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Abstract: In this work, ultrasound-assisted solvent extraction was utilized for extraction of organochlo-
rine pesticides from membrane-protected dried fish samples. The dried fish samples were packed
inside a porous membrane bag which was immersed in a solvent and subjected to ultrasonication.
After the extraction process, the sample-containing bag was separated from the extract. Since sam-
ples were packed inside the membrane, their separation did not require centrifugation or filtration.
Moreover, the complex components of the biota matrix may also retain inside the porous membrane
bag, alleviating the requirement of extract cleanup before analysis. The parameters that can affect
the ultrasound-assisted solvent extraction of membrane-protected dried fish samples were suitably
optimized. These parameters include the extraction solvent and its volume, the sample amount,
ultrasound intensity and extraction time. Under the optimum extraction conditions, good linearity
was achieved for all the tested organochlorine pesticides, with the coefficients of determination (R2)
higher than 0.9922 for the linear ranges from 5–1000, 10–1000 and 20–1000 ng/g. The values of
intra-day and inter-day relative standard deviations were ≤13.8%. The limit of detection ranged
from 1.5 to 6.8 ng/g. The spiked relative recoveries were in the range of 87.3–104.2%. This method
demonstrated excellent figures of merit and could find potential applications in routine analytical
laboratories. Finally, the greenness of this method was evaluated using the green analytical procedure
index and analytical greenness calculator metrics.

Keywords: membrane-protected extraction; pesticide analysis; ultrasound-assisted solvent extraction;
organic solvent-enhanced extraction; food analysis

1. Introduction

Sample preparation is a crucial step in analytical method development in the following
cases [1,2]:

i. The concentration of target compounds is too low to perform direct determination
without enrichment.

ii. The matrix is complex, and needs clean-up before injecting into the instrument to
avoid interference and instrument incompatibility issues.

iii. The chemical features of the target compounds mismatch with the available instru-
mentation, and thus a chemical conversion (derivatization) is required.

Classical methods of sample preparation such as liquid–liquid extraction (LLE) and
solid-phase extraction (SPE) are widely adopted due to their excellent performance in terms
of extraction recoveries and well-established procedures. The principal demerit of LLE
and SPE is consumption of large volume of hazardous solvents that pose risk both to the
environment and workers [3–6]. Due to these conventional extraction techniques, sample
preparation is generally considered the least green step in analytical method development.
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Apart from that, these extraction techniques involve multistep procedures which are
not only time consuming but may also result in loss of the analytes [7,8]. According to
some estimates, 80% of time is spent on sample preparation during analytical method
development [9], and it is one of the major sources of errors in the analysis [10].

Alternatively, researchers have put great effort into the development of miniaturized
sample preparation techniques, focusing on reducing the dimensions of extraction devices,
minimizing the volumes of organic solvents, and improving the extraction performance [11].
Thus, many microextraction techniques have been developed during the last three decades,
including solid-phase microextraction [12], liquid-phase microextraction [7,13–15], and
their variants [14,16–24].

Membrane-based analytical extractions have been employed for extraction of analytes
from environmental, food, and biological samples. Hollow-fiber protected solid-phase mi-
croextraction (HF-SPME) [25], hollow fiber liquid-phase microextraction (HF-LPME) [26,27],
and porous membrane-protected micro-solid-phase extraction (µ-SPE) [28] are some typical
examples of membrane-based extraction techniques. µ-SPE involves packing the sorbent
material inside the membrane sheet by shaping it like a teabag through heat-sealing. µ-
SPE gives freedom with regard to selection of the sorbent that can be packed inside the
membrane, according to the nature of the target pollutants. The major benefit of µ-SPE
is related to protection of the sorbent within the membrane bag, which allows its applica-
tion in complex matrixed samples. The analytes can pass through the membrane and be
captured by the sorbent, while macromolecules and extraneous matter may not penetrate
through the membrane. In this way, filtration and extraction steps are integrated into a
single step. Moreover, this device can be used several times without compromising its
performance [28]. All the techniques mentioned above are applicable to samples that are
present in liquid form.

Dealing with solid samples, either by classical or miniaturized extraction techniques,
requires pretreatment steps such as digestion or dissolution into a suitable solvent before
extraction. The separation of the resulting solid/liquid is also required before applying any
extraction technique. The packing of solid samples into a membrane bag has been proposed
as the simplest solution to avoid some of the pretreatment and separation steps, and also
to deal with complex matrix samples [29]. In this approach, solid samples (generally
fine powders) are packed inside the porous membrane bag and subjected to solvent-
based extraction. The extraction can be assisted by ultrasonication, stirring, mechanical
shaking, vortex, etc. The analytes are released into the solvent, while complex interfering
components may remain in the bag. The bag can be easily separated from the extract
without requiring the steps of filtration or centrifugation. In this way, it eliminates several
pretreatment steps, integrates sample pretreatment and extraction of analytes, and shortens
the time and cost associated with sample preparation.

Originally, this technique was developed for extraction of polycyclic aromatic hy-
drocarbons from the soil samples [29]. Then, it was employed for extraction of organic
analytes in tea samples [30]. However, its application can be extended to the other kinds
of solid samples, and particularly to those that present highly complex matrices. A food
sample such as fish constitutes a complex biological matrix, and its packing inside the
membrane can simplify the extract purification process compared to other extraction proce-
dures. Hence, this work aims to investigate the extraction of target analytes from dried fish
samples. Organochlorine pesticides (OCPs) were selected as model compounds.

OCPs belong to persistent organic pollutants and are known to cause many health
issues in humans and wildlife [31]. They have been commonly used in agrochemicals
and many other applications for decades. This is the reason that their concentrations are
distributed throughout the environment, including in aqueous resources. Due to low
polarity, OCPs have very little solubility in water, but they tend to readily accumulate in
fat tissues through a process known as bioaccumulation. The levels of OCPs can magnify
to several folds [32,33]. From the aqueous media, they may accumulate in fish and other
aquatic organisms. In this work, for the first time, we have extended the application of
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solvent extraction of membrane-packed solid samples to fish samples for extraction of
OCPs before gas chromatography-mass spectrometry (GC-MS) determination.

2. Experimental
2.1. Materials and Chemicals

Table 1 provides a list of the chemicals and reagents employed in this study.

Table 1. List of materials and chemicals.

Chemical/Material Manufacturer

OCPs standard (15 OCPs investigated in this study are
listed in Table 2). Restek (Bellefonte, PA, USA)

Polypropylene (PP) membrane sheet
(pore size: 0.2; thickness of 157 µm) Membrana (Wuppertal, Germany)

Solvents (chloroform, methanol, n-hexane,
dichloromethane (DCM)) Fisher (Loughborough, UK)

Fish samples Local market (Al-khobar, KSA)

Table 2. OCPs, retention times, and selected m/z values for selective ion monitoring (SIM) mode.

Analyte Retention Time (min) Selected m/z Values

Heptachlor 11.9 100 272 274

Aldrin 13.0 66 263 79

Heptachlor Epoxide 14.6 81 353 355

Trans-chlordane 15.6 33 375 377

Endosulfan I 16.2 241 239 195

Cis-chlordane 16.3 373 375 377

Dieldrin 17.5 79 81 82

4,4′-DDE 17.7 246 318 248

Endrin 18.6 81 79 263

Endosulfan II 19.2 195 241 237

4,4′-DDD 20.1 235 237 165

Endrin Aldehyde 20.2 67 345 250

Endosulfan Sulfate 21.5 387 272 274

4,4′-DDT 21.9 235 23 165

Methoxychlor 24.8 227 228 -

2.2. Preparation of Fish Samples

The Epinephelus coioides (hamour) fish species was used for extraction experiments. The
scales of fish were removed using a handheld fishing scale brush. The upper layer was
carefully removed to obtain muscle tissues. The muscle tissues were then lyophilized using
a freeze-drier (Genesis 25L model from SP Scientific). The lyophilized tissues were then
grounded, sieved, and stored in a clean glass bottle.

2.3. Extraction Procedure

A membrane bag (2.0 cm × 2.0 cm) with one open end was fabricated from a flat
PP membrane sheet with the assistance of a heat-sealer. The open end of the membrane
bag was also heat-sealed after packing with 500 mg of dried fish samples. The sample
containing a membrane bag was dipped in 3000 µL of extraction solvent (toluene) in a vial.
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The process of extraction was supported by application of medium-intensity ultrasound
for 60 min. The membrane bag was separated from the extraction solvent using a pair
of tweezers, and the extract was evaporated to dryness and reconstituted in 200 µL of
n-hexane, and 1 µL aliquot was injected into the GC–MS system for analysis. The extraction
procedure is shown in Figure 1.
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Figure 1. Schematic of the proposed extraction procedure.

2.4. Optimization of Extraction Parameters

For the purpose of optimizing the extraction parameters, dried fish samples that had
been spiked with 250 ng/g of the OCPs mixture were employed. The tests were carried out
three times. A univariate method was used to optimize every parameter that may have an
impact on how well the extraction performed, such as the amount of the sample, the type
and volume of the extraction solvent, the extraction time, and the ultrasonic intensity. To
find the optimum value for each parameter, chromatographic peak areas were employed.
Ultrasonic equipment (UCS-20 by Jeio Tech, Daejeon, Republic of Korea) was employed in
these experiments.

2.5. GC-MS Analysis

For the separation and quantification of target OCPs, an Agilent 7890A GC-System
outfitted with an MS-5975C inert mass selective detector with a triple axis detector was
employed. An Agilent (GC-Sampler 80) autosampler and injector were connected to the
system. The working conditions of GC-MS were used for suitable separation of the target
OCPs, as per previously reported work [34].

A GC capillary column was employed in this study. It was 0.25 µm thick and 30 m
long, with a diameter of 0.32 mm. High-purity helium was used as a carrier gas. The flow
rate was maintained at 1.4 mL/min. The injection port, GC-MS interface, ion source, and
MS quadrupole temperature were adjusted at 250, 250, 230, and 150 ◦C, respectively. The
sample was injected using split mode, with a split ratio of 10:1. The oven temperature was
also programmed. The initial temperature was kept at 50 ◦C. It was increased to 180 ◦C at a
rate of 20 ◦C/min and held for 1.5 min. The temperature was further increased to 200 ◦C,
but relatively, at a slower rate of 3 ◦C/min. It was maintained for 3 min. Finally, it was
increased to 230 ◦C at a rate of 5 ◦C/min and maintained for 5 min. In this way, the total
run time was 28.7 min. The qualitative peak identification was performed in scan mode,
in an m/z range of 40–550. SIM mode was employed for quantitative measurements. The
Wiley 8th Edition W8N08 database was employed for identification of compounds. The
selected ions are provided in Table 2.

2.6. Analytical Method Validation

Calibration plots were created using dried fish samples that had been extracted un-
der optimal conditions and spiked with various concentrations of the target compounds.
Relative recoveries, relative standard deviations (%RSDs), limits of detection (LODs), and
the linearity of calibration plots were all computed. After that, fish samples bought from
the neighborhood market were tested for OCPs using the devised methodology. For tech-
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nique optimization and quality control parameters, fish samples with the absence of OCPs
(previously verified) were employed.

2.7. Greenness Evaluation

The greenness of the developed extraction approach and analysis was evaluated using
green analytical chemistry metrics. The green analytical procedure index (GAPI) [35] and
Analytical GREEnness (AGREE) [36] metrics were used for this purpose.

Recently, various green analytical chemistry metrics have been developed that are
used to assess the greenness of analytical procedures [37–40]. The objective of these metrics
is to spread awareness among the analytical community regarding the more or less green
steps in their developed methods. GAPI and AGREE are two commonly used metrics for
this purpose. GAPI was developed in 2018, and it evaluates the whole analytical procedure
including sampling, sample preparation, the reagents and chemicals employed, energy
consumption and waste generation. The outcome of GAPI is a pictogram that consists of five
pentagrams. Each pentagram consists of several fields that represent a specific parameter,
and the color of each field presents the environmental impact of that parameter. A red color
denotes high, while yellow denotes medium, and green denotes low environmental impact.
A simple look at the GAPI pictogram can reveal how many parameters are acceptable from
a greenness perspective and how many need further improvement [35]. AGREE is another
important green analytical chemistry metric which evaluates analytical methods based on
12 GAC principles. Its outcome is a clock-like pictogram that contains assessment of each
principle and a final score. The final score ranges from 0–1. The closeness of the score to
1 indicates that the method has more green characteristics [36].

3. Results and Discussion
3.1. Optimization of Extraction Parameters

Analytes from solid samples were directly extracted into the extraction solvent with
the aid of sonication. The potential parameters that may affect the extraction performance
include extraction solvent, the volume of extraction solvent, the amount of the sample,
ultrasound intensity, and extraction time. These parameters were appropriately optimized
using a univariate approach. The initial, range, and optimum values of each parameter are
provided in Table 3.

Table 3. Initial, range, and optimum extraction conditions.

Parameter Initial Value Range Investigated in
Optimization Experiments Optimum Value

Extraction solvent -
n-hexane, DCM, n-hexane:DCM

(1:1), chloroform, methanol,
toluene

Toluene

Extraction solvent
volume (mL) 1.0 0.5–5.0 3.0

Mass of sample (mg) 250 125–1000 500

Ultrasound intensity Medium Low, medium, high Medium

Extraction time (min) 30 15–75 60

3.1.1. Extraction Solvent

The extraction solvent is most important parameter in solvent-based extraction. The
interaction of the solvent with analytes as well as the solid sample contributes toward
the release of the analytes. One straightforward criterion is whether the solvents have
polarity match with the target compounds. However, some unknown factors related to
interaction of the solvent and solid samples may provide unexpected results. Solvents
with different polarity indices, such as n-hexane, dichloromethane (DCM), n-hexane:DCM,
chloroform, methanol, and toluene, were evaluated in this study. The best extraction results



Separations 2023, 10, 233 6 of 14

were obtained with toluene except for aldrin, 4,4′-DDD, and 4,4′-DDT, which were better
extracted in other solvents (Figure 2). Toluene effectively dilates the pores of the membrane
and thus enhances overall mass transfer of analytes. Hence, it was selected as an optimum
extraction solvent. However, in some cases, toluene may cause leaching of sample or
deteriorate heat-sealing of membrane bag. This aspect should be carefully monitored. Such
issues are less common with n-hexane.
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3.1.2. Solvent Volume

The solvent volume should completely immerse the sample-containing bag so that the
solid sample particles are fully exposed to the extraction solvent. An optimum volume is
the one where high concentrations of the analytes are released from the solid matrix into
the solvent. The lower volumes may cause an irreproducible release of analytes, while
higher volumes may be difficult to evaporate, and harsh conditions may result in loss of
the target compounds. The solvent volumes were investigated in the range of 0.5–5.0 mL.
The extraction was increased from 0.5–3.0 mL, but a decrease was observed in the case of
5.0 mL (Figure 3). This suggests that analytes efficiently release with an increase in solvent
volume from 0.5–3.0 mL, but after 3.0 mL, solvent evaporation may cause a loss of analytes
due to the increased duration of evaporation. The analytes may also adsorb back to solid
samples. An exception was observed in case of heptachlor, which was best extracted in a
5 mL solvent volume.
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3.1.3. Amount of Sample

The increase in sample amount in a predefined volume of extraction solvent will lead
to increased extraction. However, after reaching a certain amount, the volume of extraction
solvent may not be sufficient for proper extraction. Hence, this parameter was properly
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investigated. Thus, five different sample amounts (125, 250, 500, 750, 1000 mg) were ex-
tracted using 3 mL of the extraction solvent. As illustrated in Figure 4, the chromatographic
peak areas increased with the increase in sample amount from 125 mg to 500 mg, and after
that, a decline was observed. This might be due to an insufficient volume of the extraction
solvent, which cannot compensate for a further increase in the sample amount or may be
unable to immerse the membrane bag.
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3.1.4. Ultrasound Intensity

Ultrasound-assisted extraction is an environmentally friendly, low-cost, and easy-to-
use approach. The process of acoustic cavitation occurs during sonication, and it controls
the extraction process. This process is dependent on many factors such as the nature of the
solvent, ultrasound features, and operating conditions. The solid matrix may be disrupted
due to this process leading to enhanced penetration of the solvent into solid samples. These
all are internal processes, arising from the effects of ultrasound. However, ultrasound
intensity or power is the factor that can be controlled externally. In this work, an ultrasound
that generates high-frequency 40 kHz sound waves was utilized and operated in low,
medium, and high-intensity mode. The best extraction results were achieved at medium
intensity (Figure 5).
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3.1.5. Extraction Time

The sonication time influences the rate of mass transfer of analytes. Thus, the soni-
cation time should be long enough to reach a state of equilibrium. However, very long
extraction times may affect the extraction negatively. This is because sonication causes an
increase in the temperature of the extract, due to which some analytes may evaporate to
headspace. Opening the extraction vial may result in partial loss of analytes. Thus, the
extraction time was examined from 15 to 75 min, and 60 min was found to be an optimum
extraction time (Figure 6).
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3.2. Analytical Method Validation

The matrix effect is generally caused by co-extracted species that lead to an enhanced
or decreased ionization and chromatographic response of the analytes. The matrix effect
represents the difference in the response of the analyte in standard solution versus the
response of the analyte in a selected matrix, and it is highly dependent on the features
of the detection system, the sample type, and the sample preparation. The differences
were observed in the response of analytes in standard solution and post-extraction spiked
samples. Membrane-based sample preparation may have a role in reducing the matrix
effect. Besides that, to minimize the matrix effect on final determination, both calibration
and unknown samples with the same matrix were subjected to the same extraction and
analysis procedures.

Analytical figures of merit for this newly developed method were studied under opti-
mal extraction conditions. The calibration graphs were built by spiking analyte-free dried
fish samples at different concentration levels. This method showed a good linear working
range for all the analytes, with correlation coefficients higher than 0.9922. The LODs were
in the range of 1.5–6.8 ng/g. Intra-day and inter-day relative standard deviations (%RSDs)
were in the range of 5.8–13.8. The values of %RSDs were within the acceptable range, as
per the guidelines [41].

Table 4 provides analytical figures of merit for the proposed method.
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Table 4. Analytical figures of merit for the proposed method.

Analyte
Correlation
Coefficient

(R2)

Linear
Range (ng/g)

LOD
(ng/g)

LOQ
(ng/g)

RSDs (%)
100 ng/g (n = 6)

Intra-Day Inter-Day

Heptachlor 0.9957 10–1000 2.9 9.7 5.8 6.0

Aldrin 0.9989 5–1000 3.4 10.1 8.9 9.1

Heptachlor
Epoxide 0.9922 10–1000 3.3 10.5 10.0 10.3

Trans-chlordane 0.9950 5–1000 3.4 10.3 9.7 10.3

Endosulfan I 0.9952 10–1000 3.4 10.5 9.6 11.6

Cis-chlordane 0.9956 20–1000 5.8 19.7 8.9 9.5

Dieldrin 0.9995 5–1000 1.5 5.0 8.9 10.4

4,4′-DDE 0.9979 10–1000 3.1 10.2 9.3 11.1

Endrin 0.9974 10–1000 2.9 9.9 5.6 7.7

Endosulfan II 0.9991 10–1000 3.2 10.7 10.8 11.9

4,4′-DDD 0.9962 10–1000 3.3 10.1 8.3 8.5

Endrin
Aldehyde 0.9988 10–1000 3.2 10.1 8.6 9.1

Endosulfan
Sulfate 0.9967 20–1000 6.8 19.7 13.5 13.8

4,4′-DDT 0.9989 10–1000 3.4 9.6 10.6 11.2

Methoxychlor 0.9982 5–1000 1.8 5.2 9.1 10.3
Acceptable criteria for RSDs: <15%.

3.3. Relative Recoveries, Analysis of Real Samples and Comparison with Other Methods

The pooled dried fish samples spiked at three different levels of 50, 100, and 250 ng/g
were extracted under optimum conditions to evaluate relative recoveries using the above
constructed calibration plots. The relative recoveries were in a range of 87.3–104.2%.
Relative recoveries along with percentage RSDs at different spike levels are provided
in Table 5. The values of relative recoveries were within the acceptable range as per
the guidelines [41]. This method was then used for analysis of OCPs in three different
fish samples purchased from the local market. The levels of studied OCPs were below
method’s LOQ.

A comparison of the current method with the previously published literature dealing
with the extraction and analysis of OCPs in fish samples is provided in Table 6. The volume
of organic solvents consumed during sample pretreatment and extraction is an important
factor in evaluating the greenness of analytical procedures, as per recent developments
in green analytical chemistry. The volumes of organic solvents employed in the methods
listed in Table 6 were much higher than those used in the current method, except in the
case of U-SDME, where 1 mL of methanol and 1 µL of toluene were used. In the other
methods, the volumes were above 5 mL and up to 163.5 mL. The volume of the extraction
solvent used in the current method is 3 mL (toluene). However, it may also present some
operational issues. This method demonstrated a broader linear range compared to reported
methods, except for U-SDME, which was almost comparable. Regarding LODs, the current
method showed slightly higher values to those reported in the literature. The %RSDs of
the current method and those reported in the literature were comparable in some cases, but
overall, they were within an acceptable range. Similarly, the recoveries of this method were
either better or comparable to those reported in the literature.
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Table 5. Relative recoveries of OCPs after spiking pooled dried fish samples (n = 3).

Analyte

Spike Level 50 ng/g Spike Level 100 ng/g Spike Level 250 ng/g

Relative
Recovery

(%)

RSDs
(%)

Relative
Recovery

(%)

RSDs
(%)

Relative
Recovery

(%)

RSDs
(%)

Heptachlor 96.6 5.1 98.4 4.7 93.8 3.2

Aldrin 95.1 3.7 96.3 5.0 92.2 6.0

Heptachlor Epoxide 92.5 4.9 96.2 2.9 94.6 3.2

Trans-chlordane 89.7 5.4 91.5 4.4 94.6 4.9

Endosulfan I 89.5 4.6 96.8 4.9 94.5 6.1

Cis-chlordane 94.1 4.2 91.9 3.1 98.1 4.6

Dieldrin 96.6 3.8 97.4 2.0 89.2 2.9

4,4′-DDE 85.7 4.8 92.7 5.1 87.9 5.3

Endrin 88.2 4.3 91.6 4.5 89.8 3.9

Endosulfan II 98.4 2.9 96.1 5.1 90.0 6.0

4,4′-DDD 92.1 4.1 95.4 4.6 91.5 4.5

Endrin Aldehyde 99.1 3.6 98.2 3.3 104.2 4.1

Endosulfan Sulfate 87.3 3.2 88.5 5.1 93.4 3.8

4,4′-DDT 96.1 1.8 100.3 4.0 100.1 6.8

Methoxychlor 88.2 2.2 86.1 2.5 88.6 3.5
Acceptable criteria for recoveries: 80–120%.

Table 6. Comparison of the current method with those reported in the literature.

Method
Solvents

Employed and
Volume

Linear
Range LOD (ng/g) RSDs

(%)
Recoveries

(%) Ref.

US-DLLME-
SFO-GC-µECD

Acetone (5 mL)
and 1-Undecanol

(24 µL)
1–500 1.06–3.84 <6.3 88.5–108.4 [42]

QuEChERS-d-
SPE-GC-MS

Acetonitrile
(10 mL),

chloroform (2 mL)

3–200
ng/mL 1.0–3.0 <10 70–120 [43]

LTC-SPE-GC–
MS

Acetonitrile
(30 mL),

acetonitrile–
toluene (3:1)

(39 mL),
n-hexane (1 mL)

- 0.5–20 <13.5 78.7–113.7 [44]

U-SDME-GC-
MS

Methanol (1 mL),
toluene (1 µL) 10–1000 0.5 9.4–10 82.1–95.3 [45]

Soxhlet
Extraction-µC-

GC-ECD

Acetone: n-hexane
(20:80 v/v)
(150 mL),
n-hexane
(13.5 mL)

- 0.6– 3.0
ng/L 5.0–13 78–95 [46]

UAE of
membrane
packed fish

samples-GC-MS

Toluene (3 mL)
5–1000,

10–1000 and
20–1000

1.5–6.8 ≤13.8 87.3–104.2 This
work

4. Greenness Evaluation

According to GAPI (Figure 7a), the following parameters of this newly developed
method have the highest environmental impacts.
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(i) Sample collection;
(ii) Sample transportation;
(iii) Type of method;
(iv) Solvents employed;
(v) Energy related to instrumentation;
(vi) Waste treatment.

This metric favors in-line sample collection, which is of course not possible in the case
of collection of fish and biota samples. Similarly, there are fewer opportunities for on-site
sample processing, and transportation will be required. GAPI favors methods that do not
involve extraction and that perform direct measurements. However, in case of detection
of OCPs in fish samples, the extraction process is unavoidable. GAPI also considers
this method inadequate, because non-green solvents such as toluene and n-hexane were
employed. This aspect, however, can be improved by using bio-based solvents or other
less toxic solvents such as ionic liquids or deep eutectic solvents. However, this application
will require entirely new investigations to find the solvents that show interactions with
the analytes and are applicable with complex biota samples. GAPI also considers using
high-energy instruments to be a negative point. GC-MS was employed in this work, and it
is usually difficult to replace with another instrumentation. The waste generated during
the extraction process was not treated, and this may have a high environmental impact
according to GAPI.

According to AGREE, the method developed in this work has an overall score of 0.47
(Figure 7b), and a close overview of each criterion indicates that it needs improvements,
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particularly in terms of device positioning, energy consumption, sources of reagents and
their toxicity. The one main limitation of the current work is the use of conventional organic
solvents as extractants. The greenness can be enhanced by using alternative solvents such
as ionic liquids, deep eutectic solvents, etc.

5. Conclusions

In present work, we successfully developed a method of extraction of OCPs in fish
samples. Fish tissues were separated and freeze-dried prior to extraction. Freeze-dried
samples were enclosed inside a porous membrane bag that was constructed using a heat-
sealer. The extraction process was carried out using a solvent, and was assisted by the
application of ultrasound. Membrane-packed samples can be easily separated from the
solvent extract after extraction, and steps such as centrifugation or filtration are not required.
Since macromolecules and fat species cannot easily escape from the membrane bag, a clean-
up phase may also be sidestepped. The optimum results were obtained when a 500 mg
sample was extracted using 3 mL of toluene under medium intensity sonication for 60 min.
The present method showed excellent analytical figures of merit. The LODs of the target
OCPs were in the range of 1.5–6.8 ng/g. The percentage RSDs were ≤13.8%. Application
of this method can be extended to other biota species. This method has great potential for
application in routine analysis, but this will require inter-laboratory validation.
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37. Nowak, P.M.; Kościelniak, P. What Color Is Your Method? Adaptation of the Rgb Additive Color Model to Analytical Method
Evaluation. Anal. Chem. 2019, 91, 10343–10352. [CrossRef]
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