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Sandra Saunoriūtė 1, Ona Ragažinskienė 2, Liudas Ivanauskas 3, Mindaugas Marksa 3, Kristina Laužikė 4
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Abstract: Over the past ten years, particular attention has been paid to Artemisia L. genus plants
and their chemical composition. Artemisia abrotanum L. and Artemisia absinthium L., which are
traditional medicinal, aromatic plants with a strong digestive activity that is determined by the
various phytochemicals. The research aim was to determine the variation in polyphenols in the
samples of different vegetation stages of two Artemisia species and to evaluate the antioxidant
activity of methanolic extracts in vitro. Phytochemical analysis of the Artemisia samples was carried
out using spectrophotometric methods and HPLC-PDA techniques, while antioxidant activity was
determined using DPPH, ABTS, FRAP, and CUPRAC assays. Significant differences in the diversity
of phenolic compounds were found among Artemisia species during vegetation stages. Chlorogenic
acid, 3,5-dicaffeoylquinic acid, and rutin were predominant among the phenolic compounds. The
study provides valuable insights into the composition of phenolic compounds and flavonoids in
Artemisia plants at different growth stages, shedding light on their potential pharmacological effects
and antioxidant activities. These findings contribute to the knowledge of the quality and safety of
herbal materials derived from Artemisia species.

Keywords: Artemisia L.; vegetation stages; phenolic compounds; antioxidant activity

1. Introduction

The genus Artemisia L. (tribe Anthemideae, section Dracunculus), belonging to the family
Asteraceae, includes about 500 species [1]. In Lithuania, three distinct species, including
Artemisia absinthium L. and Artemisia vulgaris L., are found in the natural habitats [2,3].
Artemisia species are widespread and economically relevant medicinal plants in the mild
temperature areas of Asia, Australia, Europe, North America, and South Africa [4,5].

In recent decades, medicinal and aromatic plants that accumulate considerable
amounts of bioactive substances have gained more attention. Artemisia abrotanum L. and
Artemisia absinthium L. are one such highly promising species [6,7]. The chemical pro-
file of Artemisia plants is responsible for remedying human health; in vitro and in vivo
assays been proven to exhibit comprehensive pharmacological activities (antibacterial,
anthelmintic, antimalarial, antioxidant, antidiabetic, anticancer, anti-inflammatory, anti-
tumor, and a decreased risk of cardiovascular diseases) [6–9]. Artemisia medicinal raw
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material is an excellent source of biologically active compounds. The aerial parts of
different Artemisia plants contain high levels of volatile [10] and non-volatile bioac-
tive substances such as phenolics [11,12], fatty acids [13,14], organic acids [15], amino
acids [13], coumarins [16], lignans [17], minerals [18,19], alkaloids [20], sterols [21], tan-
nins [22], and carotenoids [23]. Artemisia extracts have attracted more attention in the last
decades and various investigations of polyphenols, and their relation to biological activ-
ities have been conducted [24–27]. The main phenolic compounds found in Artemisia
extracts are phenolic acids and flavonoids [28,29]. Polyphenols are important due to their
various functions that help plants adjust to environmental changes (growth regulation
and survival, disease resistance, UV protection) and have extensive pharmacological
activities [30–32].

The plant growth phases are one of the main factors influencing the synthesis and
accumulation of bioactive substances in plants’ herbal material [33]. Despite the multiple
studies that have highlighted the phenolic profile and antioxidant power of Artemisia ex-
tracts, as far as we know, studies of the different vegetation stages of Artemisia L. species are
few or nonexistent. This study aimed to investigate the phenolic profile and the antioxidant
activity during the vegetation period of A. abrotanum and A. absinthium introduced in
Central Lithuania.

2. Materials and Methods
2.1. Plant Materials

A. abrotanum (collection no. XX-0-KAUN-1980-AR0025) has been introduced in the
Medicinal plant collection at Botanical Garden of Vytautas Magnus University, Lithuania,
since 1980, and A. absinthium (collection no. XX-0-KAUN-1951-AR0026) since 1951. Soil
samples of the collecting location were analyzed in the Agrochemical Research Laboratory
(Lithuanian Research Centre for Agriculture and Forestry). The neutral reaction (pH) of
the tested soil samples was 7.4; P2O5—306 mg/kg; and K2O—121 mg/kg. The average
monthly temperature (+12.1 ◦C), precipitation (47 mm), and humidity (65%) were obtained
from the archive of the Lithuanian Hydrometeorological Service under the Ministry of
Environment of the Republic of Lithuania.

The herbal samples of Artemisia species were collected during the vegetation period
(March–November) in 2019. Various vegetation stages have been separated: intensive
growth (A3), butonization (B), the beginning of flowering (Z1), intensive flowering (Z2),
and the end of flowering (Z3). The herbal material was dried at +25 ◦C temperature in a
well-ventilated loft and protected from direct sunlight and moisture. The loss on drying
was evaluated according to European Pharmacopoeia [34].

2.2. Chemicals and Solvents

Ethanol 96% (v/v) was obtained from AB Vilniaus Degtinė (Vilnius, Lithuania). The
Folin–Ciocalteu reagent, calcium carbonate, acetonitrile, methanol 99.9% (v/v), aluminum
chloride hexahydrate, DPPH (2,2-diphenyl-1-picrylhydrazyl), hydrochloric acid, copper
(II) chloride dihydrate, and TPTZ (2,4,6-tripyridyl-s-triazine) were purchased from Sigma-
Aldrich (Steinheim, Germany). The following reagents were used: acetic acid from Lachner
(Neratovice, Czech Republic), trifluoroacetic acid, sodium carbonate from Carl Roth GmbH
(Karlsruhe, Germany), ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), potas-
sium persulfate, sodium acetate, Trolox ((±)-6-hydroxy-2,5,7,8-tetramethylchromano-2-
carboxylic acid), ammonium acetate, and iron (III) chloride hexahydrate from Vaseline-
Fabrik Rhenania (Bonn, Germany).

Chlorogenic acid, neochlorogenic acid, caffeic acid 3,4-dicaffeoylquinic acid, 4,5-
dicaffeoylquinic acid, 4-O-caffeoylquinic acid, 3,5-dicaffeoylquinic acid, isorhamnetin-
3-rutinoside, luteolin-7-rutinoside, luteolin-7-glucoside, and rutin were obtained from
Sigma-Aldrich GmbH (Steinheim, Germany). Distilled water was produced using the
Milli-Q® 180 (Millipore, Bedford, MA, USA) water purification system.
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2.3. Sample Preparation

Chemical analysis was performed at the Laboratory of Biopharmaceutical Research
at Lithuanian University of Health Science in 2019–2020. Extraction procedures were
performed in triplicate (n = 3). The Artemisia methanolic extracts were prepared using
0.25 g of dried and crushed herbal material and 20 mL of 70% methanol. The samples
were extracted in an ultrasonic bath for 30 min at 37 kHz frequency and 480 W power. The
obtained extracts were filtered through a 0.45 µm pore size filter.

2.4. Spectrophotometric Analysis
2.4.1. Determination of Total Phenolic and Flavonoid Content

The total phenolic content (TPC) was determined using the Folin–Ciocalteu assay
proposed by Riahi et al. [35], calculated from a rutin calibration curve (y = 11.131x − 0.0224;
R2 = 0.9995) and expressed as mg RE/g DW. The total content of flavonoids (TFC) was
determined using the described methodology by Moacă et al. [36], calculated from a rutin
calibration curve (y = 0.9255x − 0.0705; R2 = 0.9999) and expressed as mg RE/g DW.

2.4.2. Determination of Antioxidant Activity

The antioxidant activity of the Artemisia extracts was analyzed using spectrophoto-
metric ABTS, DPPH, FRAP (Ferric Reducing Antioxidant Power), and CUPRAC (Cupric
Reducing Antioxidant Capacity) assays. The antioxidant activity was expressed as µmol of
the Trolox equivalent (TE) per gram of dry weight (DW). TE was calculated according to
the following formula: TE = (c × V)/m; c—the concentration of Trolox established from
the calibration curve (µmol); V—the volume of the extract (in L); m—the weight (exact) of
the herbal powder (in grams); and expressed as µmol TE/g DW.

The ABTS assay was performed using the methodology reported by Sussela et al. [37].
The ABTS working solution (3 mL) was mixed with 10 µL of each test sample. The mixture
samples were stored in the dark at room temperature for 1 h. A decrease in absorbance
was established at 734 nm.

The DPPH assay was performed using Messaili et al.’ methodology [38]. The DPPH
working solution (120 µL) was mixed with 30 µL of each test sample. The mixture samples
were stored in the dark at room temperature for 30 min. A decrease in absorbance was
established at 515 nm.

The FRAP assay was performed using the methodology Mumivand et al. reported [39].
The FRAP working reagent was prepared by mixing reagents TPTZ (0.01 M, dissolved in
0.04 M HCl), FeCl3·6H2O (0.02 M in water), and an acetate buffer (0.3 M, pH 3.6) (1:1:10).
The test solution was prepared by mixing 3 mL of a freshly prepared FRAP reagent with
10 mL of each test sample. The mixture samples were stored in the dark at room temperature
for 30 min. A decrease in absorbance was established at 593 nm.

The CUPRAC assay was performed using the methodology reported by Koyncu [40].
The CUPRAC working reagent was prepared by mixing reagents copper (II) chloride
(0.01 M in water), an ammonium acetate buffer solution (0.001 M, pH 7), and neocuproine
(0.0075 M in ethanol) (ratio 1:1:1). The test solution was prepared by mixing 3 mL of a
freshly prepared CUPRAC reagent with 10 mL of each test extract. A decrease in absorbance
was established at 450 nm.

2.5. Chromatographic Studies

HPLC (high-performance liquid chromatography) analysis was performed using a
“Waters e2695 Alliance system” chromatograph with a “Waters 2998” photodiode array
detector according to the HPLC method reported by Raudone et al. [41]. Polyphenols
were analyzed using a YMC-Pack ODS-A (5 µm, C18, 250 × 4.6 mm i.d.) column. The
column was operated at a constant temperature of 25 ◦C. The volume of the analyzed
extract was 10 µL, and the flow rate was 1 mL/min. The mobile phase consisted of 2%
(v/v) acetic acid (solvent A) and acetonitrile (solvent B). Gradient variation: 0–30 min,
3–15% B; 30–45 min, 15–25% B; 45–50 min, 25–50% B; and 50–55 min, 50–95% B. The cali-
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bration curves were obtained by injecting the known concentrations of different standard
reference compounds. The identified polyphenols were quantified at a λ = 210–400 nm
wavelength. Chromatographic peaks of polyphenols were identified by the retention time
of the reference compound and the analyte, as well as the UV absorption spectra [41].

2.6. Statistical Analysis

The experiments were performed in triplicate. The mean values and standard devia-
tions were calculated with SPSS Statistics 27.0 (IBM, Armonk, NY, USA) and Excel 2016
(Microsoft, Redmond, WA, USA). The coefficient of variation (CV) was determined. The
dispersion analysis of one way ANOVA was applied. PCA with eigenvalues higher than 1
were used. The differences were considered statistically significant at p < 0.05.

3. Results and Discussion
3.1. Determination of Total Phenolic and Flavonoid Content

The estimation of the herbal samples of different vegetation stages of Artemisia plants
introduced in Central Lithuania showed that the total amount of phenolic compounds
ranged from 155.19 to 298.07 mg RE/g DW (p < 0.05) (Figure 1). The highest content of
phenolic compounds 298.07 ± 2.69 mg RE/g DW were found in Absinthii herba samples at
the beginning of the flowering stage, and they significantly differed from the quantities
found in the remaining vegetation stages. The lowest amount of phenolic compounds
(155.19 ± 4.97 mg RE/g DW) were found in Absinthii herba samples in the intensive growth
stage, which did not differ significantly from the amounts found in Artemisiae abrotani herba
samples of the same stage (p < 0.05). The coefficient of variation was 4.16%.
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Figure 1. Variation in total phenolic compounds (TPC) content (mg RE/g DW) of Artemisia samples.
Vegetation stages: intensive growth (A3), butonization (B), the beginning of flowering (Z1), intensive
flowering (Z2), and the end of flowering (Z3). Different letters indicate significantly differences
between vegetation stages (p < 0.05).

Recent studies focus to explain the relationship between polyphenol content and the
plant growth stages. An increase in the content of polyphenols of the Artemisia species
to their flowering, their maximum accumulation before flowering, and their decreasing
amount at the end of flowering indicate an expense of these compounds on the plant
physiological and adaptation processes [27].

Bordean et al. determined the amount of phenolics in the raw material extracts of
A. annua and A. absinthium. The total amount of phenolics found in the flowering vegetation
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stage ranged from 51.73 to 518.09 mg GAE/g DW (p < 0.05) [42]. Msaada et al. evaluated
that in the flowering raw material extracts of A. absinthium, the total amount of phenolics
varied from 49.39 to 99.89 mg GAE/g DW (p < 0.05) [43]. In a research study by Bhat et al.,
the amounts of phenolic compounds in the samples of A. absinthium ranged from 0.43 to
9.29 mg GAE/g DW (p < 0.05) [44]. Minda et al. evaluated the total amount of phenolics
in the herbal extracts of A. annua, A. dracunculus, and A. absinthium. The total amount of
phenolic compounds ranged from 129.28 to 193.61 mg GAE/g DW (p < 0.05) [45]. The
differences between the quantitative composition of phenolic compounds of Artemisia
extracts may have been due to genetic differences, climate conditions, and raw material
preparation time [46].

Flavonoids are a huge class of non-volatile compounds with positive pharmacolog-
ical effects on human health [45–47]. Determining the variability in the qualitative and
quantitative flavonoid composition in the studied Artemisia extracts during the vegetation
period is a critical step for evaluating the high quality and safety of herbal material. The
obtained results showed that the total content of flavonoids ranged from 3.37 to 8.61 mg
RE/g DW (p < 0.05) (Figure 2). The highest total flavonoid content (8.61 ± 0.21 mg RE/g
DW) was found in Artemisiae abrotani herba extracts of the butonization stage, while the
lowest (3.37 ± 0.07 mg RE/g DW) quantity was determined in Artemisiae abrotani herba
extracts of the intensive growth stage, which did not differ significantly from the amounts
found in Absinthii herba extracts on the same vegetation stage (p < 0.05). The coefficient of
variation was high—11.25%.
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vegetation stages (p < 0.05).

Carvalho et al. studied the variability in the total flavonoid levels in the leaf extracts
of A. annua, A. arborescens, A. ludoviciana, A. oleandica, A. priceps, and A. stelleriana. The total
flavonoid amount ranged from 0.03 to 0.19 mg QE/100 g DW (p < 0.05) [48]. Trifan et al.
determined that the total flavonoid content in roots and the aerial parts of the A. absinthium
samples ranged from 0.37 to 28.74 mg RE/g [49]. Sharma and Adhikari evaluated the
phytochemical composition and biological effects of the roots and leaf extracts of A. vulgaris.
The researchers found that the total flavonoid content in the extracts of A. vulgaris ranged
from 31.54 to 71.15 mg QE/g [50]. In our study, the total flavonoid amount found in the
herbal material of Artemisia was lower than that found by Carvalho et al., Trifan et al. and
Sharma and Adhikari.



Separations 2023, 10, 545 6 of 14

3.2. Quantitative and Qualitative Composition of Phenolic Compounds

Eleven phenolic compounds were detected in Artemisia L. extracts, according to
standards, retention times, mass spectrometry, and the literature data (Table 1). Iden-
tified phenolic compounds fall into the phenolic acids group (caffeoylquinic and hy-
droxycinnamic acids) and flavonoids (flavonols, flavones), respectively. Identified com-
pounds were 4,5-dicaffeoylquinic acid, 4-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid,
3,5-dicaffeoylquinic acid, caffeic acid, chlorogenic acid, neochlorogenic acid, isorhamnetin-
3-rutinoside, luteolin-7-glycoside, luteolin-7-rutinoside, and rutin. The most common
compounds identified in all extracts, consistent with their concentration, were chloro-
genic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and rutin. Chlorogenic
acid was the predominant compound in Artemisia extracts, with a relatively low coeffi-
cient of variation. Meanwhile, 4,5-dicaffeoylquinic acid, 4-O-caffeoylquinic acid, caffeic
acid, neochlorogenic acid, isorhamnetin-3-rutinoside, luteolin-7-glycoside, and luteolin-7-
rutinoside were identified in the lowest concentrations. The total amount of phenolic acids
in Artemisia extracts during vegetation phases ranged from 0.35 to 217.39 mg/g (p < 0.05).
Of all the compounds of the phenolic acid group in the extracts of the studied Artemisia
species, caffeic acid demonstrated the highest variability (coefficient of variation—5.54%),
while the variability in the amount of 4,5-dicaffeoylquinic acid was the lowest (coefficient of
variation—0.26%). Previous studies confirmed that Artemisia materials are rich in phenolic
acids and flavonoids [42]. Baiceanu et al. in A. abrotanum raw material extracts indicated
high levels of sinapic acid [51]. Minda et al. evaluated the chemical composition and
biological effects of the extracts of A. annua, A. dracunculus, and A. absinthium species [45].
Moacă et al. compared the polyphenol content in ethanolic extracts from A. absinthium
leaves and stems. The obtained results showed the high presence of chlorogenic acid
(2.03 µg/mg DW) and rutin (0.55 µg/mg DW) in A. absinthium stem extracts [36]. Studies
confirmed that phenolic acids and flavonoids have a strong effect in the cure of mental
illness [52,53].

Flavonols are a class of polyphenols that are commonly found in Artemisia species,
and they possess multiple pharmacological effects [28]. Therefore, it is important to
determine the variation in the quality and quantity composition of flavonols in herbal
materials. The flavonols, namely isorhamnetin-3-rutinoside and rutin, were identified.
The largest amount of isorhamnetin-3-rutinoside (8.71 ± 0.05 mg/g) was found in the
extracts of A. abrotanum in the intense flowering stage, which was different from the
quantities found in other vegetation stages (p < 0.05). The lowest amount of isorhamnetin-
3-rutinoside (0.80 ± 0.02 mg/g) was found in the extracts of A. absinthium at the end of
the flowering vegetation stage (p < 0.05). The largest content of rutin (165.37± 0.11 mg/g)
was detected in the extracts of A. abrotanum in the intensive flowering stage, and the
lowest amount (0.96± 0.02 mg/g) was found in the samples of A. absinthium at the end of
flowering stage, which was different from the quantities found in other vegetation stages
(p < 0.05) (Table 1). Of all the compounds of the flavonols group in the herbal extracts
of the studied Artemisia species, rutin demonstrated the highest variability (coefficient
of variation—15.15%), while the variability in the amount of isorhamnetin-3-rutinoside
was the lowest (coefficient of variation—0.22%). It has been reported that rutin and
its derivatives appear to constitute the main flavonoid glycoside in F. esculentum and
F. tataricum [54]. Concerning flavonoids, rutin, quercitrin, isoquercitrin, quercetin, and
kaempferol are among the most abundant flavonoids found in the extracts of different
Artemisia species [43,52,55–57].



Separations 2023, 10, 545 7 of 14

Table 1. Diversification of the quantitative composition of phenolic compounds in Artemisia extracts during vegetation period (mg/g).

Raw Material Compound

Vegetation Stages
The Coefficient

of Variation (CV)Intensive
Growth Butonization The Beginning of

Flowering
Intensive
Flowering

The End of
Flowering

Artemisiae abrotani herba
4,5-Dicaffeoylquinic acid

56.28 ± 0.34 e 46.45 ± 0.22 d 32.16 ± 0.01 b 35.08 ± 0.05 c 27.85 ± 0.02 a 0.26

Absinthii herba NDE NDE NDE NDE NDE -

Artemisiae abrotani herba
4-O-Caffeoylquinic acid

16.42 ± 0.42 c 11.88 ± 0.60 b 4.98 ± 0.24 a 4.92 ± 0.07 a 4.54 ± 0.49 a 4.43

Absinthii herba 1.07 ± 0.06 a 4.54 ± 0.06 e 1.89 ± 0.04 c 1.89 ± 0.04 c 1.16 ± 0.05 b 3.06

Artemisiae abrotani herba
3,5-Dicaffeoylquinic acid

136.39 ± 1.16 e 132.69 ± 0.14 d 86.63 ± 1.38 b 97.86 ± 0.34 c 67.84 ± 0.62 a 0.76

Absinthii herba 13.57 ± 0.58 a 36.48 ± 1.12 b 37.95 ± 1.48 c 100.33 ± 1.59 e 47.55 ± 0.01 d 4.28

Artemisiae abrotani herba
3,4-Dicaffeoylquinic acid

102.71 ± 0.05 d 109.13 ± 0.52 e 49.15 ± 0.36 b 85.71 ± 1.02 c 36.51 ± 0.05 a 0.54

Absinthii herba 6.78 ± 0.07 a 21.08 ± 0.23 c 24.05 ± 0.16 d 28.72 ± 0.19 e 12.15 ± 0.01 b 1.20

Artemisiae abrotani herba
Caffeic acid

3.62 ± 0.05 d 4.19 ± 0.05 e 1.54 ± 0.03 a 3.04 ± 0.02 c 1.65 ± 0.03 b 1.27

Absinthii herba 0.48 ± 0.02 c 1.16 ± 0.09 e 0.61 ± 0.03 d 0.84 ± 0.02 a 0.35 ± 0.06 b 5.54

Artemisiae abrotani herba
Chlorogenic acid

203.37 ± 1.63 d 217.39 ± 0.36 e 96.53 ± 2.54 b 169.95 ± 0.79 c 86.12 ± 1.16 a 1.08

Absinthii herba 11.26 ± 0.01 a 118.66 ± 0.52 e 20.31 ± 0.58 b 54.30 ± 0.06 d 28.84 ± 0.11 c 0.76

Artemisiae abrotani herba
Neochlorogenic acid

18.02 ± 2.23 d 14.78 ± 0.11 c 5.52 ± 0.35 a 9.32 ± 0.14 b 5.66 ± 0.02 a 4.23

Absinthii herba 4.06 ± 0.12 c 8.51 ± 0.03 e 6.62 ± 0.27 d 3.15 ± 0.14 b 1.59 ± 0.01 a 0.71

Artemisiae abrotani herba
Isorhamnetin-3-rutinoside

1.36 ± 0.01 a 5.58 ± 0.11 c 3.69 ± 0.01 b 8.71 ± 0.05 d 3.90 ± 0.31 b 2.23

Absinthii herba 1.27 ± 0.04 b 2.91 ± 0.11 d 3.68 ± 0.19 e 2.19 ± 0.08 c 0.80 ± 0.02 a 0.22

Artemisiae abrotani herba
Luteolin-7-glycoside

3.69 ± 0.14 e 2.64 ± 0.08 c 2.41 ± 0.05 b 1.36 ± 0.06 a 2.80 ± 0.06 d 2.03

Absinthii herba 2.55 ± 0.06 a 4.16 ± 0.04 c 3.68 ± 0.02 b 1.77 ± 0.10 e 0.65 ± 0.11 d 0.44

Artemisiae abrotani herba
Luteolin-7-rutinoside

3.87 ± 0.03 d 5.43 ± 0.26 e 1.98 ± 0.06 b 2.45 ± 0.03 c 1.37 ± 0.12 a 2.01

Absinthii herba 1.02 ± 0.03 c 1.56 ± 0.06 d 2.01 ± 0.02 e 0.43 ± 0.01 b 0.22 ± 0.03 a 0.17

Artemisiae abrotani herba
Rutin

60.79 ± 0.40 a 121.72 ± 90.20 abc 75.52 ± 0.47 a 165.37 ± 0.11 c 81.44 ± 0.23 a 15.15

Absinthii herba 1.31 ± 0.04 b 2.32 ± 0.01 d 2.99 ± 0.08 e 2.05 ± 0.06 c 0.96 ± 0.02 a 1.93

NDE is not detected. Different letters indicate significantly differences between different vegetation stages (p < 0.05).
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Two compounds of the flavones (luteolin-7-glucoside and luteolin-7-rutinoside) were
identified in the extracts of Artemisia species. The greatest amount of luteolin-7-rutinoside
(5.43 ± 0.26 mg/g) was detected in the extracts of A. abrotanum butonization stage, and
the lowest amount (0.22 ± 0.03 mg/g) was found in the extracts of A. absinthium at the
end of flowering vegetation stage, which was different from the quantities found in other
vegetation stages (p < 0.05). The greatest amount of luteolin-7-glucoside (4.16 ± 0.04 mg/g)
was detected in the extracts of A. absinthium in the butonization stage, which was different
from quantities found in other vegetation stages (p < 0.05). The smallest amount of luteolin-
7-glucoside (0.65 ± 0.11 mg/g) was found in the extracts of A. absinthium at the end of
the flowering stage, which was different from the quantities found in other vegetation
stages (p < 0.05) (Table 1). The amount of luteolin-7-glycoside determined in the studied
extracts varied widely, with the coefficient of variation being 2.03%, while the variation in
the content of luteolin-7-rutinoside was lower (coefficient of variation—0.17%). Various
studies confirm that luteolin derivatives inhibit the proliferation of human liver cancer cells
and have a high antidiabetic activity [58,59].

3.3. Antioxidant Activity of Artemisia Extracts

The estimation using the DPPH assay showed that the strongest scavenging activity
(14.23 ± 1.53 µmol TE/g DW) was observed in Artemisiae abrotani herba extracts of the
intense flowering stage (Figure 3). The weakest antiradical activity (9.01 ± 0.02 µmol TE/g
DW) was determined in Absinthii herba extracts during intensive growth vegetation stage
(p < 0.05). The variability of scavenging activity estimated by this method between Artemisia
extracts during different vegetation stages was low (coefficient of variation—5.92%).
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Figure 3. Variability of the antiradical activity (µmol TE/g DW, DPPH assay) of Artemisia extracts
in vitro. Vegetation stages: intensive growth (A3), butonization (B), the beginning of flowering
(Z1), intensive flowering (Z2), and the end of flowering (Z3). Different letters indicate significantly
differences of antiradical potency between different vegetation stages (p < 0.05).

Bordean et al. investigated the scavenging activity of the different aboveground
samples of A. annua and A. absinthium. The scientists reported that the strongest antiradical
activity (735.77 ± 0.02 µmol TE/g DW), after using the DPPH method, was determined
in A. absinthium leaf extracts [42]. Lithuanian researchers applied the DPPH assay and
found that the strongest scavenging activity (140.0 ± 0.00 µmol TE/g DW) was observed
in synthesized nanoparticles A. absinthium/AgNPs and A. vulgaris/AgNPs extracts [60].

The estimation of the scavenging activity of Artemisia extracts via the ABTS as-
say showed that this activity varied from 43.56 to 103.68 µmol TE/g DW (p < 0.05)
(Figure 4). The butonization extracts of Absinthii herba have the strongest scavenging
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activity (103.68 ± 2.59 µmol TE/g DW). The lowest scavenging activity (43.56 ± 2.59 µmol
TE/g DW) was found in the intensive growth extracts of Absinthii herba. The variation in the
scavenging activity determined by this assay between Artemisia extracts during different
vegetation phases was the coefficient of variation at 5.92%. Trifan et al. determined that
the scavenging activity in vitro of the A. absinthium extracts varied from 7.54 to 95.95 µmol
TE/g. Our study revealed a stronger scavenging activity of A. absinthium extracts compared
to the activity found by Trifan et al. [49]. Skowyra et al. indicated that high temperature
can increase the strength of antioxidant activity [61,62]. Popov et al. determined that the
antiradical activity in vitro of A. vulgaris extracts varied from 33.59 to 45.37 µmol TE/g [63].
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in vitro. Vegetation stages: intensive growth (A3), butonization (B), the beginning of flowering
(Z1), intensive flowering (Z2), and the end of flowering (Z3). Different letters indicate significantly
differences of antiradical potency between different vegetation stages (p < 0.05).

The estimation using the FRAP assay demonstrated that the strongest reducing activity
(76.56 ± 2.12 µmol TE/g DW) was determined at the beginning of flowering in the extracts
of Absinthii herba (Figure 5). The weakest reducing activity (25.21 ± 0.38 µmol TE/g
DW) was found in the growth and leaf production extracts of Artemisiae abrotani herba,
which significantly differs from the amounts found in Absinthii herba extracts on the same
vegetation stage (p < 0.05). The coefficient of variation was 7.54%. Taherkhani et al.
evaluated the reducing activity of A. absinthium leaf extracts using the FRAP method and
found that the mean of the reducing activity was 10.67 mg GAE/g [64].

The strongest reducing activity using the CUPRAC assay was determined in the bu-
tonization (200.79 ± 0.57 µmol TE/g) and at the beginning of flowering (200.89 ± 4.01 µmol
TE/g) stages of Absinthii herba extracts, while the lowest reducing activity (105.04 ± 2.03 µmol
TE/g DW) was found in Artemisiae abrotani herba extracts of the butonization stage (p < 0.05)
(Figure 6). The variation in the reducing activity between Artemisia extracts during differ-
ent vegetation stages was high (coefficient of variation—18.02%). Trifan et al. applied the
CUPRAC method when extracting five Artemisia species (A. absinthium, A. annua, A. austriaca,
A. pontica, and A. vulgaris) roots and aerial parts samples with different extractants. The
strongest reducing activity (498.32 ± 4.02 µmol TE/g) was found in the A. vulgaris aerial parts
of methanolic extracts [49]. Our study revealed a stronger reducing activity of A. absinthium
extracts compared to the reducing activity found by Trifan et al.
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polyphenols and antioxidant activity (Figure 7b). The score plot models for the herbal 
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in vitro. Vegetation stages: intensive growth (A3), butonization (B), the beginning of flowering
(Z1), intensive flowering (Z2), and the end of flowering (Z3). Different letters indicate significantly
differences of reducing potency between different vegetation stages (p < 0.05).
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Figure 6. Variability of the reducing activity (µmol TE/g DW, CUPRAC assay) of Artemisia extracts
in vitro. Vegetation stages: intensive growth (A3), butonization (B), the beginning of flowering
(Z1), intensive flowering (Z2), and the end of flowering (Z3). Different letters indicate significantly
differences of reducing potency between different vegetation stages (p < 0.05).

Systematized research data on the qualitative and quantitative amount of polyphenols
and antioxidant activity in Artemisia herbal samples during different vegetation stages
were obtained. Principal component analysis (PCA) was performed to select similarities
and differences between the analyzed A. abrotanum and A. absinthium samples according to
vegetation stages (Figure 7a) and the qualitative and quantitative amount of polyphenols
and antioxidant activity (Figure 7b). The score plot models for the herbal samples have
shown relatively good separation between the vegetation stages (Figure 7a). Figure 3
summarizes the PCA results based on the correlation matrix with PC1 and PC2, which
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explains an 84.20% total variability in the data collections of Artemisia herbal samples
during the vegetation period.
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Figure 7. Diversification of the total content of phenolics, flavonoids, and antioxidant activity in
Artemisia medicinal raw material extracts during vegetation period: intensive growth (A3), butoniza-
tion (B), the beginning of flowering (Z1), intensive flowering (Z2), and the end of flowering (Z3).
(a) principal component analysis of A. abrotanum and A. absinthium vegetation stages; (b) PCA of TPC,
TFC, DPPH, ABTS, FRAP, CUPRAC, and phenolic acids and flavonoids in Artemisia herbal samples
during different vegetation stages.

In the PCA loading plot, PC1 described 44.15% of the total variation in the data
and was highly correlated with the positive loadings of the scavenging activity DPPH
(0.891) and the reducing activity FRAP (0.884). PC2 accounted for 42.04% of the total
variation and was characterized by the positive loadings of the quantitative composition of
4-O-caffeoylquinic acid (0.832), 3,5-dicaffeoylquinic acid (0.832), 3,4-dicaffeoylquinic acid
(0.951), neochlorogenic acid (0.848), and chlorogenic acid (0.896) (Figure 7b).

4. Conclusions

This study demonstrated that two selected Artemisia species, namely A. abrotanum
and A. absinthium, accumulate reasonable amounts of phenolic compounds. Significant
fluctuations were determined in the total phenolic compound content across different
stages of vegetation. The highest total amount of phenolic compounds was found in
Absinthii herba extracts at the beginning of the flowering stage (298.07 ± 2.69 mg RE/g
DW, p < 0.05). The highest total amount of flavonoids was evaluated in Artemisiae abrotani
herba extracts of the butonization vegetation stage (8.61 ± 0.21 mg RE/g DW, p < 0.05),
suggesting potential health advantages linked to this growth stage. In studied Artemisia
extracts chlorogenic acid, 3,5-dicaffeoylquinic acid and rutin predominated among the
identified phenolic compounds, while the amounts of other compounds were significantly
lower. Raw material samples of the Absinthii herba stood out due to their unique chemical
composition and strong antioxidant activity. Understanding the fluctuations in chemical
composition at different growth stages can be used in selecting the optimal time of plant
harvesting and, ultimately, the efficacy and quality of herbal products and pharmaceuticals.
The study findings are important for developing herbal formulations, pharmaceuticals, and
medicinal products with optimized therapeutic effects.
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