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Abstract: The isomeric metabolites τ- and π-methylhistidine (formerly referred to as 3- and
1-methylhistidine) are known biomarkers for muscle protein breakdown and meat protein intake,
frequently used in studies involving humans and animals. In the present study, we report the devel-
opment and validation of a simple HILIC-MS/MS method for individual determination of τ-MH and
π-MH in a large cohort of blood plasma samples from dairy cows. Their separate determination was
achieved mainly through a mass spectrometry fragment ion study, which revealed that the two iso-
mers exhibited distinct mass spectrometric behaviors at different collision energies. Chromatographic
conditions were optimised to achieve better separation, minimizing inter-channel interference to less
than 1% in both directions. A simple and effective sample clean-up method facilitated low laboratory
manual workload. The analytical method was validated for the determination of τ-MH and π-MH in
bovine plasma within a concentration range of 80 to 1600 µg/L and provided good linearity (>0.99
for both curves) and precision (<10%). Overall, the developed method enabled the determination of
the two isomers in an efficient and economic-friendly manner suitable for large cohort bovine studies
(involving hundreds to thousands of samples) mainly to provide data for statistical use.

Keywords: 1-methylhistidine; 3-methylhistidine; bovine plasma; muscle protein breakdown; lactating
cows

1. Introduction

The compound τ-Methylhistidine (tele-methylhistidine, τ-MH) is a known biomarker
indicative of muscle protein breakdown [1]; increased levels of τ-MH in bodily fluids, such
as blood or urine, indicate that the corresponding organism is in a catabolic state, effectively
breaking down lean tissues to satisfy amino acid requirements. This biomarker is formed in
the muscle by post-translational methylation of histidine residues in actin and myosin [2].
Its isomer, π-methylhistidine (pros-methylhistidine, π-MH) is also commonly found in
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bodily fluids. However, π-MH is a product of anserine breakdown, thus, it is used as a
meat protein intake marker in humans [3].

Dairy cows face significant metabolic adaptations when transitioning from late gesta-
tion to early lactation [4]. Substantial mobilization of fat and skeletal muscle tissue reserves
can be caused by factors such as: a sharp increase in nutrient requirements and decreased
dry matter intake along with a genetically driven hormonal tissue regulation [5,6]. Skeletal
muscle tissue represents the most abundant pool of available amino acids during periods
of negative protein balance. The rate of skeletal muscle mobilization can be determined
by measuring plasma concentration of τ-MH. As τ-MH is not further metabolised in the
body [6–8], it is quantitatively excreted in the urine [9].

Since its first isolation from human urine hydrolysates using ion exchange chromatog-
raphy [10,11], τ-MH has been employed as a muscle protein turnover marker in a wide
range of human and animal studies [12–15]. During intense muscle catabolism, τ-MH
increases above basal levels that are indicative of normal muscle protein turnover. Re-
cent studies have shown continuous research interest in this biomarker as demonstrated
by applications of τ-MH in endurance training [16], in the study of human pathological
conditions [17,18], and in veterinary research [19–21]. Although not a subject of extensive
study, the isomer of τ-MH, π-MH, was a known breakdown product of anserine long before
the discovery of the significance of τ-MH.

Since τ- and π-MH possess distinct biological roles, it is essential that the two isomers
are individually determined [22]. However, in the literature, the nomenclatures of 1- and
3-MH are found interchanged, which may lead to confusion due to incorrect assignment
of the methylated nitrogen atoms on the imidazole ring of anserine [23–26]. In this study,
solely the recommendations of the International Union of Pure and Applied Chemistry
(IUPAC) for histidine nomenclature were used, employing the prefixes τ- and π- instead of
numbers [27]. Isomer structures along with other identifiers are provided in Figure S1 [28].

Early analytical methods for the determination of τ-MH in a variety of samples
relied mainly on the use of ion exchange chromatography [10,11,29]. However, the rise
in popularity of high-performance liquid chromatography (HPLC) during the 1980s and
1990s led to the development of several methods. Most methods used reverse phase HPLC
(RP-HPLC), which relied on some form of derivatization to aid both the retention and
detection of τ-MH. The reported methods are based on pre- or post-column derivatization
using RP-HPLC [30–40] but may also include ion-pair chromatography [33]. However,
derivatization has also been recently applied in the determination of τ- and π-MH in bovine
cow plasma [22]. Despite their success, HPLC derivatization methods either require special
reagents or equipment (mainly post-column methods), longer sample preparation times, or
they may give relatively unstable derivatives.

Capillary electrophoresis has also been utilised for the analysis of both τ- and π-MH,
focusing mainly on human urine [41–45]. The technique provides excellent separation of
the τ- and π-MH isomers; however, the relatively high limits of detection (LOD) make
the reported methods unattractive for the application on bovine blood plasma. Other
methods for the analysis of τ-MH include utilization of conventional thin layer chro-
matography (TLC) [46], or specialised gas chromatography [47–49], or even pyrolysis-gas
chromatography [50]. More recent methods include RP-HPLC coupled to tandem mass
spectrometry with a separate determination of τ- and π-MH relying purely on spectral
differences [51] and hydrophilic interaction liquid chromatography (HILIC) with spe-
cialised stationary phases [52], high salt concentrations [53], and isomer co-determination
(profiling) [54].

Herein, we have developed a simple, cost-effective and time-efficient method for the
separate determination of both τ- and π-MH in bovine blood. The study is based on a
thorough but straightforward sample clean-up combined with chromatographic separation.
It uses the unique spectral characteristics of τ- and π-MH, as revealed by a thorough
ion breakdown study of the two isomers. Contrary to methods described in the available
literature, our method does not require sample derivatization, specialised stationary phases,
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ion-pairing, or high buffer/salt concentrations. It is intended for analyzing large numbers
of samples with the lowest possible cost and downtime, while providing data of τ- and
π-MH, which can be used in statistical analysis of large cow cohort studies (which may
involve hundreds or thousands of animals). The developed method was applied in >600
samples to study protein metabolism and skeletal muscle tissue mobilization in transition
dairy cows in practice. It provided results for various types of statistical analyses, such as
group differentiations between animals based on their experimental characteristics.

2. Materials and Methods
2.1. Chemicals

All the reagents used in this study were of analytical grade or better. Methanol (MeOH),
acetonitrile (MeCN), and formic acid were purchased from VWR. Chloroform (CHCl3) was
purchased from Alfa Aesar. Isomers τ- and π-methylhistidine (τ-MH and π-MH, respec-
tively) were from Sigma Aldrich (Sigma catalog numbers 67520 and M9005, respectively).

2.2. Samples

Blood samples originated from a field study involving Holstein dairy cows raised
in different farms from September 2016 to October 2019. The study was approved by the
Research Committee of the Aristotle University of Thessaloniki, Greece (approval protocol
number 62/15 December 2015), and details of the experimental design are outlined in
recent publications by Siachos et al. [55,56].

In particular, bovine blood samples were collected from cows after the morning
milking and at 5 different time-points relative to the day of calving (at 21 and 7 days
prepartum and at 7, 21, and 28 days postpartum). The samples were collected using coc-
cygeal venipuncture directly into vacuum evacuated 6 mL sterile glass tubes that contained
Lithium-Heparin as an anticoagulant (BD Vacutainer®; Plymouth, UK). The samples were
placed in a portable cooler immediately after collection. Heparinized plasma was collected
from the blood samples by centrifugation (3000× g 15 min) within 1–2 h of sampling and
stored in polyethylene tubes of 1.5 mL and frozen at −40 ◦C pending analysis.

2.3. Solutions and Control Samples

A series of solutions were prepared for use in method development: a global pooled
heparinized bovine plasma sample representing the average endogenous concentration of τ-
and π-MH in bovine plasma; initial stock solutions of τ- and π-MH; standard solutions to be
used for recovery and parallelism assessment (parallelism includes the method’s linearity
and calibration range assessment); standard solutions for evaluating the instrument’s
linearity range for τ- and π-MH in the pure mobile phase (with a larger range than the
calibration range of the actual method); and, finally, a series of quality control samples. The
prepared solutions are described in detail below.

A pooled heparinized plasma sample was prepared by mixing equal volumes (200 µL)
from a random selection of 60 heparinized plasma samples for a sample bank that included
samples from multiple farms sampled across several years.

Stock solutions of τ- and π-MH were prepared at a concentration of 1000 µg/mL in
MeOH:H2O, 1:1 (v/v).

For the recovery study, aqueous standard solutions were prepared from stock solutions
at concentrations of 1500, 3000, and 6000 µg/L.

For parallelism assessment (which includes the method’s linearity assessment), aque-
ous standard solutions were prepared from stock solutions at concentrations of 560, 1120,
2240, 3920, 5600, 8400, and 11,200 µg/L.

For quality control (QC) purposes, four (4) samples were prepared: the pooled sample
constituted the medium QC (MQC) and its corresponding concentration was 850.4 µg/L
for τ-MH and 708.9 µg/L for π-MH (as determined during parallelism assessment); a
low concentration QC (LQC) was generated by diluting the pooled sample to half its
concentration with pure water; a higher medium QC (HMQC) and a high QC (HQC) by
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spiking the pooled sample with additional concentrations of 320 and 560 µg/L, respectively,
using aqueous solution containing τ- and π-MH. The final concentrations of the QCs are
presented in Table S1. When running batches, within-batch injection precision was assessed
by preparing a pooled extract sample from the first 30 sample extracts about to be run
within the batch.

2.4. Sample Preparation

The sample preparation procedure included two basic steps: a step for lipid (and
partial protein) removal using liquid-liquid extraction (LLE) with chloroform, and a step
for complete protein removal by precipitation with a methanol:acetonitrile mixture (an
adaptation of the approach described in Deda et al. [57]). The exact procedure differs
slightly between non-spiked and spiked samples.

In specific, microcentrifuge tubes containing approximately 1200 µL heparinized
plasma were rigorously vortexed for 30 s and centrifuged at 10,600× g for 15 min at 4 ◦C
to precipitate any suspended material (mainly cells). In the case of non-spiked samples,
a volume of 280 µL of the centrifuged plasma was transferred to a clean microcentrifuge
tube, and 20 µL of a 1.5% aqueous formic acid solution was added to the tube followed by
rigorous vortexing for 30 s. Regarding spiked samples, the sample volume differs (210 µL
of pooled sample and 70 µL of the spike solution) and the procedure is reported in detail in
the corresponding sections.

After vortexing, 300 µL of CHCl3 was added to the tube followed by rigorous vor-
texing for a further 30 s. Then, the tube (containing a cloudy solution of both phases)
was centrifuged at 10,600× g for 15 min at 4 ◦C for complete phase separation. Following
centrifugation, 200 µL of the upper (aqueous) layer were transferred into a clean micro-
centrifuge tube, and 600 µL of a MeOH-MeCN (1:1, v/v) mixture were added to the tube.
The tube was then rigorously vortexed for 30 s and centrifuged at 10,600× g for 15 min
so that all remaining proteins would precipitate in the sedimented phase. The liquid
phase was then collected, transferred to a new microcentrifuge tube, and stored at −20 ◦C
pending analysis.

2.5. UHPLC-MS/MS Method Development and Validation

All samples were analysed on a Thermo Scientific™ TSQ Quantum™ Access MAX
Triple Quadrupole Mass Spectrometer coupled to an Accela™ 1250 UHPLC pump and
an Accela™ autosampler. Chromatographic separation was performed using a Waters™
ACQUITY UPLC BEH Amide Column (1.7 µm, 2.1 mm × 150 mm). Data were processed
using Thermo Scientific™ Qual Browser in Thermo Xcalibur version 3.063 and Microsoft
Excel. The performed experiments and validation criteria are based on guidelines published
by EMA [58].

2.5.1. Specificity

An MS/MS fragmentation study was performed for each isomer to acquire ion frag-
ment intensity data so that ion breakdown curves could be constructed, similar to those
described by Mörlein et al. [59]. The main purpose of this procedure was to find which
fragment ions and collision energies offered the highest selectivity and sensitivity. Individ-
ual, 1000 µg/L solutions of τ- and π-MH in H2O:MeOH 1:1 (v/v) were infused in the mass
spectrometer at a rate of 10 µL/min using a syringe pump and the following experimental
conditions: the mass spectrometer was set in product scan mode and 50 scans were taken
in 5 V collision energy (CE) increments (5–50 V) in profile mode. Scans were averaged
and further process to centroid to acquire absolute intensity data. Then, ion breakdown
curves of the most selective and abundant ion fragments were prepared. Source parameters
for infusion were as follows: spray voltage 3500 V, vaporiser temperature 50 ◦C, sheath
and auxiliary sheath gas pressures 10 and 0 arbitrary units, respectively, and capillary
temperature 240 ◦C. Ion breakdown curves were prepared by plotting absolute intensity
with collision energy. It is noted that extensive clean-up of the glass syringe and transfer
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capillaries was required to remove all traces of the previously analysed isomer between
fragmentation experiments.

Chromatographic conditions were determined by trial and error. In short, optimum
elution conditions, mobile phase, and column temperature were determined for the fastest
and best possible separation and peak shape of both isomers. After the initial isocratic
conditions and elution of the peaks of interest, a gradient elution step was applied to flush
any remaining polar constituents from the column. Mobile phase A was MeCN with 0.1%
formic acid, and mobile phase B was H2O with 0.1% formic acid. The elution program
used was as follows: A–B, 65:35 (v/v), hold for 3 min, then to A-B, 40:60 (v/v) over two
minutes, hold for 2 min, then to A–B, 65:35 (v/v) hold for 10 min (total analysis time 17 min).
The required equilibration step was applied as per column manufacturer’s instructions to
prevent retention time shifts. The flow rate was set at 350 µL/min, the column temperature
at 60 ◦C, and the injection volume was 5 µL. Source conditions for sample analysis were
as follows: spray voltage 3500 V, vaporiser temperature 250 ◦C, sheath and auxiliary gas
pressures 40 and 10 arbitrary units, respectively, and capillary temperature was set at
320 ◦C. Selected transitions for quantitation were m/z 170 -> 124 (15 V) for τ-MH and m/z
170 -> 95 (30 V) for π-MH.

Inter-channel interference between the selected transitions for the two isomers was
assessed by injecting high concentrations (4× the upper limit of quantitation (ULOQ))
of individual τ- and π-MH and determining the percentage of peak area present in the
transition of the other isomer. This was calculated using the ratio of the peak area observed
in the channel of the other isomer to the peak area of the injected isomer.

2.5.2. Recovery

Recovery and precision were determined at three different concentration levels. Aque-
ous spiking standard solutions were prepared from stock solutions at the following con-
centrations: 1500, 3000, and 6000 µg/L. Recovery was assessed by spiking 210 µL aliquots
of the pooled sample with 70 µL of the spiking standard solution before performing the
extraction and further treated as a non-spiked sample, as described in the sample prepa-
ration section, resulting in concentrations of 375 µg/L (low), 750 µg/L (medium), and
1500 µg/L (high). Concentration values were selected to be representative of the higher
and lower part of the calibration range. Pooled sample extracts (after the 2nd extraction
step and before injection) were also spiked accordingly (considering all extraction steps)
to reach the same resulting concentrations pre- and post-extraction since the extraction
process includes no evaporation steps. Extractions were performed in triplicates to assess
precision at each concentration level. Pooled samples were also extracted as-is in triplicate
to determine pooled sample peak area. Recoveries were calculated as follows: (peak area
pre-extraction − peak area pooled)/(peak area post-extraction − peak area pooled) × 100.
Precision was expressed as %RSD.

2.5.3. Parallelism

A surrogate matrix validation approach (by adapting some of the tests suggested by
Houghton et al. and Jones et al. [60,61] for other endogenous metabolites) was undertaken
to ensure that precision and accuracy were properly assessed, since a stable isotope labelled
(SIL) or other suitable internal standards (IS) were unavailable in our lab for the metabolites
under investigation. This approach was performed on a “fit-for-purpose” basis and is
further explained in the results and discussion section.

As the surrogate matrix approach was adapted for quantification, a parallelism study
was required. Proof of parallelism of the surrogate matrix calibration to the standard
addition curves within the limits of quantitation, ensures that matrix effects are accounted
for and that the quantification is conducted properly. This approach aims to determine if
the selected matrix (in this case water) is a suitable matrix for the quantitation of τ-MH
and π-MH in heparinized plasma. For this purpose, 7 spiked standards were prepared in
water at the following concentrations: 560, 1120, 2240, 3920, 5600, 8400, and 11,200 µg/L.
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For the standard addition curve, 240 µL of pooled sample were transferred in seven 1.5 mL
microcentrifuge tubes. Finally, 20 µL of 1.5% aqueous formic acid solution and 40 µL of
every aqueous standard were added to each tube. For the surrogate matrix curve, the same
procedure was applied but using water instead of pooled sample. The tubes were vortexed
and extracted following the procedure described in the sample preparation method section
and injected directly to the LC-MS/MS for analysis. Standard addition and surrogate
matrix curves were constructed for both τ- and π-MH, from spiked pooled sample and
spiked water, and their slopes were assessed for parallelism as a percentage by dividing the
pooled curve slope with the water curve slope. The final resulting calibration range was: 80,
160, 320, 560, 800, 1200, and 1600 µg/L. (It is noted that this calibration range refers to the
initial bovine plasma concentration in the sample. Since all samples are diluted with a ratio
of 1:4 during the sample preparation step for protein precipitation and no preconcentration
step is applied, the on-column concentration range is 20–400 µg/L.)

2.5.4. Validation and Quality Control

For within-day and between-days precision (calculated as percent relative standard
deviation (%RSD)) and accuracy (calculated as percent recovery (%R) or measured con-
centration to original QC concentration) assessment, but also for within-batch validation,
4 quality control (QC) samples were used as described above. QC samples were anal-
ysed 4 times for within-day and 12 (3 × 4) times for 3 consecutive days for between-days
precision and accuracy.

The developed method was applied in the analysis of a large number of bovine
plasma samples (>600). Results of a representative batch of 100 samples are provided. Two
calibration curve replicates were run at the beginning and at the end of the batch. Quality
control samples (ranging at all 4 QC levels) and a blank were run every 10 samples. Batch
precision was assessed by running a pooled extract (prepared by mixing equal volumes
from the first 30 samples of the batch) at equally spaced intervals within the batch.

3. Results and Discussion
3.1. Method Development and Validation
3.1.1. Specificity

Direct infusion of τ- and π-MH at increasing CE values demonstrated that the two
isomers have distinct ion-abundances in their fragmentation patterns with increasing CE.
At CE 15 V, the transition 170 -> 124 is selective for τ-MH since it is the predominant
ion, while it is insignificant in the spectrum of π-MH. Similarly, the transition 170 -> 95 is
selective for π-MH at a CE of 30–35 V (Figure 1).

The mass spectra (profile) of each isomer at the selected CE are provided in Figure 2.
The acquired mass spectra were compared and confirmed with mass spectra library
sources [62,63]. Indicative mass spectra at CE of 10, 20, and 30 V for τ- and π-MH are
provided in Figures S2 and S3, respectively.

Regarding the transitions selected above, the inter-channel interference from τ-MH to
π-MH and vice versa was calculated at 0.98 ± 0.03% for τ- to π-MH and 0.42 ± 0.12% for π-
to τ-MH. Regardless of such a limited amount of inter-channel interference, the difference
in retention time between the two isomers following chromatography assists in enhancing
the method’s specificity for these two isomers.

Optimization of chromatographic conditions through trial and error showed that long
equilibration of the initial conditions and column temperature is required to achieve both
isomer separation and acceptable peak shape in the shortest possible time. Separation of
the isomers’ peaks was achieved by applying isocratic conditions. A gradient step to 60%
aqueous conditions was also necessary to flush off the column polar constituents of the
samples. A chromatogram indicative of the separation between τ- and π-MH is provided
in Figure 3. Small structural differences allow for a slightly different degree of interaction
in the HILIC mode with the amide stationary phase.
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Figure 1. Ion breakdown curves in absolute intensities of the most selective and intense fragment ions
for (A) τ-MH and (B) π-MH. Each value corresponds to an average of 50 scans. It is demonstrated
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Figure 3. Chromatogram depicting the separation of π-MH (A) and τ-MH (B).

3.1.2. Recovery

Recovery was assessed at three spiked concentrations, low (375 µg/L), medium
(750 µg/L), and high (1500 µg/L). Each extraction was performed in triplicate, along with
the extraction of the non-spiked pooled sample, to access precision at the pooled level.
Recoveries for both isomers were within an acceptable range (78.54–91.84%), and precision
(expressed as %RSD) was below 10% in all cases (Table 1).

Table 1. Recovery values and extraction repeatability values (n = 3) for τ- and π-MH. Recoveries
are within the 70–120% range, which is considered by the authors acceptable for the purpose of this
study. Precision in all cases is below 10%.

Solution Type Recovery [%R] Precision [%RSD]

τ-MH π-MH τ-MH π-MH1

Low spike 78.54 84.90 1.85 9.33
Medium spike 84.02 79.33 4.22 5.53

High spike 91.84 87.29 5.00 9.10
Pooled sample - - 4.33 7.78

3.1.3. Parallelism

Parallelism was assessed using a standard addition curve by spiking and extracting, as
above, a pooled plasma sample with τ- and π-MH at the following resulting concentrations:
80, 160, 320, 560, 800, 1200, and 1600 µg/L. The surrogate matrix was spiked in the same
quantities to the same concentrations, resulting in the sample calibration curve. The
surrogate matrix used in this case was ultrapure water. Both curves were analysed in
triplicate, and the injection means for each concentration were plotted to assess parallelism
by calculating the ratio of the slopes of the standard addition over the sample calibration
curve. For the purpose of this study, the authors considered a slope ratio in the range 110 to
90% as satisfactory. The calculated ratios for parallelism were 90.40% for τ-MH and 90.37%
for π-MH (Figure 4), indicating that the matrix effect was insignificant, thus quantification
can be applied without bias using the surrogate matrix calibration curve.
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Figure 4. Standard addition and surrogate matrix calibration curves for τ- and π-methylhistidine at
the selected concentrations. Extrapolation of the standard addition curve indicates the endogenous
value of τ- and π-MH in the pooled sample.

The endogenous concentration of the pooled cow plasma sample can be determined
by extrapolating the standard addition curve to the point where the spike concentration
equals zero (Figure 4) or simply by dividing the slope to the intercept of the calibration
equation. For τ- and π-MH, the endogenous concentrations were determined as 850.4 µg/L
and 708.9 µg/L (or 5.03 µM and 4.19 µM), respectively, which is in the range of expected
literature values. The lower and upper limits of quantitation (LLOQ and ULOQ) were
set at 80 and 1600 µg/L (0.5 and 9.93 µM), respectively, since for concentrations above
1600 µg/L parallelism would drop below 90%. Any sample with a concentration exceeding
the method’s calibration range should be diluted appropriately with H2O and re-analysed.

3.1.4. Validation and Quality Control

As already described in Section 2.3, QC samples were prepared at four concentration
levels. Each QC concentration was determined experimentally using the surrogate matrix
calibration curve and compared to the QC concentration that was determined using the
endogenous extrapolated concentration values. QCs were run at four replicates each day
in Day 1, Day 2, and Day 3. Precision and accuracy results are given in Table 2. The limit of
quantitation for the method is set at 80µg/L (0.5 µM), the same as the LLOQ.

Table 2. Results for within-day and between-days trueness (%R) and precision (%RSD). All values
appear to be within the acceptable validation range.

Figure of Merit Within-Day (Day 1) n = 4 Between-Days (Day 1, Day 2, Day 3) n = 12

τ-MH π-MH τ-MH π-MH1

Accuracy LQC [%] 103.4 112.9 99.7 113.2
Accuracy MQC [%] 100.6 102.7 96.0 104.0

Accuracy HMQC [%] 97.9 102.5 95.6 105.2
Accuracy HQC [%] 99.8 100.3 97.1 106.2

Precision LQC [RSD%] 3.5 4.2 2.3 4.8
Precision MQC [RSD%] 6.5 6.2 3.7 4.2

Precision HMQC [RSD%] 3.9 4.7 3.4 3.7
Precision HQC [RSD%] 2.0 2.6 1.5 1.8
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As shown in Table 1, recovery and precision of the developed method can be consid-
ered acceptable, taking into account the specific purpose of the method, which is to provide
concentration values of τ- and π-MH for use as ad-hoc variables in statistical analyses
(e.g., confounding effects) in very large cohort cow studies.

3.2. Sample Analysis

As mentioned above, the developed method was applied for the analysis of a large
number of samples (>600) in a series of batches derived from a cow metabolism study with
the aim of providing data for use in statistical analysis. Here the results of a representative
batch of 100 heparinized plasma samples are provided: within batch results of QC samples
gave an average trueness of 102.7% for τ-MH and 105.16% for π-MH, ranging from 93.7%
to 111.2% for τ-MH and 91.3% to 115.9% for π-MH. Within-batch injection precision was at
5.0% and 5.6% (%RSD) for τ- and π-MH, respectively. Fresh surrogate matrix calibration
curve and QC samples were prepared for each batch.

The average concentration in the representative batch for τ-MH was 1201 µg/L
(7.1 µM), ranging from 152 to 2859 µg/L (0.9–16.9 µM), and for π-MH 947 µg/L (5.6 µM),
ranging from 321 to 2369 µg/L (1.9–14 µM), both of which are in line with the literature [13].

3.3. Discussion

Older methods for amino acid determination (or other polar endogenous metabolites)
that relied on pre- or post-column derivatization are slowly being replaced by modern
methods employing tandem mass spectrometry and hydrophilic interaction liquid chro-
matography [54,64–67]. In the authors’ opinion, wide availability of modern tandem
mass spectrometry instruments means that the arduous sample preparation accompanying
derivatization procedures of amino acids is, in most cases, becoming a thing of the past.

The purpose of the developed method is to be applied for the economic, simple, and
fast quantitation of τ- and π-MH in bovine plasma in samples deriving from large cohort
Holstein cow studies (involving hundreds or thousands of samples) with the aim to corre-
late the levels of mainly τ-MH to the nutritional status of the animals by means of statistical
analysis (e.g., sample classification, multivariate statistical analysis, investigation of con-
founding effects, etc.). The method reported herein includes simple and straightforward
sample preparation with a bovine plasma specific quantitation range for τ- and π-MH of 80
and 1600 µg/L (0.5 and 9.93 µM).

The main advantages of the presented method compared to those published previ-
ously are the simplicity of procedures and availability of materials used for both sample
preparation and analysis. Additionally, the method offers lower cost, less instrument
downtime, and a specific focus on bovine plasma. A similar method reported by Wang
et al. for the determination of τ- and π-MH in human urine [51] requires minimal sample
preparation, no derivatization, and relies solely on mass spectroscopic differences without
any chromatographic separation between isomers. Since there is little analyte retention, the
isomers are expected to co-elute with a significant amount of matrix components; hence
to minimise ion suppression and matrix effects, the urine samples were diluted (approx-
imately 82 times according to the authors’ calculations using the reported data) before
injection. The reported LLOQ for the method is at 5 µM, which is too high for bovine
plasma (which has a reported average of approx. 5 µM [22]). The method presented herein
accounts for matrix effects and focuses on bovine plasma offering an LLOQ of 0.5 µM
(80 µg/L).

Kochlik et al. reported a method for the individual determination of τ- and π-MH in
human plasma [52] with excellent LLOQ (0.015 µM), which could potentially be applied
for bovine plasma. However, the method requires lengthy sample preparation (3 h and
20 mins), and the separation is achieved using a specialised amino acid stationary phase.
The extended sample preparation length makes this method unattractive for large cohort
studies; herein sample preparation takes approx. 40 mins. Additionally, using a generic
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and widely employed/available column (such as the one employed herein) makes for a
more feasible alternative for the average lab.

Roggenshack et al. published a method where τ- and π-MH were determined sep-
arately in biofluids by utilizing a steep gradient and very high concentration of buffer
salt [53] (the authors reported LLOQ at approx. 10µM for both τ- and π-MH). Such high
salt concentrations may benefit retention and peak shape in some stationary phases in
the HILIC mode [68]. However, the use of high salt concentrations may impact analyte
ionization and electrospray ionization (ESI) performance [69,70]. It may also lead, in the
authors’ experience, to blockage of ESI components (e.g., spray needle), especially in the
heated ESI mode. This may pose a severe hindrance when the analysis of hundreds or
thousands of samples is required, both regarding cost and time (ESI needles may need
replacement after blockage), leading to additional instrument downtime. Additionally, the
high cost of obtaining and using high purity mobile phase additives must also be taken
into consideration.

As mentioned above, the presented method was developed specifically for the quan-
titation of τ- and π-MH in bovine plasma and large cohort studies to provide results for
statistical analysis. If the method was to be adapted to provide study-specific results of,
e.g., diagnostic nature (in either a veterinary or other medical setting), a stricter method
validation approach would probably be more appropriate (e.g., employing carbon-13 iso-
tope labelled standards). Although the employed parallelism assessment is representative
of many animals and spanning several years, due to possible variations in sample parame-
ters (anticoagulation method, geographical location, health status of animals, breed, etc.)
and lab-specific settings (e.g., different source design and mass spectrometry detector),
parallelism should be reconfirmed before starting a new study.

The presented method is developed to minimise costs, sample preparation, and analy-
sis time, including instrument downtime, with the aim of analyzing hundreds to thousands
of samples. Sample preparation time is approximately 40 min (sample number bottlenecked
by the available centrifuge positions) while sample and data analyses are approximately
20 min per sample. Based on these figures, a batch of 100 samples (complete with cali-
bration and QC) would require approximately two working days for full processing. As
for cost-effectiveness, apart from the capital equipment requirements, all materials are
affordable and common in analytical labs.

4. Conclusions

A novel, economically friendly, simple, and fast method was developed for the deter-
mination of τ- and π-methylhistidine in Holstein cow heparinized plasma. The method
is based on both chromatographic separation and spectral ion abundance, utilising hy-
drophilic interaction liquid chromatography (HILIC) coupled to tandem mass spectrometry
(LC-MS/MS). The method includes simple and straightforward, clean-up driven, sample
preparation and does not require specialised extraction, derivatization, or other labour-
consuming techniques. Hence, the analysis of τ- and π-MH in large numbers of samples
that are associated with lactating Holstein cow studies is made possible in an efficient and
economically friendly manner.
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