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Abstract: The vanadium content of molten iron is an important economic indicator for a vanadium–
titanium magnetite smelting blast furnace, and it is of great importance in blast furnace production
to be able to accurately predict it and optimize the operation of vanadium extraction. Based on
the historical data of a commercial blast furnace, the clean data were obtained by processing the
missing data and outlier data for data mining analysis and model development. A combined wavelet-
TCN model was used to predict the vanadium content of molten iron. The average Hurst index
after wavelet transform was calculated to reduce the complexity of the wavelet transform layer
selection and the model computation time. The results show that compared to single models, such as
LSTM, LSTM with attention, and TCN, the combined model based on wavelet-TCN (a = 5) had an
improvement of about 11~17% in R2, and the prediction accuracy was high and stable, which met the
practical requirements of blast furnace production. The factors affecting the vanadium content of
molten iron were analyzed, and the measures to increase the vanadium content were summarized.
A blast furnace should avoid increasing the titanium dioxide load, increase the vanadium load
appropriately, and keep the relevant operating parameters within the appropriate range in order to
achieve the optimization of vanadium extraction from molten iron.

Keywords: blast furnace; vanadium content of molten iron; prediction; optimization; wavelet; TCN

1. Introduction

The world’s vanadium–titanium magnetite reserves are huge, totaling more than
40 billion tons, and are of enormous economic and national strategic value [1,2]. Vanadium,
a globally recognized strategic metal and an important industrial raw material, is used in
many important fields of national industry, including iron and steel, shipbuilding, energy
storage, aerospace, railways, and defense [3]. Considering the issues of scale, cost, and
the environment, the results of many trials and analyses have concluded that the indirect
extraction of vanadium through the blast furnace process continues to have significant
advantages. The high-volume, high-efficiency blast furnace production process is the most
advanced application in vanadium–titanium magnetite resource development, particularly
in China. With the improvement in the concentration level and blast furnace operation
technology, the blast furnace smelting process has been continuously strengthened, result-
ing in the world’s first vanadium–titanium magnetite blast furnace-strengthened smelting
technology [4–7]. Due to the nature of vanadium–titanium magnetite itself and the technical
problems of smelting vanadium, the reduction and recovery of vanadium are low, and some
challenges have appeared in the research on vanadium extraction in a blast furnace [8]. On
the other hand, the limitation of detection technology has resulted in the inability to achieve
the stable and accurate online detection of molten iron’s index of vanadium content, and
the offline detection time is too long, with a serious delay [9]. Therefore, the establishment
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of a model to predict the vanadium content of molten iron has positive implications for
vanadium extraction in blast furnace production.

A blast furnace ironmaking system has a long process flow and a complex internal
reaction mechanism. It is characterized by a large delay, strong coupling, and nonlinearity.
In the complex and changing production environment of the blast furnace, the correspon-
dence between the raw material conditions, the blast furnace operation, and the vanadium
content of molten iron will vary greatly depending on the “furnace” and “time”, and it
is difficult to guarantee prediction accuracy in the traditional prediction model. In recent
years, there have been relatively few studies on the prediction of vanadium content of
molten iron [10–12]. With the development of big data technology in the metallurgical in-
dustry, prediction models of silicon content, which is also an important index of molten iron
quality, have emerged and guided the actual production operation of blast furnaces [13–15].
Combined with the challenges of blast furnaces in the field of traditional vanadium extrac-
tion, the application of big data mining technology provides a new direction for the research
of vanadium extraction in vanadium–titanium blast furnaces: to establish a prediction
model to accurately predict the vanadium content of molten iron and grasp the trend in
vanadium content, thus providing a technical basis for the subsequent optimization of blast
furnaces for highly efficient and stable vanadium extraction operation.

In view of the above comments, this study adopted a combined wavelet-TCN time
series prediction model for the prediction of vanadium content in molten iron. Based
on the historical data of vanadium smelting in blast furnaces, the factors affecting the
vanadium content of molten iron and the optimization measures for vanadium extraction
are summarized. These enable an accurate prediction of the vanadium content of molten
iron and the optimization of vanadium extraction measures, providing production guidance
to operators.

The main structure of the paper is as follows: Section 1 introduces the background
of the study, the current research on the prediction of vanadium content of molten iron,
and the structure of the paper. Section 2 introduces the methods and principles of model
prediction. It provides a theoretical foundation. Section 3 is the data processing phase. It
outlines the data collection and processing work, including the processing of data such
as null values and outliers. In Section 4, a combined wavelet-TCN temporal prediction
model is used to predict the target parameter and the results are compared with other
prediction models to verify the superiority of the model. Section 5 summarizes the factors
affecting the vanadium content of molten iron and the vanadium extraction measures,
providing production guidance to operators. Section 6 summarizes the research carried out
throughout the text and proposes ideas for future optimization.

2. Methods and Principles

A blast furnace is a production system with large hysteresis, time variance, nonlinearity,
and strong coupling. It is a long flow process with continuous production based on time.
Time series prediction models can automatically learn to extract features and are widely
used in many fields due to their high accuracy in massive time series datasets. The quality
of the data itself determines the upper limit of the model’s predictive performance. How to
accurately capture the changing patterns of time series data is the key to accurate model
prediction. The TCN prediction model based on wavelet transform has the advantages of
higher accuracy, better performance, enhanced long-term prediction capability, and fewer
learning data compared to a single prediction model for fluctuating datasets [16–20]. The
flowchart of the combined wavelet-TCN prediction method is shown in Figure 1. Firstly, the
original time series data are decomposed into several noise segments and a trend segment
using the wavelet transform. Then, the decomposed sequences are predicted separately
using the TCN model to obtain the prediction result of each sequence. Finally, the prediction
results of each sequence are reconstructed to obtain the final prediction results.
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2.1. Wavelet Transform

Discrete wavelet transform was used for data analysis. The original time series was
decomposed into a low-frequency approximation set and multiple high-frequency detail
sets by discrete wavelet transform using the wavelet function (high-pass filter) and scale
function (low-pass filter) [21]. The discrete wavelet transform process is as follows:

The time series X(n) = [X0, X1, . . . , Xn−1] through the impulse responses g(n) and
h(n) of the wavelet and scale functions is used to obtain the first layer of decomposition:
the low-frequency approximate solution X1,L(n) and the high-frequency detailed solution
X1,H(n). If further decomposition is required, the low-frequency approximate solution
X1,L(n) is high-pass filtered and low-pass filtered to obtain the second layer X2,L(n) and
X2,H(n), and the previous step is repeated until the desired number of decomposition
layers is reached. The high-frequency solution and low-frequency solution from the de-
composition of layer a are shown in Equations (1) and (2).

Xa,L(n) = ∑
n

Xa−1,L(n)g(2k− n) (1)

Xa,H(n) = ∑
n

xa−1,L(n)h(2k− n) (2)

where a = 1, 2, . . ., N − 1; k = 0, 1, . . ., N − 1; N is the number of time series; L denotes the
low-frequency filtering result; and H denotes the high-frequency filtering result.

The impulse responses g(n) and h(n) of the wavelet and scale functions are not
independent. They have the relationship of Equation (3), where L is the filter length. It
can be seen that the two impulses with odd indices of each other alternate inversely and
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in orthogonal bases, which makes it easy to reconstruct the sequence. For layer a, the
reconstruction formula is shown in Equation (4).

g(l − 1− n) = (−1)n · h(n) (3)

Xa(n) = ∑n Xa+1,L(n)g(2k− n) + ∑n Xa+1,L(n)h(2k− n) + ∑n Xa,H(n) (4)

The original time series X(n) undergoes discrete wavelet transform, as shown in
Figure 2, and according to Equations (3) and (4), the reconstruction formula of X(n) is
shown in Equation (5).

X(n) = ∑
a

Xa,H(n) + Xa,L(n) (5)
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2.2. Temporal Convolutional Networks

TCN contains three components in addition to the underlying 1D fully convolutional
network: causal convolution, dilated convolution, and residual connection.

2.2.1. Causal Convolution

TCN follows the principle that the output length of the network is the same as the
input length. Future data cannot be input into the network together with past data, which
will lead to the leakage of future data into the past data. To ensure that the above principle
is implemented, TCN uses a one-dimensional fully convolutional network and causal
convolution. Causal convolution relies on the next layer of T moments and their previ-
ous values. The difference with traditional convolutional neural networks is that causal
convolution cannot see future data, it is a unidirectional structure, not bidirectional [22].
Therefore it is a strictly time-constrained model.

2.2.2. Dilated Convolution

Causal convolution can only capture dependencies linearly by increasing the depth
of the network, which makes it unable to solve the task of longer dependencies well. To
solve this problem, the dilated convolution is introduced [23]. The formula is shown in
Equation (6).

F(s) =
k−1

∑
i=0

f (i) · Xs−i (6)

where the one-dimensional sequence is X ∈ Rn; the convolution kernel size is k; the filter
f : {0, . . . , k− 1} → R ; I is ∈ (0, 1, . . ., k − 1); the expansion factor is D; the element in the

sequence is s; and the convolution operation is F.
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Expansive convolution makes the size of the effective window grow exponentially
with the number of layers (1, 2, 4, 8, . . ., 2n). This gives the convolutional network a large
receptive field with a relatively small number of layers while ensuring that the network
can memorize more dependent information. The structure of the dilated convolution is
shown in Figure 3a.
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2.2.3. Residual Connection

With the introduction of causal convolution and inflationary convolution, the depth
of the network increases, which can cause gradient vanishing or gradient explosion and
degrade the network performance. Therefore, TCN introduces residual connection, which
uses residual modules instead of convolutional layers. Residual connection has proven to
be an effective method for training deep networks, which allows the network to pass infor-
mation across layers [24]. The structure of the residual connection is shown in Figure 3b. A
residual module contains two layers of convolution and nonlinear mapping, with Weight-
Norm and Dropout added in each layer to regularize the network. This residual structure
allows the feature extraction process to be able to retain as much information as possible,
improving the accuracy of the model.

3. Data Preparation

The data in this study are the actual production data from a 2500 m3 vanadium–
titanium commercial blast furnace. This furnace has accumulated a huge amount of
production data, but it has many data fields, different storage locations and data quality
problems. Therefore, these data needed to be processed before the model was built. This
ensured that the data were complete and real, improving the accuracy of the model and
guiding the production of vanadium extraction in the blast furnace.

3.1. Data Collection

All the data from the blast furnace ironmaking process are stored in three databases:
Wonderware, Oracle, and SQL Server. The data storage of the blast furnace is shown in
Figure 4. The content and frequency of the data stored in each database are different: The
Wonderware database stores the real-time monitoring data of the blast furnace production
equipment, the SQL Server database stores the data related to the operation of the blast
furnace production, and the Oracle database stores the results of the inspection and testing
of the raw fuel and the products of the blast furnace.
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The data were collected from a 2500 m3 commercial vanadium–titanium magnetite
smelting blast furnace. The data collection and description of the blast furnace are shown
in Table 1. According to the production process and the characteristics of the data type,
the data were divided into two categories of non-real-time discrete data and real-time
continuous data. Non-real-time discrete data include the relevant data recorded during the
blast furnace production; these types of data generally include raw material and fuel data,
slag and iron test data, and some manually entered production data. Real-time continuous
data include the temperature, pressure, and flow data recorded in real time by monitoring
equipment.

Table 1. Data collection and description of blast furnace.

Type of Data Data Content Data Frequency Number

Non-real-time
discrete data

Test data of raw material and fuel Batches 60
Test data of slag and iron Furnaces 21

Manually entered production data Hours 13

Real-time continuous
data

Operating parameters Seconds, hours 69
Temperature of the hearth and

bottom Seconds 156

Temperature, pressure, and flow
volume of cooling stave Seconds 216

3.2. Data Processing

Blast furnace production conditions are complex and variable, and the data may
have data quality problems, such as missing values and outliers. Therefore, the raw
data had to be processed for the above situation. The data processing process improves
the usability of data and provides a good database for data mining analysis and model
development [25–27].

3.2.1. Missing Data Processing

Non-real-time discrete data from inspection data and manually entered production
data have missing values caused by inconsistent inspection frequency or human-induced
data omissions. These types of data usually have a high correlation between adjacent
moments, so the missing values were filled with the correct value from the previous
moment. Real-time continuous data have missing values mainly caused by abnormal
monitoring and signal interference. The parameters belong to continuous data, so such
missing values was filled by the linear interpolation method. Taking the fuel ratio and
furnace body pressure as an example, the results of the missing data processing are shown
in Figure 5.
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3.2.2. Outlier Data Processing

Outlier data include extreme over-limit data under normal blast furnace production
conditions, the most intuitive expression being that a relatively stable dataset appeared in
the outer region of the “anomaly” points. The outliers of non-real-time data are mainly
caused by human errors or abnormal equipment storage. The identification of such outlier
data was achieved in two steps. First, the threshold value of each parameter was set
according to the actual production situation, and values exceeding the threshold were
considered outliers. Then, a box plot algorithm was used to discriminate the data that fell
within the threshold range, and according to the distribution of the data, the values that
exceeded the limit of extreme outliers (Q3 + 3IQR) were defined as outliers. The processing
of the outliers was updated with the correct value from the previous moment. Outliers
of real-time data are mainly caused by signal interference or sensitivity deterioration of
the monitoring equipment. They were identified using the distance-based sliding window
anomaly detection algorithm. The processing of the outliers was updated with the linear
interpolation method. Taking the coal rate and furnace bottom temperature as an example,
the results of the outlier data processing are shown in Figure 6.
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4. Wavelet-TCN Prediction Model
4.1. Analysis of the Forecast Data

Hurst index. The Hurst index reflects the autocorrelation of a time series [28]. The
value of the Hurst index varies between 0 and 1 and determines the predictability of a time
series. If the Hurst exponent is less than 0.5, it indicates inverse memory persistence; the
series has a strong negative correlation, and the predictability is weak. If the Hurst index
is greater than 0.5 and less than 1, it indicates positive memory persistence; the series has
a strong positive correlation and the predictability is high. In this study, the Hurst index
was chosen to help determine the predictability of the forecast dataset for the vanadium
content of molten iron.

Analysis of forecast data predictability. A time series was built with the vanadium
content of molten iron as the target variable, consisting of 3931 datasets from 1 January
2021 to 3 June 2021 at an hourly frequency. The trend of the vanadium content of molten
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iron is shown in Figure 7. As can be seen in Figure 7, the vanadium content of molten iron
ranged from 0.15 to 0.34, and the series had an obvious fluctuation and periodicity. The
Hurst index of the series of vanadium content of molten iron was calculated to be 0.563,
which is greater than 0.5. This indicates that the series had a high degree of predictability.
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4.2. Results and Analysis
4.2.1. Wavelet Transform Layers Selection

The prediction results of the models built with different layers of wavelet transform
were analyzed to determine the optimal layer. The sequences for different wavelet trans-
form layers are shown in Figure 8, where the number of layers of the wavelet transform
was set to 7, and the original timing X(n) was decomposed into seven high-frequency noise
segments and one low-frequency trend segment. The first 90% of the data were selected
for the training set and the last 10% for the test set. For each of these seven time series, a
predictive model was built using TCN, with a network consisting of 64 convolutional layers,
a kernel size of 3 for each convolutional layer, a stack number of 1 for the residual block
in the residual connection, inflated convolutions of 2, 4, 8 and 16, an activation function
of Relu in the residual block, a training number of 35, and a learning batch size of 6. The
prediction results of the models built with different numbers of layers are shown in Table 2.
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Table 2. Prediction results of different wavelet transformation layers.

Model MAE MSE R2 Time Accuracy
(±0.025/%)

Wavelet-TCN (a = 1) 0.0132 0.01004 0.8364 121 s 84.62
Wavelet-TCN (a = 2) 0.0124 0.00961 0.8562 154 s 86.98
Wavelet-TCN (a = 3) 0.0123 0.00963 0.8578 193 s 88.17
Wavelet-TCN (a = 4) 0.0116 0.00886 0.8643 241 s 89.05
Wavelet-TCN (a = 5) 0.0111 0.00810 0.8847 295 s 90.53
Wavelet-TCN (a = 6) 0.0109 0.00803 0.8871 371 s 90.83
Wavelet-TCN (a = 7) 0.0109 0.00804 0.8884 598 s 91.12

As the number of wavelet layers increased, the R2 of the model prediction increased.
With the number of wavelet layers at a = 5, the R2 of the model reached 0.8747, and then as
the number of wavelet transform layers continued to increase, the accuracy of the model
improved within limits. Considering the actual production situation, the less time the
model takes, the more favorable for the actual production application. Under the condition
that the error accuracy met 90%, the number of wavelet layers at a = 5, compared to a = 6, 7,
the difference in R2 was less than 0.5%, and the relative time taken by the model was
reduced by 125~160%. Therefore, a = 5 was selected as the number of wavelet transform
layers for the combined wavelet-TCN model.

Taking advantage of the fact that the Hurst index can characterize the predictability
of the data, this study averaged the Hurst index of the series of each wavelet transform
to obtain the Hurst mean H(a). The relationship between H(a) and R2 in the different
wavelet transform layers is shown in Figure 9.
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As can be seen in Figure 9, H(a) and R2 had the same trend in different wavelet
transform layers. H(a) can characterize the performance of the prediction model built by
the wavelet transform. Therefore, this study proposes using the average Hurst index to
characterize the predictability of the sequence after wavelet transform, as a reference for
the combined model to select the number of wavelet transform decomposition layers. It
facilitates the selection of the number of wavelet transform layers and reduces the training
time of the model.
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4.2.2. Modeling Results

To further verify the effectiveness of the combined wavelet-TCN model, the wavelet-
TCN (a = 5) model was compared to LSTM, LSTM with attention, and TCN for prediction
results. The results are shown in Table 3 and Figure 10.

Table 3. Comparison of different prediction models of vanadium content.

Model MAE MSE R2 Accuracy (±0.02/%)

Wavelet-TCN (a = 5) 0.0111 0.00810 0.8847 90.53
TCN 0.0148 0.01030 0.7935 82.54

LSTM with attention 0.0150 0.01045 0.7888 81.66
LSTM 0.0160 0.01269 0.7587 78.11
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As shown in Table 3 and Figure 10, the evaluation indicators of the models with
wavelet transform were higher than that those without wavelet transform, indicating that
the combined wavelet-TCN method can have a positive effect on improving the model
prediction performance. The combined wavelet-TCN (a = 5) model outperformed the
other models for all indicators and provided an accurate prediction of the vanadium
content of the molten iron. The R2 of the wavelet TCN (a = 5) reached 0.8847, had an
improvement of about 11~17%, and the indicator of the prediction accuracy error within
±0.02 reached 90.53%, which met the practical requirements of blast furnace production.
Therefore, the prediction model based on the wavelet-TCN method can accurately predict
the vanadium content of molten iron and grasp the trend of vanadium content, which is of
great significance in assisting vanadium extraction operations.

5. Optimization of Vanadium Extraction Operations

A total of 3931 datasets were collected for January–June 2023 to summarize and
analyze the vanadium content of molten iron. The historical distribution of the vanadium
content of molten iron is shown in Figure 11. The vanadium content of the molten iron
was normally distributed within a range of 0.15–0.34. The concentrated distribution was
in the range of 0.25–0.27, representing 50% of the total. With reference to the production
logs, during this period, the blast furnace underwent adjustments in the charge structure,
air supply, slag, and other measures to increase and maintain the vanadium content of
the molten iron at a high level. Based on the historical data of vanadium–titanium blast
furnace smelting during the period, the factors affecting the vanadium content of molten
iron were analyzed, and the measures to improve the vanadium content are summarized.
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5.1. Limitations of Vanadium Content Enhancement

The melting point of slag from vanadium–titanium magnetite blast furnace smelting
is 50–100 ◦C higher than that of ordinary ore smelting slag. TiO2 in the slag can be reduced
to TiN and TiC, which are dispersed in the slag as solid particles and wrapped around
the iron beads, making the slag thick and difficult to flow, easily causing lower furnace
liner bonding and hearth center accumulation [28]. Therefore, a higher slag TiO2 content
increases the difficulty of blast furnace smelting.

The fluctuation of vanadium–titanium magnetite smelting blast furnace is character-
ized by rapid deterioration, a long recovery period, and a repeated recovery process. Once
the furnace condition fluctuation occurs, it will definitely affect the technical and economic
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indexes. Therefore, ensuring the stable and smooth operation of blast furnace is a necessary
condition for increasing the vanadium content of molten iron.

5.2. Measures for Increasing Vanadium Content
5.2.1. Increasing the Vanadium Load of Raw Materials of Blast Furnace

Vanadium in the raw material of a blast furnace is mainly from sinter and pellet
ores. The vanadium-containing concentrate powder of the sintered allotment are mostly
vanadium–titanium symbiotic (Figure 12). A higher proportion of vanadium powder
increases the titanium content in sinter ore, resulting in a reduction in the quality of the
sinter. In order to avoid the influence of titanium in the raw material on the furnace
conditions, the vanadium loading of the blast furnace was increased by increasing the
proportion of vanadium-bearing pellet ores without increasing the titanium content of the
slag. At present, the pellet ore ratio for the blast furnace was increased to 31%.
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5.2.2. Furnace Temperature and Slag Composition Control

Furnace temperature control. Based on the correspondence between the blast furnace
fuel rate and the vanadium content of molten iron (Figure 13), the empirical equation
was derived as Fr = 447 + 233.5 × [V], which provided a reference for adjusting the
furnace temperature of the blast furnace. The operation of the vanadium reduction process
was facilitated by increasing the temperature of molten iron within the appropriate slag
temperature range. The silicon and titanium content of molten iron should be controlled in
the range of 0.2–0.4%, and the physical heat of molten iron should be 1470 ± 10 ◦C.

Slag composition control. Under the condition of constant vanadium loading of the
blast furnace, the vanadium recovery and slag composition were analyzed to obtain the
variations in vanadium recovery with slag alkalinity and an magnesium–aluminum ra-
tio (Figure 14). It can be seen from Figure 14a that vanadium recovery decreased with
increasing slag alkalinity. The production practice showed that controlling the slag alka-
linity to 1.15 ± 0.05 not only ensured the quality of molten iron but was also conducive
to blast furnace smelting. It can be seen from Figure 14b that the correlation between
vanadium recovery and the slag magnesium–aluminum ratio is relatively clear. As the slag
magnesium–aluminum ratio decreased, the vanadium recovery showed a decreasing trend.
If the vanadium recovery rate is required to be above 80%, the magnesium–aluminum ratio
should be controlled at about 0.68.
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Gas flow adjustment. As the blast furnace vanadium loading increased, the gas
permeability of the blast furnace showed a decreasing trend (Figure 15). In order to keep
the blast furnace running smoothly, the charging schedule was adjusted to maintain two air
flows with “center” and “edge” so that the blast furnace permeability index was maintained
at around 34. In order to ensure the active hearth, the kinetic energy of the blast and the
wind speed had to be further increased in the lower air supply system, and the lower center
was blown through to ensure the stability of the central air flow. The combustion rate
of the pulverized coal as maintained, and the coal rate did not exceed than 150 kg/t. W
increased the oxygen volume as much as possible according to the upper limit accepted
by the blast furnace condition to increase the oxygen potential of the furnace cylinder and
reduce the slag viscosity. We maximized air temperature operations to reduce the coke rate
and increased the slag–iron temperature by utilizing the heat carried by the hot air.
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6. Conclusions

In this study, a predictive model for the vanadium content of molten iron in the blast
furnace was established by combining big data mining technology with machine learning.
The following conclusions were obtained.

(1). Based on the data resources of blast furnace ironmaking, the raw data related to
the blast furnace parameters were selected, and the clean data were obtained by
processing the missing data and outlier data. The data processing process improved
the usability of the data and provided a good database for data mining analysis and
model development.

(2). A combined wavelet-TCN method was selected to predict the vanadium content of
molten iron in a blast furnace. The wavelet transform layered sequence features are
stable, and TCN has the advantages of less parallel training time, strong generalization
ability, and complete feature extraction. The results show that compared to single
models, such as LSTM, LSTM with attention, and TCN, the combined model based on
wavelet-TCN (a = 5) had an improvement of about 11~17% in R2, and the prediction
accuracy was high and stable, which met the practical requirements of blast furnace
production. This guaranteed the subsequent high efficiency and stability of the
vanadium extraction.

(3). Aiming at the complexity of selecting the number of wavelet transform layers, the
average Hurst index was proposed to characterize the predictability of the sequence
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after the wavelet transform, which was used as a reference index for the combined
model to select the number of wavelet transform decomposition layers. The average
Hurst index simplified the process of wavelet transform layer selection and reduced
the model computation time.

(4). Based on the historical data of vanadium blast furnace smelting, the factors affecting
the vanadium content of molten iron were analyzed and the measures to increase
the vanadium content were summarized to provide the production guidance for
operators. Ensuring the stable and smooth operation of the blast furnace was the
necessary condition for increasing the vanadium content of molten iron. Increasing
the vanadium load of the blast furnace and avoiding increasing the TiO2 load, as
well as maintaining the corresponding blast furnace operating parameters in the
appropriate range to achieve the optimization of vanadium extraction from molten
iron.

(5). The prediction model for the vanadium content of molten iron achieved a satisfactory
predicative performance. However, there are still some further optimization works
to be carried out. We can try to make predictions for the next two or three hours to
obtain a longer-term trend of the vanadium content of molten iron.
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