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Abstract

:

The Arrhenius temperature integral is typically used in non-isothermal kinetic analysis, which is widely applied in gas–solid reactions in separation processes. In previous studies, researchers provided various methods to solve the temperature integral, but the error usually became significant when the value of x (x = Ea/RT) was too large or too small. In this paper, we present a new series method and design a computer program to calculate the temperature integral. According to the precise calculation of the temperature integral, we first reveal the relationship among the integral, the temperature, and the activation energy, and we find an interesting phenomenon in which the 3-D image of the temperature integral is of self-similarity according to fractal theory. The work is useful for mechanism and theoretical studies of non-isothermal kinetics.
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1. Introduction


Non-isothermal chemical kinetics are very important for gas–solid reactions in separation processes. As a result, they have been extensively introduced in disciplines, such as chemical engineering [1,2], mineral technology [3], metallurgical engineering [4], materials science [5], biomass energy [6,7], etc. The reaction rate of a solid-involved reaction is now generally accepted to be


    d α   d t   = k f  α   



(1)




where α denotes the conversion ratio of the concerned substance at time t, f(α) is the mechanism function, and k is the rate constant expressed by the Arrhenius equation:


  k = A exp   −  E a  / R T    



(2)




where A, T, and Ea are the pre-exponential factor, temperature, and activation energy of the reaction, respectively.



For a linear heating process, the heating rate β is usually a function of time,


  β =   d T   d t    



(3)







Combining all of the above equations, re-arranging them, and integrating Equation (1), we obtain


  g  α  =    ∫   α 0   α     d α   f  α       =  A β     ∫   T 0   T   exp   −    E a    R T        d T  



(4)




where T0 represents the initial reaction temperature and is set at 298 K in this study, and the initial reaction extent α0 usually equals zero.



The Arrhenius temperature integral is also known as the integral of Boltzmann factor Ψ(T), which is derived from Equation (4),


  Ψ  T  =    ∫   T 0   T   exp   −    E a    R T        d T  



(5)




where another variable x could be introduced as


  x =    E a    R T    



(6)







Then, the temperature integral could be calculated as


  Ψ  T  =    E a   R     ∫ x     E a    R  T 0          e  − x      x 2          d  x  



(7)




where the upper limit of Equation (7) is usually considered to be ∞ regarding T0 in the denominator, which is equal to 0.



Then, the expression of the temperature integral as shown in Equation (7) is extensively regarded as the most concise and the best one for calculation.



The solution of the temperature integral is usually the basic demand for a non-isothermal kinetic study [8]. However, it cannot be analytically solved. With the solution of the temperature integral, constant activation energy and the corresponding kinetic mechanism could be determined in model-based (single-step) reactions, and variable activation energies could be calculated in model-free iso-conversional (multi-step) reactions.



The model-based non-isothermal analysis was dominant for a long time because of its ability to determine the kinetic triplet (pre-exponential factor, activation energy, and reaction model) [9,10]. However, these methods suffer from several problems, among which is their inability to uniquely determine the reaction model. This issue led to the decline of these methods in favor over the latest two decades of iso-conversional methods that evaluate kinetics without model assumptions [11]. Regardless of the kind of method, the evaluation of the temperature integral is an inevitable issue. As a result, there is a bottleneck in kinetic analysis, namely the calculation of the temperature integral.



The temperature integral was first encountered by scientists in the early thermogravimetric analyses [9,10,11,12,13]. Reich and Levi [14] made mistakes since they did not recognize that it is a transcendental function. Although different efforts have been made to solve this puzzle over the past six decades [15,16,17,18,19,20,21,22,23,24,25,26,27,28], troubles still occasionally arise since ‘there is no true value for the integral’, as stated by Tang [27]. The temperature integral has been playing an ‘enigmatic’ role in non-isothermal kinetic analysis. That is, it has appeared to be a necessary evil to be addressed [25].



Flynn [25] and Órfão [17] provided excellent reviews of the temperature integral. According to Flynn’s categorization, these solutions of the temperature integral are classified into three categories: series solutions, complex approximations [29,30], and simple approximations. It is given accurately for x greater than 2 by the rational fraction expression. Truncating the number of terms in the fraction expression, we can obtain one, two, three, and four “rational approximations”. Other series solutions, such as Schlömilch expansion, Bernouli number expansion, and Asymptotic expansion, are all available for the calculation limitation of x in different ranges [13,25].



In model-based non-isothermal analysis, simple and complex approximations were preferred and truncated from those series solutions because the truncated solutions could give the temperature integral an analytical expression and make the whole non-isothermal kinetics analytically solvable. For example, truncating the two-term asymptotic approximation, we can obtain the famous linear plot of ln(g(α)/T2) against 1/T, resulting in a slope of Ea/R. In the other words, it is exactly the famous Coats–Redfern method [12]. In addition to the truncations, some modified approximations were also proposed to improve the calculation precision [8,17,18,19,20,26,27,28].



The numerical calculation of the temperature integral is usually carried out by series methods, and model-free iso-conversional non-isothermal kinetics are usually required. Although the precision of the numerical calculation is better today, there are still backward calculations because of the limitations of the series method itself. Numerical calculation based on the quadrature method was occasionally mentioned in previous papers [24,28]. However, the residual error usually increases with the rise in the upper limit temperature of the integration, or it increases with the decrease in x [25]. As a disquieting situation, some published papers provided the wrong quadrature results as standard integral values, such as in Ref. [24].



There were hundreds of papers focused on the solution of the temperature integral once it was suggested that a relative error of 10% for the temperature integral could be acceptable for many calculations. However, more accurate values are still necessary for scientific purposes, such as distinguishing between reaction mechanisms [25]. Furthermore, a more accurate solution possible today with computer technology. All in all, accurate values and numerical calculation methods of the temperature integral are always attractive in non-isothermal kinetic analysis.




2. Theory


So far, most of the solutions for the temperature integral have been based on the concise Equation (7). However, the upper limit of the integration may be far from ∞, resulting in the corresponding inaccurate mathematical equations of series methods.



At the same time, all approximations of the temperature integral take a detour; errors and troubles cannot be eradicated. The only way to obtain the exact numerical solution of the integral is to develop an appropriate series solution, which easily reaches convergence. Here, we provide a new series solution based on Taylor’s expansion:


  Ψ    T 0  + Δ T     = =   n → ∞   Ψ    T 0    +  Ψ ′     T 0    ⋅ Δ T +  1  2 !    Ψ ″     T 0    ⋅ Δ  T 2  + … +  1  n !    Ψ   n       T 0    ⋅ Δ  T n   



(8)




where ΔT is the difference between T and T0, T = T0 + ΔT, and n denotes the order of Taylor expansion.



Then, the exact derivative value at temperature T0 could be calculated using Equations (7)–(9).


  ( n = 1 )              Ψ ′   T  = exp   −    E a    R T     = g  T   



(9)






  ( n = 2 )              Ψ ″   T  =    E a   R  ×  T  − 2   ⋅ g  T   



(10)






  ( n >   2 )      Ψ   n     T  =    E a   R  ×   ∑  i = 0   n − 1     C  n − 1  i     g   i     T  ⋅      T  − 2       n − i − 1    



(11)







The n-th-order derivative expression shown as Equation (9) is established according to Leibniz formula [31]. With the help of the general form of the n-th-order derivative equation, we designed a computer program to calculate the integral of the Boltzmann factor with Equation (6). The numerical value can converge within a sufficiently small residual error when the derivative order n is large enough, and ΔT is small enough. Computing the results shows that the value usually converges with reasonably little error when n is greater than 4 and ΔT is no greater than 50 K. Consequently, a multi-step integral method is applied to compute the integral value when the difference between the upper and lower limit temperature is larger than 50 K. The corresponding error analysis of the present calculation method is also provided below.




3. Error Analysis


Table 1 shows the converging evolution of the integral value with increasing order of Taylor expansion. Most of the values converge within a relative error of 1‰ when the Taylor order is larger than 4. A relative error within 10−8 can be achieved when the Taylor order increases to 10. To reach high accuracy, a 3D image (Figure 1a) of the integral function is established based on 200 × 200 calculation nodes, and each node is computed with a Taylor order of 20.



As shown in Figure 1a–d, the integral values have differences in orders of magnitude from each other with different temperatures and activation energies. To control computing error, the relative residual was defined as follows:


  δ =     Ψ   n + 1 , T ,    E a    − Ψ   n , T ,    E a        Ψ   n + 1 , T ,    E a       



(12)




where Ψ(n, T, Ea) denotes the integral of Boltzmann factor with upper limit temperature of T, activation energy of Ea, and Taylor order of n. The relative residual δ denotes a tolerance when it is presupposed as a maximum limitation that should not be exceeded.



Figure 1a–d demonstrates the minimum required Taylor order for calculating the temperature integral under error tolerances of 10−4, 10−8, 10−12, and 10−16, respectively. According to Figure 1a,b, the relative residual errors in Figure 1a are no greater than 10−4 under the domain of definition, and most of the values have a residual error of 10−8. The smaller that the minimum required Taylor order is, the more easily that the iteration reaches tolerance. In previous studies, it is simply concluded that the errors become significant when the value of x (x = Ea/RT) is too small or too large [25]. However, according to these figures, a different trend is discovered. Generally, the trend that is proved by these four figures is that the minimum required Taylor order rises with a decreasing upper limit or an increase in the activation energy when the upper limit temperature is greater than about 350 K, and the minimum required Taylor order rises with increasing the upper limit or increase in the activation energy when the temperature is between 298 and 350 K.



Furthermore, the relationships among T, Ea, and Taylor order n are more complicated than monotonic, and some singular points also exist in the plots. However, the maximum required Taylor order is no greater than 45 under a tolerance of 10−16, which proves that it is easier to approach convergence than the former methods [25].



Another series solution is established to perform a comparison. Using the Newton–Leibniz quadrature method as a usual idea to resolve it, we obtain:


  Ψ  T  =    ∫   T 0   T   exp   −    E a    R T        d T   = =   n → ∞     ∑  i = 0  n   m × exp   −    E a    R    T 0  + i ⋅ m          



(13)




where


  m =   T −  T 0   n   



(14)







However, we find that the Newton–Leibniz quadrature method was difficult to converge, as shown in Table 2. Moreover, it is not realistic to adopt this method in kinetic analysis because it always requires a massive amount of time to reach high precision. As shown in Table 1, the results converge within 8 accurate digits after the decimal point when the Taylor order n is only larger than 15.



Table 3 provides specific expressions of the commonly used approximate solutions for the temperature integral. The values of temperature integral calculated by MATLAB were used to check the accuracy of other approximation methods. Table 4 reports the temperature integral values calculated by different methods. Except for the present solution, the other values are calculated based on a published article [29], in which the original values are equivalent to Ψ/[T·exp(−Ea/(RT))]. In Table 4, the temperature integral values of the present method and Órfão III’s approximation are fully consistent with MATLAB’s values. Therefore, the new series solution can provide sufficient, accurate values. In contrast, other approximations provide unreliable values when the value of x tends toward minority.




4. Results and Discussion


The dependence of the temperature integral on Ea and T has always been a mysterious relationship. Here, we show the true value of the integral in Figure 2a. This image is drawn based on 200 × 200 calculation nodes, and each node is computed with the Taylor order of 20 to ensure the numerical value is accurate enough. It can be seen that the integral value declines by an order of magnitude with the growth of the activation energy, proving that the integral value is extremely sensitive to the activation energy. Therefore, the approximation method often provides an inaccurate value and fails to distinguish the kinetic mechanisms [26]. The integral value tends to be equivalent to the value of ΔT when Ea infinitely approaches 0 kJ/mol, while the integral value declines by an order of magnitude and tends to be 0 when Ea is greater than about 75 kJ/mol.



There is also an interesting phenomenon in that the profile of the 3D surface is relatively similar to others if the independent variables (temperature, activation energy) are arbitrarily truncated, such as in images (b), (c), and (d). Image (a) is drawn based on a 200 × 200 node network, and each node is computed with the Taylor order of 20 to ensure the numerical value is accurate enough. Independent variables Ea and T vary from 2 to 200,002 J/mol and 300 to 1200 K, respectively. In the aforementioned node network (200 × 200), mid nodes (Ea varies from 50,002 to 149,002 J/mol, and T varies from 529.5 to 975 K) are chosen to form a new node network (100 × 100); then, image (b) can be drawn. The node network of image (c) is 50 × 50, and its values of Ea and T change from 20,002 to 69,002 J/mol and from 300 to 520.5 K, respectively. Regarding image (d), its node network is 49 × 63, and corresponding ranges of Ea and T are 52,002 to 100,002 J/mol and 651 to 930 K, respectively. As we can see, the truncated images b, c, and d are similar to the original image a. This phenomenon indicates the self-similarity property of the figure according to fractal theory [38].




5. Conclusions


Because of the demand for accurate solutions related to non-isothermal kinetics, previous researchers have provided various methods to solve the temperature integral, but the error usually becomes significant when the value of x (x = Ea/RT) is too small or too large. A numerical method is proposed to obtain an accurate value of the temperature integral. Multi-step and 20th Taylor expansion are applied to ensure the high accuracy of results calculated by the new method.



The results show that, when the upper limit temperature is greater than about 350 K, the error rises with the decreasing upper limit or the increasing activation energy; when the temperature is between 298 and 350 K, the error rises with the increasing upper limit or the increasing activation energy.



The temperature integral function is very sensitive to the activation energy according to the error analysis and could be well displayed by the 3-D image. The reason why the solution is always divergent when the value of x (x = Ea/RT) is too small or too large, as widely encountered in previous study, can be well interpreted by the contour image of the minimum Taylor order required when using the present method within the iterative tolerances. More interesting, the 3-D image of the temperature integral demonstrates self-similarity according to fractal theory.




6. Resource Codes


Here we share our resource codes for scientific purposes. Anyone who directly uses/translates these codes to produce new papers must cite this paper. All codes below are written in Visual Basic language.



These codes are easily transplanted into a project because they are written in functions. To use these codes, one should first define the environmental temperature (T0, default as 298 K), the presupposed Taylor expansion order (s), the Arrhenius energy (Ea), and the upper limit temperature (T1) of the integral. If the precision worsens, it only requires a smaller iteration temperature (default as 50 K in the code) and a larger Taylor expansion order. Usually, an iteration temperature of 50 K and a Taylor expansion order of 10 are good enough to reach a rational precision.



 



Option Explicit



Public T0 As Double’ T0 is the initial reaction temperature, default as 298K



Public i As Integer, k As Integer



Public ddg() As Double



Public store() As Double ‘Dynamic array for storage



Public store2() As Double



Public sum As Double



 



Function Psai(s As Integer, Ea, t1) ‘ Main function: calculation at an arbitrary temperature T1



Dim hun As Integer, jj As Integer



hun = Int((t1 − T0)/50)



ReDim Preserve store2(hun)



Dim sum0 As Double



sum0 = 0



If hun = 0 Then



Psai = gT(s, Ea, t1, T0)



Else



For jj = 1 To hun



store2(jj − 1) = gT(s, Ea, T0 + jj * 50, T0 + (jj − 1) * 50)



sum0 = sum0 + store2(jj − 1)



Next jj



Psai = sum0 + gT(s, Ea, t1, T0 + hun * 50)



End If



End Function



 



Function Factorial(n) ‘The n-th Factorial



If n = 0 Then



Factorial = 1



Else



Factorial = 1



For i = 1 To n



Factorial = Factorial * i



Next



End If



End Function



 



Function dg(n As Integer, Ea, T) As Double ‘ n-th derivative of g(T) for successive calculation.



Erase ddg()



ReDim ddg(n) ‘The n-th item in the polynomial expression of n-th-order derivative



ReDim Preserve store(n)



sum = 0



ddg(0) = Exp(−Ea/(8.314 * T))



store(0) = ddg(0)



If n > 0 Then



ddg(1) = Ea * Exp(−Ea/(8.314 * T)) * T ^ −2/8.314



store(1) = ddg(1)



End If



If n = 0 Then



dg = ddg(0)



ElseIf n = 1 Then dg = ddg(1)



Else



Dim m As Integer



m = n − 1



For k = 0 To m Step 1



ddg(k + 1) = (−1) ^ (m − k) * (m + 1 − k) * (Factorial(m)/Factorial(k)) * store(k) * T ^ (k − m − 2)



sum = sum + ddg(k + 1)



Next k



store(n) = sum * Ea/8.314



dg = store(n)



End If



End Function



 



 



Function dg_X(n As Integer, Ea, T) ‘ n-th-order derivative of g(T), unconditional



ReDim Preserve store(n)



For i = 0 To n



store(i) = dg(i, Ea, T)



Next i



dg_X = store(n)



End Function



 



Function gT(n As Integer, Ea, T, T00) ‘ Calculation for temperature difference smaller than 50 K



Dim j As Integer



sum = 0



For j = 1 To n



sum = sum + dg_X(j − 1, Ea, T00) * (T − T00) ^ j/Factorial(j)



Next j



gT = sum



End Function




7. Standard Integral Values


To be compared with the other values of temperature integrals, the standard integral values calculated by the present method are reported in Table 5 below.
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Figure 1. The minimum Taylor order required when using present method within the iterative tolerances of (a) 10−4, (b) 10−8, (c) 10−12, and (d) 10−16. 
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Figure 2. Three-dimensional image of the integral function of Boltzmann factor. 
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Table 1. The integral values of Boltzmann factor with varying Taylor order n.






Table 1. The integral values of Boltzmann factor with varying Taylor order n.





	
Taylor Order n

	
Ea = 2 J/mol

	
Ea = 200 J/mol

	
Ea = 20,000 J/mol

	
Ea = 200,000 J/mol




	
T = 600 K

	
T = 1200 K

	
T = 600 K

	
T = 1200 K

	
T = 600 K

	
T = 1200 K

	
T = 600 K

	
T = 1200 K






	
1

	
301.82115578

	
901.64929838

	
284.65221331

	
867.71805582

	
1.47187736

	
41.45574855

	
1.11339239 × 10−17

	
6.64568260 × 10−8




	
2

	
301.83262904

	
901.66613166

	
285.72844879

	
869.31399874

	
1.84315996

	
44.66857854

	
2.03501118 × 10−17

	
9.66472837 × 10−8




	
3

	
301.83160096

	
901.66487181

	
285.63545060

	
869.19891467

	
1.88712698

	
44.76038220

	
3.15684847 × 10−17

	
1.05477139 × 10−7




	
4

	
301.83170869

	
901.66499125

	
285.64482423

	
869.20938372

	
1.88871043

	
44.75981330

	
4.17892561 × 10−17

	
1.07227989 × 10−7




	
5

	
301.83169624

	
901.66497815

	
285.64378407

	
869.20828368

	
1.88857776

	
44.75969041

	
4.88644170 × 10−17

	
1.07474026 × 10−7




	
δ

	
4.12482 × 10−8

	
1.5 × 10−8

	
3.6 × 10−6

	
1.3 × 10−6

	
7 × 10−5

	
2.7 × 10−6

	
0.144792

	
0.002289




	
6

	
301.83169778

	
901.66497973

	
285.64390756

	
869.20841067

	
1.88857039

	
44.75968614

	
5.27169484 × 10−17

	
1.07498862 × 10−7




	
7

	
301.83169758

	
901.66497953

	
285.64389214

	
869.20839504

	
1.88857151

	
44.75968706

	
5.44047391 × 10−17

	
1.07500633 × 10−7




	
8

	
301.83169761

	
901.66497955

	
285.64389414

	
869.20839705

	
1.88857153

	
44.75968709

	
5.50078992 × 10−17

	
1.07500716 × 10−7




	
9

	
301.83169761

	
901.66497955

	
285.64389388

	
869.20839679

	
1.88857152

	
44.75968708

	
5.51849690 × 10−17

	
1.07500718 × 10−7




	
10

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52277114 × 10−17

	
1.07500718 × 10−7




	
δ

	
0

	
0

	
1.05 × 10−10

	
3.45 × 10−11

	
0

	
0

	
0.000774

	
0




	
11

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52361451 × 10−17

	
1.07500718 × 10−7




	
12

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52374846 × 10−17

	
1.07500718 × 10−7




	
13

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52376503 × 10−17

	
1.07500718 × 10−7




	
14

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52376652 × 10−17

	
1.07500718 × 10−7




	
15

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52376660 × 10−17

	
1.07500718 × 10−7




	
δ

	
0

	
0

	
0

	
0

	
0

	
0

	
1.45 × 10−8

	
0




	
16

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52376660 × 10−17

	
1.07500718 × 10−7




	
17

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52376660 × 10−17

	
1.07500718 × 10−7




	
18

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52376660 × 10−17

	
1.07500718 × 10−7




	
19

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52376660 × 10−17

	
1.07500718 × 10−7




	
20

	
301.83169761

	
901.66497955

	
285.64389391

	
869.20839682

	
1.88857152

	
44.75968708

	
5.52376660 × 10−17

	
1.07500718 × 10−7




	
δ

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0











 





Table 2. Results of the Newton–Leibniz quadrature method.
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Quadrature Node m

	
Ea = 2 J/mol

	
Ea = 200 J/mol

	
Ea = 20,000 J/mol

	
Ea = 200,000 J/mol




	
T = 600 K

	
T = 1200 K

	
T = 600 K

	
T = 1200 K

	
T = 600 K

	
T = 1200 K

	
T = 600 K

	
T = 1200 K






	
1 × 102

	
304.84987233

	
910.68041913

	
288.48730649

	
877.78754503

	
1.91652897

	
45.37009283

	
6.12793756 × 10−17

	
1.16596876 × 10−7




	
1 × 103

	
302.13351522

	
902.56652506

	
285.92824787

	
870.06645411

	
1.89135955

	
44.82059549

	
5.58241547 × 10−17

	
1.08390284 × 10−7




	
δ

	
−0.008990585

	
−0.00899

	
−0.00895

	
−0.00887

	
−0.01331

	
−0.01226

	
−0.09772

	
−0.07571




	
1 × 104

	
301.86187937

	
901.75513412

	
285.67232943

	
869.29420397

	
1.88885024

	
44.76577660

	
5.52961379 × 10−17

	
1.07589474 × 10−7




	
δ

	
−0.000899059

	
−0.0009

	
−0.0009

	
−0.00089

	
−0.00133

	
−0.00122

	
−0.00946

	
−0.00739




	
1 × 105

	
301.83471578

	
901.67399501

	
285.64673746

	
869.21697755

	
1.88859939

	
44.76029602

	
5.52435114 × 10−17

	
1.07509592 × 10−7




	
δ

	
−8.99949 × 10−5

	
−9 × 10−5

	
−9 × 10−5

	
−8.9 × 10−5

	
−0.00013

	
−0.00012

	
−0.00095

	
−0.00074




	
1 × 106

	
301.83199942

	
901.66588110

	
285.64417826

	
869.20925489

	
1.88857430

	
44.75974797

	
5.52382505 × 10−17

	
1.07501606 × 10−7




	
δ

	
−8.99949 × 10−6

	
−9 × 10−6

	
−9 × 10−6

	
−8.9 × 10−6

	
−1.3 × 10−5

	
−1.2 × 10−5

	
−9.5 × 10−5

	
−7.4 × 10−5











 





Table 3. Expressions of the approximation for temperature integral.
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	Model
	Approximation
	P(x)





	D
	Doyle [32]
	   exp ( − 5.331 − 1.052 x )   



	CR
	Coats and Redfern [12]
	      exp (  − x )    x 2      1 −  2 x      



	G1
	Gorbachev (1st degree) [33]
	     exp ( − x )  x   1  x + 2     



	SY4
	Senum and Yang (4th degree) [21]
	     exp ( − x )  x     x 3  + 18  x 2  + 86 x + 96    x 4  + 20  x 3  + 120  x 2  + 240 x + 120     



	PC8
	Perez-Maqueda and Criado (8th degree) [34]
	     exp ( − x )  x     x 7  + 70  x 6  + 1886  x 5  + 24920  x 4  + 170136  x 3  + 577584  x 2  + 844560 x + 357120    x 8  + 72  x 7  + 2024  x 6  + 28560  x 5  + 216720  x 4  + 880320  x 3  + 1794240  x 2  + 1572480 x + 403200     



	US4
	Urbanovici and Segal IV [35]
	     exp ( − x )    x 2    ( 2 +  2 x  −   1 +  8 x  +  4   x 2      )   



	CL
	Chen and Liu [36]
	     exp ( − x )    x 2      3  x 2  + 16 x + 4   3  x 2  + 12 x + 30     



	O3
	Órfão III [17]
	     exp ( − x )  x    0.9999936  x 3  + 7.5739391  x 2  + 12.4648922 x + 3.6907232    x 4  + 9.5733223  x 3  + 25.6329561  x 2  + 21.099653 x + 3.95849     



	J3
	Ji III [37]
	     exp ( − x )    x 2       x 3  + 9.27052  x 2  + 16.79440 x + 1.20025    x 3  + 11.27052  x 2  + 33.33602 x + 24.21457     










 





Table 4. The temperature integral value calculated by the present method and the other approximation methods.
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	X = Ea/(RT) (T = 600 K)
	MTALAB
	Present

Solution (n = 10)
	Numerical Quadrature
	D
	CR
	G1
	SY4
	PC8
	US4
	CL
	O3
	J3





	1
	7.8106 × 101
	7.8106 × 101
	8.9108 × 101
	6.6486 × 10−1
	−2.2086 × 102
	6.3661 × 101
	7.7575 × 101
	7.8076 × 101
	7.6156 × 101
	9.8401 × 101
	7.8106 × 101
	7.8362 × 101



	2
	2.1597 × 101
	2.1597 × 101
	2.2517 × 101
	6.2429 × 10−1
	−6.6416 × 101
	1.9419 × 101
	2.1575 × 101
	2.1597 × 101
	2.1429 × 101
	2.8311 × 101
	2.1597 × 101
	2.1601 × 101



	4
	1.9093 × 100
	1.9093 × 100
	1.9187 × 100
	1.7034 × 10−1
	1.3648 × 100
	1.8221 × 100
	1.9092 × 100
	1.9093 × 100
	1.9059 × 100
	2.5173 × 100
	1.9093 × 100
	1.9094 × 100



	6
	1.9083 × 10−1
	1.9083 × 10−1
	1.9096 × 10−1
	3.1556 × 10−2
	1.6513 × 10−1
	1.8579 × 10−1
	1.9083 × 10−1
	1.9083 × 10−1
	1.9071 × 10−1
	2.4537 × 10−1
	1.9083 × 10−1
	1.9083 × 10−1



	8
	2.0481 × 10−2
	2.0481 × 10−2
	2.0490 × 10−2
	5.1394 × 10−3
	1.8868 × 10−2
	2.0126 × 10−2
	2.0481 × 10−2
	2.0481 × 10−2
	2.0475 × 10−2
	2.5632 × 10−2
	2.0481 × 10−2
	2.0481 × 10−2



	10
	2.2981 × 10−3
	2.2981 × 10−3
	2.2982 × 10−3
	7.8368 × 10−4
	2.1792 × 10−3
	2.2700 × 10−3
	2.2981 × 10−3
	2.2981 × 10−3
	2.2978 × 10−3
	2.8087 × 10−3
	2.2981 × 10−3
	2.2981 × 10−3



	12
	2.6575 × 10−4
	2.6575 × 10−4
	2.6576 × 10−4
	1.1470 × 10−4
	2.5601 × 10−4
	2.6332 × 10−4
	2.6575 × 10−4
	2.6575 × 10−4
	2.6572 × 10−4
	3.1836 × 10−4
	2.6575 × 10−4
	2.6575 × 10−4



	14
	3.1404 × 10−5
	3.1404 × 10−5
	3.1402 × 10−5
	1.6322 × 10−5
	3.0546 × 10−5
	3.1182 × 10−5
	3.1404 × 10−5
	3.1404 × 10−5
	3.1402 × 10−5
	3.6997 × 10−5
	3.1404 × 10−5
	3.1404 × 10−5



	16
	3.7724 × 10−6
	3.7724 × 10−6
	3.7724 × 10−6
	2.2751 × 10−6
	3.6926 × 10−6
	3.7512 × 10−6
	3.7724 × 10−6
	3.7724 × 10−6
	3.7723 × 10−6
	4.3821 × 10−6
	3.7724 × 10−6
	3.7724 × 10−6



	18
	4.5901 × 10−7
	4.5901 × 10−7
	4.5900 × 10−7
	3.1218 × 10−7
	4.5126 × 10−7
	4.5690 × 10−7
	4.5901 × 10−7
	4.5901 × 10−7
	4.5900 × 10−7
	5.2684 × 10−7
	4.5901 × 10−7
	4.5901 × 10−7



	20
	5.6429 × 10−8
	5.6429 × 10−8
	5.6430 × 10−8
	4.2306 × 10−8
	5.5651 × 10−8
	5.6213 × 10−8
	5.6429 × 10−8
	5.6429 × 10−8
	5.6428 × 10−8
	6.4106 × 10−8
	5.6429 × 10−8
	5.6429 × 10−8










 





Table 5. Standard values of temperature integral calculated by present method.
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	T/K
	Ea = 2 J/mol
	Ea = 20,002 J/mol
	Ea = 40,002 J/mol
	Ea = 60,002 J/mol
	Ea = 80,002 J/mol
	Ea = 100,002 J/mol
	Ea = 120,002 J/mol
	Ea = 140,002 J/mol
	Ea = 160,002 J/mol
	Ea = 180,002 J/mol
	Ea = 200,002 J/mol





	300
	1.9984 × 100
	6.4068 × 10−4
	2.0545 × 10−7
	6.5897 × 10−11
	2.1142 × 10−14
	6.7844 × 10−18
	2.1777 × 10−21
	6.9916 × 10−25
	2.2453 × 10−28
	7.2121 × 10−32
	2.3172 × 10−35



	318
	1.9984 × 101
	8.1688 × 10−3
	3.4100 × 10−6
	1.4524 × 10−9
	6.3035 × 10−13
	2.7834 × 10−16
	1.2483 × 10−19
	5.6766 × 10−23
	2.6130 × 10−26
	1.2157 × 10−29
	5.7090 × 10−33



	336
	3.7971 × 101
	1.9709 × 10−2
	1.0915 × 10−5
	6.3972 × 10−9
	3.9296 × 10−12
	2.5059 × 10−15
	1.6455 × 10−18
	1.1055 × 10−21
	7.5617 × 10−25
	5.2465 × 10−28
	3.6823 × 10−31



	354
	5.5959 × 101
	3.6632 × 10−2
	2.7010 × 10−5
	2.1870 × 10−8
	1.8958 × 10−11
	1.7247 × 10−14
	1.6239 × 10−17
	1.5678 × 10−20
	1.5425 × 10−23
	1.5400 × 10−26
	1.5556 × 10−29



	372
	7.3947 × 101
	6.0526 × 10−2
	5.9036 × 10−5
	6.5170 × 10−8
	7.8001 × 10−11
	9.8417 × 10−14
	1.2870 × 10−16
	1.7265 × 10−19
	2.3604 × 10−22
	3.2746 × 10−25
	4.5961 × 10−28



	390
	9.1935 × 101
	9.3187 × 10−2
	1.1877 × 10−4
	1.7523 × 10−7
	2.8220 × 10−10
	4.7989 × 10−13
	8.4604 × 10−16
	1.5301 × 10−18
	2.8199 × 10−21
	5.2736 × 10−24
	9.9776 × 10−27



	408
	1.0992 × 1002
	1.3659 × 10−1
	2.2414 × 10−4
	4.3258 × 10−7
	9.1447 × 10−10
	2.0423 × 10−12
	4.7284 × 10−15
	1.1229 × 10−17
	2.7174 × 10−20
	6.6724 × 10−23
	1.6574 × 10−25



	426
	1.2791 × 1002
	1.9288 × 10−1
	4.0116 × 10−4
	9.9213 × 10−7
	2.6921 × 10−9
	7.7171 × 10−12
	2.2931 × 10−14
	6.9882 × 10−17
	2.1700 × 10−19
	6.8371 × 10−22
	2.1792 × 10−24



	444
	1.4590 × 1002
	2.6432 × 10−1
	6.8611 × 10−4
	2.1336 × 10−6
	7.2838 × 10−9
	2.6265 × 10−11
	9.8160 × 10−14
	3.7621 × 10−16
	1.4691 × 10−18
	5.8205 × 10−21
	2.3327 × 10−23



	462
	1.6389 × 1002
	3.5330 × 10−1
	1.1278 × 10−3
	4.3345 × 10−6
	1.8290 × 10−8
	8.1498 × 10−11
	3.7631 × 10−13
	1.7817 × 10−15
	8.5949 × 10−18
	4.2063 × 10−20
	2.0823 × 10−22



	480
	1.8189 × 1002
	4.6228 × 10−1
	1.7901 × 10−3
	8.3718 × 10−6
	4.2978 × 10−8
	2.3293 × 10−10
	1.3079 × 10−12
	7.5303 × 10−15
	4.4167 × 10−17
	2.6281 × 10−19
	1.5817 × 10−21



	498
	1.9988 × 1002
	5.9379 × 10−1
	2.7540 × 10−3
	1.5456 × 10−5
	9.5179 × 10−8
	6.1862 × 10−10
	4.1652 × 10−12
	2.8751 × 10−14
	2.0216 × 10−16
	1.4420 × 10−18
	1.0404 × 10−20



	516
	2.1787 × 1002
	7.5038 × 10−1
	4.1200 × 10−3
	2.7401 × 10−5
	1.9987 × 10−7
	1.5384 × 10−9
	1.2263 × 10−11
	1.0021 × 10−13
	8.3418 × 10−16
	7.0436 × 10−18
	6.0155 × 10−20



	534
	2.3586 × 1002
	9.3461 × 10−1
	6.0104 × 10−3
	4.6837 × 10−5
	4.0012 × 10−7
	3.6055 × 10−9
	3.3646 × 10−11
	3.2183 × 10−13
	3.1354 × 10−15
	3.0985 × 10−17
	3.0969 × 10−19



	552
	2.5385 × 1002
	1.1490 × 100
	8.5707 × 10−3
	7.7461 × 10−5
	7.6707 × 10−7
	8.0102 × 10−9
	8.6610 × 10−11
	9.5978 × 10−13
	1.0833 × 10−14
	1.2401 × 10−16
	1.4358 × 10−18



	570
	2.7184 × 1002
	1.3962 × 100
	1.1972 × 10−2
	1.2433 × 10−4
	1.4140 × 10−6
	1.6953 × 10−8
	2.1043 × 10−10
	2.6767 × 10−12
	3.4675 × 10−14
	4.5560 × 10−16
	6.0542 × 10−18



	588
	2.8984 × 1002
	1.6786 × 100
	1.6410 × 10−2
	1.9419 × 10−4
	2.5151 × 10−6
	3.4332 × 10−8
	4.8509 × 10−10
	7.0233 × 10−12
	1.0355 × 10−13
	1.5485 × 10−15
	2.3418 × 10−17



	606
	3.0783 × 1002
	1.9987 × 100
	2.2112 × 10−2
	2.9587 × 10−4
	4.3305 × 10−6
	6.6785 × 10−8
	1.0659 × 10−9
	1.7432 × 10−11
	2.9029 × 10−13
	4.9027 × 10−15
	8.3734 × 10−17



	624
	3.2582 × 1002
	2.3588 × 100
	2.9328 × 10−2
	4.4062 × 10−4
	7.2372 × 10−6
	1.2522 × 10−7
	2.2419 × 10−9
	4.1121 × 10−11
	7.6803 × 10−13
	1.4547 × 10−14
	2.7864 × 10−16



	642
	3.4382 × 1002
	2.7613 × 100
	3.8340 × 10−2
	6.4261 × 10−4
	1.1769 × 10−5
	2.2698 × 10−7
	4.5293 × 10−9
	9.2588 × 10−11
	1.9271 × 10−12
	4.0673 × 10−14
	8.6810 × 10−16



	660
	3.6181 × 1002
	3.2084 × 100
	4.9459 × 10−2
	9.1936 × 10−4
	1.8663 × 10−5
	3.9888 × 10−7
	8.8190 × 10−9
	1.9973 × 10−10
	4.6052 × 10−12
	1.0768 × 10−13
	2.5458 × 10−15



	678
	3.7980 × 1002
	3.7022 × 100
	6.3022 × 10−2
	1.2921 × 10−3
	2.8918 × 10−5
	6.8119 × 10−7
	1.6597 × 10−8
	4.1417 × 10−10
	1.0522 × 10−11
	2.7106 × 10−13
	7.0607 × 10−15



	696
	3.9780 × 1002
	4.2448 × 100
	7.9394 × 10−2
	1.7866 × 10−3
	4.3858 × 10−5
	1.1330 × 10−6
	3.0267 × 10−8
	8.2811 × 10−10
	2.3065 × 10−11
	6.5139 × 10−13
	1.8601 × 10−14



	714
	4.1579 × 1002
	4.8382 × 100
	9.8971 × 10−2
	2.4329 × 10−3
	6.5210 × 10−5
	1.8388 × 10−6
	5.3615 × 10−8
	1.6009 × 10−9
	4.8659 × 10−11
	1.4995 × 10−12
	4.6725 × 10−14



	732
	4.3378 × 1002
	5.4841 × 100
	1.2217 × 10−1
	3.2666 × 10−3
	9.5191 × 10−5
	2.9175 × 10−6
	9.2446 × 10−8
	2.9995 × 10−9
	9.9066 × 10−11
	3.3172 × 10−12
	1.1231 × 10−13



	750
	4.5178 × 1002
	6.1844 × 100
	1.4944 × 10−1
	4.3290 × 10−3
	1.3660 × 10−4
	4.5323 × 10−6
	1.5545 × 10−7
	5.4593 × 10−9
	1.9514 × 10−10
	7.0716 × 10−12
	2.5910 × 10−13



	768
	4.6977 × 1002
	6.9407 × 100
	1.8124 × 10−1
	5.6671 × 10−3
	1.9292 × 10−4
	6.9041 × 10−6
	2.5538 × 10−7
	9.6713 × 10−9
	3.7276 × 10−10
	1.4565 × 10−11
	5.7539 × 10−13



	786
	4.8777 × 1002
	7.7547 × 100
	2.1808 × 10−1
	7.3347 × 10−3
	2.6845 × 10−4
	1.0326 × 10−5
	4.1051 × 10−7
	1.6707 × 10−8
	6.9194 × 10−10
	2.9052 × 10−11
	1.2332 × 10−12



	804
	5.0576 × 1002
	8.6277 × 100
	2.6045 × 10−1
	9.3922 × 10−3
	3.6840 × 10−4
	1.5183 × 10−5
	6.4661 × 10−7
	2.8188 × 10−8
	1.2505 × 10−9
	5.6239 × 10−11
	2.5568 × 10−12



	822
	5.2376 × 1002
	9.5613 × 100
	3.0890 × 10−1
	1.1908 × 10−2
	4.9903 × 10−4
	2.1970 × 10−5
	9.9934 × 10−7
	4.6526 × 10−8
	2.2043 × 10−9
	1.0586 × 10−10
	5.1393 × 10−12



	840
	5.4175 × 1002
	1.0557 × 101
	3.6398 × 10−1
	1.4956 × 10−2
	6.6780 × 10−4
	3.1317 × 10−5
	1.5172 × 10−6
	7.5228 × 10−8
	3.7955 × 10−9
	1.9410 × 10−10
	1.0035 × 10−11



	858
	5.5975 × 1002
	1.1615 × 101
	4.2624 × 10−1
	1.8620 × 10−2
	8.8349 × 10−4
	4.4018 × 10−5
	2.2653 × 10−6
	1.1931 × 10−7
	6.3933 × 10−9
	3.4725 × 10−10
	1.9066 × 10−11



	876
	5.7774 × 1002
	1.2737 × 101
	4.9628 × 10−1
	2.2991 × 10−2
	1.1564 × 10−3
	6.1058 × 10−5
	3.3297 × 10−6
	1.8581 × 10−7
	1.0549 × 10−8
	6.0707 × 10−10
	3.5313 × 10−11



	894
	5.9574 × 1002
	1.3925 × 101
	5.7468 × 10−1
	2.8168 × 10−2
	1.4983 × 10−3
	8.3647 × 10−5
	4.8224 × 10−6
	2.8447 × 10−7
	1.7073 × 10−8
	1.0385 × 10−9
	6.3849 × 10−11



	912
	6.1373 × 1002
	1.5179 × 101
	6.6205 × 10−1
	3.4258 × 10−2
	1.9229 × 10−3
	1.1326 × 10−4
	6.8879 × 10−6
	4.2858 × 10−7
	2.7130 × 10−8
	1.7405 × 10−9
	1.1286 × 10−10



	930
	6.3173 × 1002
	1.6500 × 101
	7.5901 × 10−1
	4.1377 × 10−2
	2.4458 × 10−3
	1.5167 × 10−4
	9.7100 × 10−6
	6.3598 × 10−7
	4.2375 × 10−8
	2.8613 × 10−9
	1.9529 × 10−10



	948
	6.4972 × 1002
	1.7888 × 101
	8.6618 × 10−1
	4.9650 × 10−2
	3.0845 × 10−3
	2.0100 × 10−4
	1.3520 × 10−5
	9.3033 × 10−7
	6.5120 × 10−8
	4.6192 × 10−9
	3.3118 × 10−10



	966
	6.6772 × 1002
	1.9345 × 101
	9.8419 × 10−1
	5.9209 × 10−2
	3.8590 × 10−3
	2.6375 × 10−4
	1.8606 × 10−5
	1.3426 × 10−6
	9.8548 × 10−8
	7.3300 × 10−9
	5.5104 × 10−10



	984
	6.8571 × 1002
	2.0872 × 101
	1.1137 × 100
	7.0196 × 10−2
	4.7913 × 10−3
	3.4288 × 10−4
	2.5324 × 10−5
	1.9130 × 10−6
	1.4698 × 10−7
	1.1444 × 10−8
	9.0052 × 10−10



	1002
	7.0371 × 1002
	2.2468 × 101
	1.2553 × 100
	8.2759 × 10−2
	5.9062 × 10−3
	4.4183 × 10−4
	3.4108 × 10−5
	2.6929 × 10−6
	2.1623 × 10−7
	1.7594 × 10−8
	1.4468 × 10−9



	1020
	7.2170 × 1002
	2.4134 × 101
	1.4096 × 100
	9.7058 × 10−2
	7.2309 × 10−3
	5.6459 × 10−4
	4.5484 × 10−5
	3.7473 × 10−6
	3.1398 × 10−7
	2.6657 × 10−8
	2.2872 × 10−9



	1038
	7.3970 × 1002
	2.5872 × 101
	1.5774 × 100
	1.1326 × 10−1
	8.7955 × 10−3
	7.1572 × 10−4
	6.0085 × 10−5
	5.1581 × 10−6
	4.5032 × 10−7
	3.9834 × 10−8
	3.5609 × 10−9



	1056
	7.5770 × 1002
	2.7680 × 101
	1.7592 × 100
	1.3153 × 10−1
	1.0633 × 10−2
	9.0047 × 10−4
	7.8665 × 10−5
	7.0268 × 10−6
	6.3830 × 10−7
	5.8746 × 10−8
	5.4638 × 10−9



	1074
	7.7569 × 1002
	2.9561 × 101
	1.9556 × 100
	1.5206 × 10−1
	1.2779 × 10−2
	1.1248 × 10−3
	1.0212 × 10−4
	9.4789 × 10−6
	8.9471 × 10−7
	8.5562 × 10−8
	8.2686 × 10−9



	1092
	7.9369 × 1002
	3.1513 × 101
	2.1674 × 100
	1.7504 × 10−1
	1.5272 × 10−2
	1.3954 × 10−3
	1.3149 × 10−4
	1.2667 × 10−5
	1.2409 × 10−6
	1.2315 × 10−7
	1.2350 × 10−8



	1110
	8.1168 × 1002
	3.3537 × 101
	2.3952 × 100
	2.0067 × 10−1
	1.8156 × 10−2
	1.7199 × 10−3
	1.6801 × 10−4
	1.6778 × 10−5
	1.7036 × 10−6
	1.7524 × 10−7
	1.8216 × 10−8



	1128
	8.2968 × 1002
	3.5634 × 101
	2.6395 × 100
	2.2914 × 10−1
	2.1474 × 10−2
	2.1067 × 10−3
	2.1310 × 10−4
	2.2035 × 10−5
	2.3165 × 10−6
	2.4671 × 10−7
	2.6550 × 10−8



	1146
	8.4768 × 1002
	3.7803 × 101
	2.9010 × 100
	2.6067 × 10−1
	2.5276 × 10−2
	2.5652 × 10−3
	2.6840 × 10−4
	2.8704 × 10−5
	3.1210 × 10−6
	3.4376 × 10−7
	3.8259 × 10−8



	1164
	8.6567 × 1002
	4.0045 × 101
	3.1804 × 100
	2.9548 × 10−1
	2.9615 × 10−2
	3.1059 × 10−3
	3.3578 × 10−4
	3.7104 × 10−5
	4.1682 × 10−6
	4.7432 × 10−7
	5.4538 × 10−8



	1182
	8.8367 × 1002
	4.2360 × 101
	3.4782 × 100
	3.3380 × 10−1
	3.4544 × 10−2
	3.7402 × 10−3
	4.1741 × 10−4
	4.7609 × 10−5
	5.5203 × 10−6
	6.4836 × 10−7
	7.6941 × 10−8



	1200
	9.0166 × 1002
	4.4748 × 101
	3.7950 × 100
	3.7584 × 10−1
	4.0124 × 10−2
	4.4808 × 10−3
	5.1571 × 10−4
	6.0659 × 10−5
	7.2526 × 10−6
	8.7835 × 10−7
	1.0748 × 10−7
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