4, 8% CO2 and 14% nitrogen, the latter from headspace equilibration
with atmospheric gases dissolved in the influent. SMP in all SAnMBRs showed the same
trend during start-up, beginning at zero, increasing sharply to between 0.29–0.42 L CH4 g−1

COD as residual feed and intermediate products were consumed, then stabilising at
0.20–0.22 L CH4 g−1 COD. As can be seen from Figure 2f and Table A1, during the stable
operating periods of each phase, the SMP in L CH4 g−1 COD removed (CODrem) was
around 0.23 ± 0.01 for operation at a 20-day SRT in S1; 0.22 ± 0.01, 0.23 ± 0.01 and
0.24 ± 0.01 at a 30-day SRT in S1, S3 and S4, respectively; 0.25 ± 0.01 at a 45-day SRT
in S2; and 0.26 ± 0.02 at a 90-day SRT in S4. SMP at a 60-day SRT in S3 was around
0.23 ± 0.02 L CH4 g−1 CODrem, although full steady-state operation under these condi-
tions was not achieved. These results again demonstrate a decline in SMP at the shorter
SRT, most likely due to the incorporation of a greater proportion of carbon into microbial
biomass at higher growth rates.

This outcome was consistent with the results of earlier research at 36 ◦C [32], with
the lower SMP values most probably due to reduced rates of reaction at a lower operating
temperature. Huang et al. [33,34] also found that SMP rose with increases in SRT in the treat-
ment of low-strength wastewaters. They reported values of 0.13, 0.20 and 0.22 L CH4 g−1

CODrem at SRT of 30, 60 and infinite days respectively in treatment of synthetic wastewater
at OLR from 1.1–1.67 g COD L−1 day−1 [33]; and around 0.03, 0.08 and 0.08 L CH4 g−1

CODrem at SRT of 30, 60 and 90 days, respectively, when treating municipal wastewater
at an OLR of around 1 g COD L−1 day−1 [34]. Their suggested explanation was that the
longer SRT would provide better conditions for methanogenesis, allowing higher biogas
productivity. No reason was given, however, for the very low values of SMP per g of COD
removed when treating real municipal wastewater [34]. SMP values obtained at 20 ◦C in
the current work are higher than those found by Huang et al. [33,34] at 25–30 ◦C. This may
be partly due to the loss of dissolved methane in the effluent, which was not considered
in their first study [33]. The pattern of lower SMP values at shorter SRTs is nevertheless
evident in both of these studies and in this and earlier work at 36 ◦C [32]. Dong et al. [24]
also reported a decline in SMP from 0.13 to 0.10 and then 0.08 L CH4 g−1 CODrem as SRT
was stepped down from 100 to 70 and then 40 days over a 400-day experimental period
when treating municipal wastewater at 23 ◦C.

Consideration of the SMP normalised to MLSS (SMPMLSS) indicated that the biomass
methane conversion efficiency was higher at shorter SRT (Figure 2g), as also seen in prior
work at 36 ◦C [32]. SMP values obtained were similar to those at 36 ◦C, with a maximum
of 0.095 L CH4 g−1 CODrem L g−1 MLSS for operation at a 20-day SRT in S1; and around
0.2 L CH4 g−1 CODrem L g−1 MLSS during a stable performance at a 90-day SRT between
days 110–130 in S4. Data in Huang et al. [33] indicated a higher SMPMLSS value at longer
SRTs, in contradiction to the outcomes both of this study at 20 ◦C and of the earlier research
at 36 ◦C [32]. While the values reported by Huang et al. [33] did not include dissolved
CH4, the same trend was repeated for all trials at a given HRT, whereas in theory, the
effluent methane content in the effluent should be the same in each case. The absence of
steady-state conditions under which stable MLSS concentrations can be achieved makes
it difficult to identify reliable values for normalised SMP from other similar studies. For
higher-strength wastewaters in mesophilic conditions, however, the same trends can be
seen as in the current work. During AnMBR treatment of thin corn stillage, the SMPMLSS of
0.016 L CH4 g−1 CODrem L g−1 MLSS at day SRT of 20 and 30 days was higher than that of
0.010 L CH4 g−1 CODrem L g−1 MLSS for a 50-day SRT [29], while for dairy wastewater 20
and 40-day SRT gave SMPMLSS values of 0.046 and 0.026 L CH4 g−1 CODrem L g−1 MLSS,
respectively [31].
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3.2. Membrane Performance and Fouling Phenomena

This work at 20 ◦C showed that shorter SRT resulted in better performance with
respect to flux but indicated that there was no clear advantage in operating at SRT of
<30 days (Figure 2b). In EP-1, however, a more rapid increase in TMP was needed to
maintain the flux at a 45-day SRT in S2 and a 60-day SRT in S3 (Figure 2c), compared to
that required in S4 at a 90-day SRT, despite considerably higher MLSS concentration in the
latter (Figure 2d). This suggests that the onset of membrane fouling was slower at SRT
of 30 and 90 days than at 45 or 60 days. In EP-2, the required TMP at a 45-day SRT in S2
was above that for a 90-day SRT in S4 until day 120, while the TMP in S3 began rising
sharply from day 106, despite the introduction of a 30-day SRT on day 100, indicating that
performance was better at the longer 90-day SRT. TMP in S4 with a 90-day SRT started
to increase slightly from day 80, although it was only after day 120 that it began to rise
at a rate similar to that seen previously in S3 with a 60-day SRT (Figure 2c). When SRT
in S3 and S4 was reduced to 30 days, this led to a complete recovery in flux to the target
value of 4 L m−2 h−1 (Figure 2b), together with reductions in required TMP. Faster recovery
was seen in S4, however, most likely because of the abrupt drop in MLSS compared to
the slower transition in S3. It should also be noted that the SAnMBR were operated with
in situ gas cleaning only through the experimental period, with no external or chemical
cleaning. These responses thus not only demonstrate the considerable effect of SRT on
membrane fouling but also show that fouling of this type can be at least partially reversed
if an optimal SRT is applied.

The above results confirmed that the effect of SRT on membrane fouling is not simply
due to the corresponding changes in MLSS concentration. Other research shows that
fouling is also affected by components such as EPS, the production of which is strongly
related to microbial growth and hence to SRT [3,19]. Research into the effects of SRT on
fouling and overall performance in AnMBR is still scarce, however, and the interactions
between multiple different factors are often unclear. Work by Huang et al. [33] with
synthetic wastewater as well as prior work at 36 ◦C [32], found that membrane fouling
was more severe at longer SRTs. When treating real sewage, however, Huang et al. [34]
obtained the highest flux rate at a 60-day SRT, with more severe fouling at both longer and
shorter SRTs.

3.3. Mixed Liquor Characteristics
3.3.1. Capillary Suction Time

Results of CST measurements are given in Figure 4a and Table A1. CST values ranged
between 94–569 s, and SRT had a strong effect on the mixed liquor’s ability to retain
moisture: samples taken from SAnMBR operating at shorter SRT released liquid much
more readily than those at longer SRT. During the start-up period, when all four SAnMBR
were operating as replicates at a 90-day SRT, the increase in CST was similar in all cases.
Differences in CST began to appear in EP-1, with values generally higher at longer SRT. By
the end of EP-1, however, CST values in S3 and S4 were similar at 438 and 430 s, respectively,
despite a 25% difference in MLSS concentrations. This result indicates that the 60-day SRT
in S3 represented the least favourable conditions for moisture removal and is reflected in
the fall in membrane flux during this period despite continuing increases in TMP. After
SRT in S3 was reduced to 30 days at the start of EP-2, the CST began to fall. The value
of CST per unit of MLSS (CSTMLSS, Figure 4b) continued to rise, however, showing that
normalised mixed liquor filterability was still dropping. At the end of EP-2, the CSTMLSS
value in S3 was twice that in S4, although S3 was operating at one third of the SRT in S4.

At the start of EP-3, SRT was reduced to 20 days in S1 and to 30 days in S4, in
conjunction with a sharp reduction in MLSS content in the case of the latter. While CST
values in S1 fell gradually, reaching around 100 s by the end of the phase, the sharp MLSS
reduction in S4 produced a much steeper decline in CST, which fell from over 550 to 259 s
by day 207 then stabilised at around 250 s. CST values continued to fall in S3, while in
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contrast, in S2 the CST rose significantly, stabilising at around 480 s, in parallel with a major
fall in flux rate.
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The sharp MLSS reduction in S4 at the start of EP-3 resulted in an almost-immediate
rise in CSTMLSS values, indicating an increase in normalised filterability of the mixed liquor.
This was reflected in the observed recovery in flux, which allowed significant reductions in
the required TMP (Figure 2). In contrast, although CST values in S3 levelled off and then
began to decrease after SRT was reduced to 30 days in EP-2, it was a further 100 days before
the CSTMLSS started to fall. A reduction in SRT evidently produces only a gradual change
in MLSS characteristics, as time is required for any ‘fouling substances’ present or microbial
species particularly responsible for their production to be eliminated from the reactor.
Conversely, if the MLSS concentration is decreased abruptly at the same time as SRT is
reduced (e.g., by replacing a proportion of the mixed liquor as in S4), MLSS filterability can
improve almost instantaneously as fouling materials are removed or disrupted, and the
enhancements in CST and flux occur much more rapidly.

The steady-state CST values of around 100, 480 and 190 s in S1, S2 and S3 operating at
20, 45 and 30-day SRTs, respectively, at the end of EP-3 was higher than those generally
reported for aerobic membrane bioreactors (MBR) treating municipal wastewater, which
are typically on the order of 10 s [54,55]. CSTMLSS values in S1, S2 and S3 ranged from 39 to
113 s L g−1 MLSS, again higher than the normalised values of around 1–2 s L g−1 MLSS for
aerobic MBR. CST and CSTMLSS values for combined or co-mingled primary and secondary
sewage sludges show more variability but typically range from 50–200 s and 2–10 s L g−1,
with digestion sometimes leading to an increase in one or both parameters [56–58]. CST
values of around 70 s were reported for MLSS from a full-scale SAnMBR treating source-
separated blackwater in Spain [59], with the corresponding CSTMLSS of around 15–17 L g−1

MLSS, both similar in scale to those found in the current work. Dong et al. [25] operated
a pilot-scale AnMBR on screened municipal wastewater at 23 ◦C at SRT of 40, 70 and
100 days, and reported a reduction in CST at the shorter SRT, although the system did not
reach steady-state in each case. A similar pattern of reduction in CST at shorter SRT was
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also noted in a cross-flow AnMBR operating at 37 ◦C on thin corn stillage [29]. The authors
reported that CSTMLSS values were similar at a 30 or 50-day SRT, and lower at 20 days, but
again did not complete a full three SRT in all conditions.

3.3.2. Frozen Image Centrifugation

Frozen Image Centrifugation was developed by the UK’s Water Research Centre to
allow assessment of sludge dewaterability and thickening characteristics [60]. Although it
has never been widely adopted in the water industry, it provides the basis for approaches
to the design and operation of dewatering facilities [61,62].

Results from FIC testing are shown in Figure 5a, with the centrifuged sludge volume
expressed as a percentage of the original MLSS sample at one-minute intervals during
the FIC test. Values normalised against the original MLSS concentration are shown in
Figure A2 in Appendix A. Similar to the CST values, these FIC results show clearly that
SRT had a significant effect on solid-liquid separation, with MLSS samples taken at short
SRT much more readily separable than those at longer SRT. As can be seen from Figure 5a,
the rate of separation in the first few minutes of centrifugation was also considerably more
rapid in SAnMBRs at shorter SRT, and the final sludge volumes were achieved in a shorter
time. At the end of EP-3 the final sludge volumes for FIC tests were 13%, 18% and 29%
at 20, 30 and 45-day SRT in S1, S3 and S2, respectively, while the corresponding final
centrifuged solids concentrations were 20.1, 19.6 and 14.9 mg L−1 and separation rates in
the first minute were 5.25, 3.75 and 0.50 mm min−1. After one minute of centrifugation, S1
and S3 were close to their final volumes, while S2 was still compacting at the end of the
test. Similar values at a 30-day SRT were also found in S1 at the end of EP-2 and S4 at end
of EP-3, indicating some replicability of results.

One benefit of the FIC test is its ability to provide information on several aspects of
dewaterability, all of which are potentially important with respect to equipment design and
operating costs. The potential for a high ultimate solids concentration, for example, may be
less significant if the time required to achieve it is inordinately long [62]. FIC can also reveal
details and nuances not readily observable in other tests. In the current work, for example,
from day 154 onwards, three separate phases were seen in many of the test samples. These
consisted of a clear supernatant, then a distinct cloudy white layer overlying the darker
layer of centrifuged sludge solids (Figure 5b). Times at which these layers were present
are indicated by solid bar-colouration in Figures 5a and A1, and it can be seen that they
remained visible for longer in samples taken from the SAnMBRs operating at longer SRT.
The proportion of the test run during which three phases could be distinguished increased
in S2 at 45-day SRT, but fell in S3 where the SRT had been reduced from 60 to 30 days,
corresponding to improvements in TMP and CST. The appearance of the third phase of
this type was also noted in FIC tests on digestate from sugar beet pulp [63]: it was referred
to as the light fraction and constituted a high molecular weight material most probably
composed of EPS and/or soluble microbial products. Its presence was more evident during
periods of foaming, which, such as poor dewaterability, is associated with high sludge
viscosity and EPS content. After the change from 60- to 30-day SRT in S3 at the end of
EP-1, the CST remained high while final sludge volumes in the FIC test fell. Normalised
values of both parameters continued to rise for almost 100 days, however, before dropping
quite sharply around day 211. In S4 where the change to 30-day SRT at the end of EP-2
was achieved by MLSS dilution, a sharp fall in CSTMLSS after day 189 corresponding to a
rapid increase in the separation rate at the start of the FIC test, matched by a reduction in
time needed to reach the final volume. The reasons for these delayed but sudden shifts
are unknown: they may be related to the passing of a threshold concentration for some
component in the MLSS, or even to quorum behaviour of MLSS and biofilm organisms, a
topic of growing interest for AnMBR performance and fouling [10,64].
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during FIC test in centrifuged mixed liquor from S2 on day 204. Vertical dotted lines indicate start of
experimental phases.

Several researchers have investigated relationships between parameters such as CST
or specific resistance to filtration (SRF) and MLSS dewaterability, membrane flux and
fouling in both aerobic and anaerobic MBR [25,29,59,65]. CST is generally considered
to be one of the most useful parameters because it shows a reasonably good correlation
with membrane performance and is relatively easy to evaluate on-site [27,35]. In the
current work, regression analysis was carried out to investigate any relationship between
applied TMP (as an indicator of filterability and membrane fouling) with CST and FIC.
However, in both cases, interpretation was made difficult by periods at maximum TMP.
Although neither showed a very strong correlation, the relationship between TMP and
CST was generally stronger than for TMP and FIC. This is as might be expected as the
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water removal mechanism in a CST test where liquid is drawn through the MLSS is
more similar to that in membrane bioreactor than in FIC. Several authors have noted the
importance of using a type of test, which reflects the dewatering technology [66,67], and
FIC testing has greater similarity to both sludge thickening and centrifugation. The value of
expanding the range of tests currently utilised for sludge characterisation was emphasised
by Spinosa and Doshi [68], and further work on FIC and other tests is needed to provide an
enhanced understanding of different parameters and the significance of the relationships
between them.

3.3.3. Extracellular Polymeric Substances

Under steady-state conditions at the end of EP-3, bound EPS concentrations at 20,
30 and 45-day SRT were 378, 483 and 511 mg L−1 in S1, S3 and S2, respectively. Specific
values normalised against MLSS were around 165 mg g−1 VSS for the SAnMBR at 20 and
30-day SRT, and slightly lower at 134 mg g−1 VSS at a 45-day SRT. Other authors have
also reported higher EPS content at shorter SRT: examples include treatment of municipal
wastewater in a sidestream AnMBR at SRT ranging from 19–217 days, although steady-state
operation was achieved only at the 19-day SRT [22]; and of synthetic wastewater at 31 ◦C
in a AnMBR with a ceramic membrane at 100, 50 and 25-day SRT [69], although with full
steady-state operation for the 25-day SRT only.

As can be seen in Figure 6a,b, for much of the experimental period, the specific
concentrations of bound protein and carbohydrate were highest in S1 operating at a 30-day
and 20-day SRT. When SRT in S3 was reduced from 60 to 30 days at the start of EP-2,
however, specific concentrations increased in this reactor, with the carbohydrate content
rising first. Specific protein and carbohydrate concentrations also increased in S4 after the
SRT was reduced to 30 days at the start of EP-3. At the end of the experimental period,
both the specific bound protein and the bound carbohydrate concentrations were lowest in
S4 at a 45-day SRT, and higher in the SAnMBR at shorter SRT. Huang et al. [33,34] found
higher specific protein contents in EPS at a 30-day SRT than at longer SRT, and suggested
that this might produce larger flocs with a lower membrane fouling propensity. They also
noted that long SRTs were associated with smaller median particle size, as the lower EPS
content reduces flocculation, and hence promotes more rapid fouling. These suggestions
appear to be consistent with the outcomes of the current work.

There was also evidence of a relationship between soluble EPS content and membrane
performance at longer SRTs. As can be seen in Figure 6c,d, the specific carbohydrate and
protein concentrations of soluble EPS in S3, which had shown the most rapid fouling
of all at a 60-day SRT, were generally higher than in the other SAnMBRs. After SRT
in S3 was reduced to 30 days from the start of EP-2, the specific soluble protein and
carbohydrate contents continued rising until around day 205 when they finally reduced.
At that point, the CST value also fell, the rate of separation in the FIC test increased, and
the flux began to recover. Conversely, towards the end of EP-3, the specific soluble protein
and carbohydrate contents in S2, operating at a 45-day SRT, increased relative to the other
SAnMBRs, which at that point were all running at shorter SRTs. This corresponded to the
period in which CST values in S2 began to rise and flux to reduce, despite an increase in
TMP, to 9.8 kPa. This reactor reached the end of the experiment with the highest soluble
protein and carbohydrate contents (specific and absolute), highest TMP, highest CST and
FIC values, lowest separation rate in the FIC test and lowest flux.

Huang et al. [33] found that the concentration of soluble microbial products was
inversely related to SRT, while higher SMP carbohydrate and protein contents at longer
SRT resulted in higher fouling rates. In contrast, when real municipal wastewater feed
was used, the minimum specific and absolute values for SMP carbohydrate and proteins
were found at a 60-day SRT [34]. This was attributed to incomplete substrate degradation
at the 30-day SRT, and an increased concentration of residual cell materials at the 90-day
SRT. Although EPS and MLSS concentrations were lowest at the shortest SRT, this was
insufficient to counteract the fouling effect of the higher SMP content. Soluble microbial
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products were not measured in the current study, but this explanation may be partly
supported by the results of this experiment and of the previous work at 36 ◦C [32], which
showed no further enhancement in membrane performance at SRT of <30 and <25 days,
respectively. Laspidou and Rittmann [70] proposed that under some conditions soluble
EPS and SMP may be similar, although other researchers were unable to confirm this [71].
Trends in bound and soluble EPS observed in this work are consistent with those in other
studies carried out under steady-state conditions, where the consensus is that bound EPS
tends to be high at shorter SRTs while microbially-induced SMP concentrations tend to
decrease [33,34]. Given that soluble EPS also decreased at shorter SRTs in the current work,
it can be concluded that even if it is not identical to SMP, its relationship to SRT and its
effects on membrane fouling are closely similar.
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EPS content was not measured in the previous work with the same wastewater at
36 ◦C [32], and thus the effect of temperature in the current study is unknown. EPS and
soluble microbial products normalised to MLSS content were reported to increase with
decreasing temperature in a flat-sheet SAnMBR fed on a synthetic municipal wastewater
at 25, 15 and 10 ◦C [14]. The ratio of protein to carbohydrate also rose with decreasing
temperature, leading to higher rates of fouling at low temperatures. The applied SRT was
not reported, however, thus it is likely that this was high and determined only by the
withdrawal of samples for analysis. Similar trends in EPS and soluble microbial product
concentrations were observed in two hollow fibre SAnMBR fed on synthetic wastewater at
25 and 35 ◦C with an SRT of 370 days [72], and in a hollow fibre SAnMBR fed on municipal
wastewater at 25, 20 and 15 ◦C at SRT of 93.9, 40.3 and 20.7 days, respectively [73], although
the operating periods under each set of conditions were less than 3 SRT. Kong et al. [1]
operated a 5 m3 pilot-scale SAnMBR with a HFM unit on municipal wastewater for over
200 days at 25 ◦C. No change in EPS concentration was observed when HRT was varied
between 6–24 h, but SRT was not reported.

EPS and soluble microbial products were characterised in flat-sheet SAnMBR treating
low-strength synthetic wastewater at 25 ◦C and operated at various OLR [19]. Properties
were linked to membrane fouling mechanisms, but the SRT of the system was near-infinite
as no MLSS was discharged other than for sampling.

While some differences in EPS production and composition were seen in the current
study, these were not sufficiently marked enough to show a clear correlation between
SRT and observed fouling behaviour. Nonetheless, the findings are consistent with those
reported elsewhere. While there may be a specific range of SRT for each system in which
membrane performance can be optimised, however, the effect of EPS concentrations and
compositions on fouling in AnMBR is still not well understood, as a function of SRT or
other operating parameters. For this reason, further work may be needed to assess the
interaction between operational variables, MLSS characteristics and membrane fouling.

3.3.4. Biomass Growth and Kinetics

As well as having a significant impact on mixed liquor characteristics, the MCRT
or SRT controls microbial growth rates, and thus potential growth yield. As previously
seen for the work carried out at 36 ◦C [32], in the current experiment, the biomass yield
appeared to show a sharp increase at each reduction in SRT. This reflected the fact that, as
noted in the Methods section, changes in stored biomass were not taken into account to
eliminate major variations. The apparent increases in yield were followed by a gradual
decrease as conditions stabilised. The stable value was taken as the representative yield for
each corresponding SRT and was equal to 0.131 ± 0.008 g VSS g−1 CODrem at a 20-day SRT,
0.124 ± 0.012 g VSS g−1 CODrem at a 30-day SRT, and 0.114 ± 0.004 g VSS g−1 CODrem at a
45-day SRT. Biomass yields for the 60- and 90-day SRTs are not reported here as steady-state
operation of the SAnMBRS was not achieved for these conditions, and thus representative
values were not available.

The above results confirmed that shorter SRT gave higher biomass yields, in agreement
with prior work at 36 ◦C [32]. These outcomes provide further support for the idea that at
shorter SRT a higher proportion of the available carbon is directed into biomass growth
rather than methane production, thus reducing the substrate SMP. Conversely, at longer
SRT, lower growth rates and increased hydrolysis of MLSS leads to reduced biomass yields
and higher SMP values [24]. In a full-scale system, a shorter SRT with a higher biomass
yield would be linked to larger volumes of waste sludge for disposal and potentially to a
greater requirement for TE supplementation, both leading to higher operating costs.

These low yields are typical of those reported elsewhere for similar systems, including
0.11 g VSS g−1 COD for low-strength synthetic wastewater treatment at 25 ◦C and near-
infinite SRT [74]. Ji et al. [73] found sludge yields of 0.12, 0.19 and 0.388 g VSS g−1 CODrem
with real municipal wastewater at SRT of 93.9, 40.3 and 20.7 days; but the effect was
confounded by accompanying changes in temperature from 25 to 20 and 15 ◦C and the
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system did not operate for 3 SRT in each set of conditions. Sludge yields of 0.07–0.11 g VSS
g−1 CODrem were reported using the same wastewater at 25 ◦C for SRT from 65 days to
near-infinite with HRT from 6–12 h and OLR between 0.7–1.5 g COD L−1 day−1 [28].

The current study showed changes occurring over different timescales, which could
be categorised as follows: (i) those which happen slowly, such as stabilisation of MLSS
concentrations after a change in SRT; these changes cannot easily be accelerated as they are
both growth-mediated and affected by washout rate, although interventions such as partial
removal of MLSS may reduce the time needed to approach stable values. (ii) Those which
can happen more rapidly, such as a response to TE addition or to other factors affecting the
microbial population; as these are metabolically mediated, they can trigger an immediate
response through stimulation or inhibition. (iii) Those which may happen rapidly but after
a delay, such as the observed sharp changes in CST and FIC values following reductions
in SRT, which could be metabolically or physico-chemically determined in relation to
threshold concentrations. The factors that cause these changes may also be interdependent,
and hence to allow full evaluation of their effects on system performance and mixed liquor
characteristics long-term operation is advisable, wherever possible for at least 3 SRT under
a given set of operating conditions.

4. Conclusions

Extended operation of four SAnMBRs at 20 ◦C on a low-to-intermediate strength
substrate with a high suspended solids content was conducted at different SRTs. This
enabled accurate determination of flux rates at specific SRT, accompanied by evaluation
of COD removal efficiencies; estimation of biomass yields; a COD-based mass balance;
physical characterisation of mixed liquors using CST and FIC tests; and analysis of EPS
concentration, type and composition. The results showed that SRT had a considerable
effect on flux rates, with shorter SRT allowing enhanced membrane performance and
improved mixed liquor filterability, at a higher bound EPS content but with lower soluble
EPS concentrations in the MLSS. Operation at shorter SRT led to a reduction in specific
methane productivity and in COD removal rates, accompanied by higher biomass yields.
Whilst no further enhancement of membrane performance was found at SRT of <30 days,
operation at a 60-day SRT resulted in more rapid onset of membrane fouling and declining
performance than at a 90-day SRT. Reduced COD removal rates at shorter SRTs were
probably due to the increased washout of essential trace elements caused by the higher
biomass turnover: this was supported by a rapid recovery in COD removal efficiency after
TE supplementation was carried out. COD removal efficiencies remained slightly lower at
shorter SRTs, however, suggesting that the lower available biomass concentration may also
have affected this parameter. Overall COD removal efficiencies achieved after TE addition
were very close to those seen in an earlier study using the same substrate at 36 ◦C, and the
effect of the lower operating temperature on this parameter was, therefore, considered to be
negligible. CST values gave some indication of changes in membrane performance, while
frozen image centrifugation provided additional insights into MLSS properties and fouling
behaviour, with three separate phases clearly visible at longer SRT. The ability of the FIC test
to identify several parameters such as final solids concentration and rates of solid separation
may also make it especially appropriate for assessing sludge dewaterability in gravity
thickening or centrifugation, and further exploration of this approach is recommended.
Operation over the full experimental period, without chemical or external cleaning, not
only demonstrated the effects of SRT on performance parameters but also indicated that
membrane fouling could be at least partially reversed if an optimal SRT is applied. These
results indicated that responses to a change in SRT may be significantly delayed, probably
as a result of the different timescales on which growth-related, metabolic and physico-
chemical and/or the various interactions between them. Thus confirming the importance
of long-term operation to allow full evaluation of system performance and mixed liquor
characteristics under steady-state conditions. Together with earlier findings from operation
at 36 ◦C, this work confirmed that there are potential trade-offs to be made between
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membrane performance, specific methane productivity and sludge yields when selecting a
suitable SRT for AnMBR systems of this type.
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Table A1. Experimental results; SRT effect on: membrane flux, OLR, HRT, feed COD, effluent COD and COD removal rates.

Parameter SRT TMP Membrane Flux (J) * OLR HRT Feed COD Effluent COD COD Removal Rate
Phase Reactor (days) (kPa) (L m−2 h−1) (g COD L−1 day−1) (hours) (mg L−1) (mg L−1) (%)

Start-up
(day 0–59, total

60 days)

A 90 7.1→ 2.1→ 2.5 16.1→ 6.7 0.50–1.45 5.8→ 12.5 305→ 507 99→ 200→ 59 74%→ 53%→ 89%
B 90 7.1→ 2.1→ 2.5 16.1→ 6.4 0.50–1.47 5.8→ 13.1 305→ 507 100→ 222→ 51 74%→ 55%→ 90%
C 90 7.1→ 2.1→ 2.5 16.1→ 6.3 0.50–1.49 5.8→ 13.3 305→ 507 83→ 213→ 39 79%→ 49%→ 93%
D 90 7.1→ 2.1→ 2.5 16.1→ 6.4 0.50–1.46 5.8→ 13.1 305→ 507 83→ 224→ 62 72%→ 42%→ 88%

EP-1
(day 60–111, total

52 days)

A 30 2.5→ 3.2→ 1.8 6.7→ 5.3→ 4.1 0.98 ± 0.03 12.5→ 15.8→ 20.2 567→ 860 59→ 144 88% ± 1%
B 45 2.5→ 5.1→ 2.9 6.4→ 5.1→ 4.1 0.94 ± 0.04 13.1→ 16.5→ 20.3 567→ 860 51→ 65 91% ± 1%
C 60 2.5→ 6.7→ 4.3→ 6.3 6.3→ 4.2→ 3.7 1.00→ 0.90 13.3→ 17.7→ 22.5 567→ 860 41→ 36 92% ± 2%
D 90 2.5→ 3.2→ 2.2 6.4→ 5.3→ 4.1 0.97 ± 0.02 13.1→16.2→ 20.4 567→ 860 61→ 21 88%→ 97%

EP-2
(day 112–160,
total 48 days)

A 30 1.8 ± 0.5 4.1 ± 0.0 0.98 ± 0.01 20.6 ± 0.2 843 ± 26 144→ 125 85% ± 2%
B 45 2.8 ± 0.6 4.1 ± 0.0 0.99 ± 0.01 20.5 ± 0.2 843 ± 26 65→ 70 93% ± 1%
C 30 6.3→ 9.8 3.7→ 3.0 0.90→ 0.72 22.5→ 28.5 843 ± 26 36→ 77 95%→ 91%
D 90 2.2→ 9.8 4.1→ 3.2 0.97→ 0.76 20.4→ 26.7 843 ± 26 21→ 44 96% ± 1%

EP-3
(day 161–242,
total 82 days)

A 20 1.9→ 2.2 4.0 ± 0.1 0.98 ± 0.02 21.0 ± 0.4 853 ± 21 136→ 228→ 68 84%→ 74%→ 92%
B 45 2.8→ 9.8 4.1→ 3.2 0.99→ 0.78 20.5→ 26.3 853 ± 21 70→ 84→ 22 92%→ 92%→ 97%
C 30 9.8→ 3.8 3.0→ 2.7→ 4.0 0.72→ 1.02 28.5→ 31.5→ 21.9 853 ± 21 77→ 217→ 39 91%→ 75%→ 96%
D 30 9.8→ 6.5 3.2→ 4.1 0.76→ 0.99 26.7→ 21.1 853 ± 21 44→ 91→ 34 95%→ 89%→ 96%

(→) Variable trend: initial→middle→ final; (±) Stable performance: One standard deviation to show spread of data from the average
value under stable performance; (*) Daily average.
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Table A2. Experimental results; SRT effect on: CH4 content in biogas, SMP, MLSS, MLVSS, CST and pH.

Parameter SRT CH4 in Biogas * SMP ** MLSS MLVSS CST
pHPhase Reactor (days) (%) (L CH4 g−1 COD

Removed) (g L−1) (g L−1) (seconds)

Start-up
(day 0–59,
60 days)

A 90 88%→ 93% 0.00→ 0.35→ 0.21 16.2→ 12.7 12.5→10.3 162→ 461→ 117 7.0→ 6.2→ 6.8
B 90 81%→ 92% 0.00→ 0.29→ 0.20 16.2→ 12.5 12.6→ 10.2 122→ 402→ 101 7.0→ 6.2→ 6.8
C 90 76%→ 93% 0.00→ 0.42→ 0.22 16.2→ 12.4 13.3→ 10.0 130→ 449→ 117 7.0→ 6.2→ 6.8
D 90 87%→ 93% 0.00→ 0.42→ 0.21 16.2→ 12.7 12.7→ 10.4 132→ 435→ 131 7.0→ 6.2→ 6.9

EP-1
(day 60–111,

52 days)

A 30 92% ± 1% 0.21 ± 0.01 12.7→ 6.2 10.3→ 5.4 117→ 198 6.8 ± 0.0
B 45 91% ± 1% 0.22 ± 0.02 12.5→ 7.3 10.2→ 6.2 101→ 252 6.8 ± 0.0
C 60 92% ± 2% 0.23 ± 0.02 12.4→ 8.7 10.0→ 7.4 117→ 438 6.8 ± 0.0
D 90 92% ± 2% 0.23 ± 0.02 12.7→ 11.7 10.4→ 9.8 131→ 430 6.8 ± 0.0

EP-2
(day

112–160,
48 days)

A 30 90% ± 1% 0.22 ± 0.01 6.2→ 4.4 5.4→ 3.8 198→215 6.7 ± 0.0
B 45 90% ± 1% 0.24 ± 0.01 7.3→ 6.0 6.2→ 5.2 252→291 6.7 ± 0.1
C 30 90% ± 1% 0.23 ± 0.01 8.7→ 4.3 7.4→ 3.7 407→ 482→ 433 6.7 ± 0.0
D 90 90% ± 1% 0.26 ± 0.02 11.7→ 9.3 9.8→ 8.1 430→ 569 6.8 ± 0.0

EP-3
(day

161–242,
82 days)

A 20 90% ± 1% 0.23 ± 0.01 4.4→ 2.6 3.8→ 2.2 222→ 101 6.7 ± 0.0
B 45 90% ± 1% 0.25 ± 0.01 6.0→ 4.2 5.2→ 3.7 291→ 488 6.8 ± 0.0
C 30 90% ± 1% 0.23 ± 0.01 4.3→ 2.8→ 3.4 3.7→ 2.9 433→ 182 6.8 ± 0.0
D 30 90% ± 1% 0.24 ± 0.01 9.3→ 6.4→ 3.8 8.1→ 3.3 569→ 240 6.8 ± 0.0

(→) Variable trend: initial→middle→ final; (±) Stable performance: One standard deviation to show spread of data from the average
value under stable performance; (*) Normalised to total biogas content in sample (i.e., neglecting air introduced dissolved through feed);
(**) Takes into account the methane dissolved in the effluent.
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