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Abstract: The Arrhenius temperature integral is typically used in non-isothermal kinetic analysis,
which is widely applied in gas–solid reactions in separation processes. In previous studies, researchers
provided various methods to solve the temperature integral, but the error usually became significant
when the value of x (x = Ea/RT) was too large or too small. In this paper, we present a new series
method and design a computer program to calculate the temperature integral. According to the
precise calculation of the temperature integral, we first reveal the relationship among the integral, the
temperature, and the activation energy, and we find an interesting phenomenon in which the 3-D
image of the temperature integral is of self-similarity according to fractal theory. The work is useful
for mechanism and theoretical studies of non-isothermal kinetics.

Keywords: temperature integral; non-isothermal; kinetics; activation energy

1. Introduction

Non-isothermal chemical kinetics are very important for gas–solid reactions in separa-
tion processes. As a result, they have been extensively introduced in disciplines, such as
chemical engineering [1,2], mineral technology [3], metallurgical engineering [4], materials
science [5], biomass energy [6,7], etc. The reaction rate of a solid-involved reaction is now
generally accepted to be

dα

dt
= k f (α) (1)

where α denotes the conversion ratio of the concerned substance at time t, f (α) is the
mechanism function, and k is the rate constant expressed by the Arrhenius equation:

k = A exp(−Ea/RT) (2)

where A, T, and Ea are the pre-exponential factor, temperature, and activation energy of the
reaction, respectively.

For a linear heating process, the heating rate β is usually a function of time,

β =
dT
dt

(3)

Combining all of the above equations, re-arranging them, and integrating Equation (1),
we obtain

g(α) =
∫ α

α0

dα

f (α)
=

A
β

∫ T

T0

exp
(
− Ea

RT

)
dT (4)

where T0 represents the initial reaction temperature and is set at 298 K in this study, and
the initial reaction extent α0 usually equals zero.
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The Arrhenius temperature integral is also known as the integral of Boltzmann factor
Ψ(T), which is derived from Equation (4),

Ψ(T) =
∫ T

T0

exp
(
− Ea

RT

)
dT (5)

where another variable x could be introduced as

x =
Ea

RT
(6)

Then, the temperature integral could be calculated as

Ψ(T) =
Ea

R

∫ Ea
RT0

x

e−x

x2 dx (7)

where the upper limit of Equation (7) is usually considered to be ∞ regarding T0 in the
denominator, which is equal to 0.

Then, the expression of the temperature integral as shown in Equation (7) is extensively
regarded as the most concise and the best one for calculation.

The solution of the temperature integral is usually the basic demand for a non-
isothermal kinetic study [8]. However, it cannot be analytically solved. With the solution of
the temperature integral, constant activation energy and the corresponding kinetic mecha-
nism could be determined in model-based (single-step) reactions, and variable activation
energies could be calculated in model-free iso-conversional (multi-step) reactions.

The model-based non-isothermal analysis was dominant for a long time because of
its ability to determine the kinetic triplet (pre-exponential factor, activation energy, and
reaction model) [9,10]. However, these methods suffer from several problems, among
which is their inability to uniquely determine the reaction model. This issue led to the
decline of these methods in favor over the latest two decades of iso-conversional methods
that evaluate kinetics without model assumptions [11]. Regardless of the kind of method,
the evaluation of the temperature integral is an inevitable issue. As a result, there is a
bottleneck in kinetic analysis, namely the calculation of the temperature integral.

The temperature integral was first encountered by scientists in the early thermogravi-
metric analyses [9–13]. Reich and Levi [14] made mistakes since they did not recognize
that it is a transcendental function. Although different efforts have been made to solve
this puzzle over the past six decades [15–28], troubles still occasionally arise since ‘there is
no true value for the integral’, as stated by Tang [27]. The temperature integral has been
playing an ‘enigmatic’ role in non-isothermal kinetic analysis. That is, it has appeared to be
a necessary evil to be addressed [25].

Flynn [25] and Órfão [17] provided excellent reviews of the temperature integral. Ac-
cording to Flynn’s categorization, these solutions of the temperature integral are classified
into three categories: series solutions, complex approximations [29,30], and simple approx-
imations. It is given accurately for x greater than 2 by the rational fraction expression.
Truncating the number of terms in the fraction expression, we can obtain one, two, three,
and four “rational approximations”. Other series solutions, such as Schlömilch expansion,
Bernouli number expansion, and Asymptotic expansion, are all available for the calculation
limitation of x in different ranges [13,25].

In model-based non-isothermal analysis, simple and complex approximations were
preferred and truncated from those series solutions because the truncated solutions could
give the temperature integral an analytical expression and make the whole non-isothermal
kinetics analytically solvable. For example, truncating the two-term asymptotic approx-
imation, we can obtain the famous linear plot of ln(g(α)/T2) against 1/T, resulting in a
slope of Ea/R. In the other words, it is exactly the famous Coats–Redfern method [12]. In
addition to the truncations, some modified approximations were also proposed to improve
the calculation precision [8,17–20,26–28].
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The numerical calculation of the temperature integral is usually carried out by series
methods, and model-free iso-conversional non-isothermal kinetics are usually required.
Although the precision of the numerical calculation is better today, there are still backward
calculations because of the limitations of the series method itself. Numerical calculation
based on the quadrature method was occasionally mentioned in previous papers [24,28].
However, the residual error usually increases with the rise in the upper limit temperature
of the integration, or it increases with the decrease in x [25]. As a disquieting situation,
some published papers provided the wrong quadrature results as standard integral values,
such as in Ref. [24].

There were hundreds of papers focused on the solution of the temperature integral
once it was suggested that a relative error of 10% for the temperature integral could be
acceptable for many calculations. However, more accurate values are still necessary for
scientific purposes, such as distinguishing between reaction mechanisms [25]. Furthermore,
a more accurate solution possible today with computer technology. All in all, accurate
values and numerical calculation methods of the temperature integral are always attractive
in non-isothermal kinetic analysis.

2. Theory

So far, most of the solutions for the temperature integral have been based on the
concise Equation (7). However, the upper limit of the integration may be far from ∞,
resulting in the corresponding inaccurate mathematical equations of series methods.

At the same time, all approximations of the temperature integral take a detour; errors
and troubles cannot be eradicated. The only way to obtain the exact numerical solution of
the integral is to develop an appropriate series solution, which easily reaches convergence.
Here, we provide a new series solution based on Taylor’s expansion:

Ψ(T0 + ∆T) n→∞
== Ψ(T0) + Ψ′(T0) · ∆T +

1
2!

Ψ′′ (T0) · ∆T2 + . . . +
1
n!

Ψ(n)(T0) · ∆Tn (8)

where ∆T is the difference between T and T0, T = T0 + ∆T, and n denotes the order of
Taylor expansion.

Then, the exact derivative value at temperature T0 could be calculated
using Equations (7)–(9).

(n = 1) Ψ′(T) = exp
(
− Ea

RT

)
= g(T) (9)

(n = 2) Ψ′′ (T) =
Ea

R
× T−2 · g(T) (10)

(n > 2) Ψ(n)(T) =
Ea

R
×

n−1

∑
i=0

Ci
n−1g(i)(T) ·

(
T−2

)n−i−1
(11)

The n-th-order derivative expression shown as Equation (9) is established according
to Leibniz formula [31]. With the help of the general form of the n-th-order derivative
equation, we designed a computer program to calculate the integral of the Boltzmann factor
with Equation (6). The numerical value can converge within a sufficiently small residual
error when the derivative order n is large enough, and ∆T is small enough. Computing
the results shows that the value usually converges with reasonably little error when n is
greater than 4 and ∆T is no greater than 50 K. Consequently, a multi-step integral method
is applied to compute the integral value when the difference between the upper and lower
limit temperature is larger than 50 K. The corresponding error analysis of the present
calculation method is also provided below.
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3. Error Analysis

Table 1 shows the converging evolution of the integral value with increasing order
of Taylor expansion. Most of the values converge within a relative error of 1‰ when the
Taylor order is larger than 4. A relative error within 10−8 can be achieved when the Taylor
order increases to 10. To reach high accuracy, a 3D image (Figure 1a) of the integral function
is established based on 200 × 200 calculation nodes, and each node is computed with a
Taylor order of 20.

Table 1. The integral values of Boltzmann factor with varying Taylor order n.

Taylor
Order n

Ea = 2 J/mol Ea = 200 J/mol Ea = 20,000 J/mol Ea = 200,000 J/mol

T = 600 K T = 1200 K T = 600 K T = 1200 K T = 600 K T = 1200 K T = 600 K T = 1200 K

1 301.82115578 901.64929838 284.65221331 867.71805582 1.47187736 41.45574855 1.11339239 × 10−17 6.64568260 × 10−8

2 301.83262904 901.66613166 285.72844879 869.31399874 1.84315996 44.66857854 2.03501118 × 10−17 9.66472837 × 10−8

3 301.83160096 901.66487181 285.63545060 869.19891467 1.88712698 44.76038220 3.15684847 × 10−17 1.05477139 × 10−7

4 301.83170869 901.66499125 285.64482423 869.20938372 1.88871043 44.75981330 4.17892561 × 10−17 1.07227989 × 10−7

5 301.83169624 901.66497815 285.64378407 869.20828368 1.88857776 44.75969041 4.88644170 × 10−17 1.07474026 × 10−7

δ 4.12482 × 10−8 1.5 × 10−8 3.6 × 10−6 1.3 × 10−6 7 × 10−5 2.7 × 10−6 0.144792 0.002289
6 301.83169778 901.66497973 285.64390756 869.20841067 1.88857039 44.75968614 5.27169484 × 10−17 1.07498862 × 10−7

7 301.83169758 901.66497953 285.64389214 869.20839504 1.88857151 44.75968706 5.44047391 × 10−17 1.07500633 × 10−7

8 301.83169761 901.66497955 285.64389414 869.20839705 1.88857153 44.75968709 5.50078992 × 10−17 1.07500716 × 10−7

9 301.83169761 901.66497955 285.64389388 869.20839679 1.88857152 44.75968708 5.51849690 × 10−17 1.07500718 × 10−7

10 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52277114 × 10−17 1.07500718 × 10−7

δ 0 0 1.05 × 10−10 3.45 × 10−11 0 0 0.000774 0
11 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52361451 × 10−17 1.07500718 × 10−7

12 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52374846 × 10−17 1.07500718 × 10−7

13 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52376503 × 10−17 1.07500718 × 10−7

14 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52376652 × 10−17 1.07500718 × 10−7

15 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52376660 × 10−17 1.07500718 × 10−7

δ 0 0 0 0 0 0 1.45 × 10−8 0
16 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52376660 × 10−17 1.07500718 × 10−7

17 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52376660 × 10−17 1.07500718 × 10−7

18 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52376660 × 10−17 1.07500718 × 10−7

19 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52376660 × 10−17 1.07500718 × 10−7

20 301.83169761 901.66497955 285.64389391 869.20839682 1.88857152 44.75968708 5.52376660 × 10−17 1.07500718 × 10−7

δ 0 0 0 0 0 0 0 0

As shown in Figure 1a–d, the integral values have differences in orders of magnitude
from each other with different temperatures and activation energies. To control computing
error, the relative residual was defined as follows:

δ =
|Ψ(n + 1, T, Ea)−Ψ(n, T, Ea)|

Ψ(n + 1, T, Ea)
(12)

where Ψ(n, T, Ea) denotes the integral of Boltzmann factor with upper limit temperature of
T, activation energy of Ea, and Taylor order of n. The relative residual δ denotes a tolerance
when it is presupposed as a maximum limitation that should not be exceeded.

Figure 1a–d demonstrates the minimum required Taylor order for calculating the
temperature integral under error tolerances of 10−4, 10−8, 10−12, and 10−16, respectively.
According to Figure 1a,b, the relative residual errors in Figure 1a are no greater than 10−4

under the domain of definition, and most of the values have a residual error of 10−8. The
smaller that the minimum required Taylor order is, the more easily that the iteration reaches
tolerance. In previous studies, it is simply concluded that the errors become significant
when the value of x (x = Ea/RT) is too small or too large [25]. However, according to these
figures, a different trend is discovered. Generally, the trend that is proved by these four
figures is that the minimum required Taylor order rises with a decreasing upper limit or an
increase in the activation energy when the upper limit temperature is greater than about
350 K, and the minimum required Taylor order rises with increasing the upper limit or
increase in the activation energy when the temperature is between 298 and 350 K.

Furthermore, the relationships among T, Ea, and Taylor order n are more complicated
than monotonic, and some singular points also exist in the plots. However, the maximum
required Taylor order is no greater than 45 under a tolerance of 10−16, which proves that it
is easier to approach convergence than the former methods [25].
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Figure 1. The minimum Taylor order required when using present method within the iterative tol-
erances of (a) 10−4, (b) 10−8, (c) 10−12, and (d) 10−16. 
Figure 1. The minimum Taylor order required when using present method within the iterative
tolerances of (a) 10−4, (b) 10−8, (c) 10−12, and (d) 10−16.
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Another series solution is established to perform a comparison. Using the Newton–
Leibniz quadrature method as a usual idea to resolve it, we obtain:

Ψ(T) =
T∫

T0

exp
(
− Ea

RT

)
dT n→∞

==
n

∑
i=0

m× exp
(
− Ea

R(T0 + i ·m)

)
(13)

where
m =

T − T0

n
(14)

However, we find that the Newton–Leibniz quadrature method was difficult to con-
verge, as shown in Table 2. Moreover, it is not realistic to adopt this method in kinetic
analysis because it always requires a massive amount of time to reach high precision. As
shown in Table 1, the results converge within 8 accurate digits after the decimal point when
the Taylor order n is only larger than 15.

Table 2. Results of the Newton–Leibniz quadrature method.

Quadrature
Node m

Ea = 2 J/mol Ea = 200 J/mol Ea = 20,000 J/mol Ea = 200,000 J/mol

T = 600 K T = 1200 K T = 600 K T = 1200 K T = 600 K T = 1200 K T = 600 K T = 1200 K

1 × 102 304.84987233 910.68041913 288.48730649 877.78754503 1.91652897 45.37009283 6.12793756 × 10−17 1.16596876 × 10−7

1 × 103 302.13351522 902.56652506 285.92824787 870.06645411 1.89135955 44.82059549 5.58241547 × 10−17 1.08390284 × 10−7

δ −0.008990585 −0.00899 −0.00895 −0.00887 −0.01331 −0.01226 −0.09772 −0.07571
1 × 104 301.86187937 901.75513412 285.67232943 869.29420397 1.88885024 44.76577660 5.52961379 × 10−17 1.07589474 × 10−7

δ −0.000899059 −0.0009 −0.0009 −0.00089 −0.00133 −0.00122 −0.00946 −0.00739
1 × 105 301.83471578 901.67399501 285.64673746 869.21697755 1.88859939 44.76029602 5.52435114 × 10−17 1.07509592 × 10−7

δ
−8.99949 ×

10−5 −9 × 10−5 −9 × 10−5 −8.9 × 10−5 −0.00013 −0.00012 −0.00095 −0.00074

1 × 106 301.83199942 901.66588110 285.64417826 869.20925489 1.88857430 44.75974797 5.52382505 × 10−17 1.07501606 × 10−7

δ
−8.99949 ×

10−6 −9 × 10−6 −9 × 10−6 −8.9 × 10−6 −1.3 × 10−5 −1.2 × 10−5 −9.5 × 10−5 −7.4 × 10−5

Table 3 provides specific expressions of the commonly used approximate solutions for
the temperature integral. The values of temperature integral calculated by MATLAB were
used to check the accuracy of other approximation methods. Table 4 reports the temperature
integral values calculated by different methods. Except for the present solution, the other
values are calculated based on a published article [29], in which the original values are
equivalent to Ψ/[T·exp(−Ea/(RT))]. In Table 4, the temperature integral values of the
present method and Órfão III’s approximation are fully consistent with MATLAB’s values.
Therefore, the new series solution can provide sufficient, accurate values. In contrast, other
approximations provide unreliable values when the value of x tends toward minority.

Table 3. Expressions of the approximation for temperature integral.

Model Approximation P(x)

D Doyle [32] exp(−5.331− 1.052x)
CR Coats and Redfern [12] exp(−x)

x2

(
1− 2

x

)
G1 Gorbachev (1st degree) [33] exp(−x)

x
1

x+2
SY4 Senum and Yang (4th degree) [21] exp(−x)

x
x3+18x2+86x+96

x4+20x3+120x2+240x+120
PC8 Perez-Maqueda and Criado (8th degree) [34] exp(−x)

x
x7+70x6+1886x5+24920x4+170136x3+577584x2+844560x+357120

x8+72x7+2024x6+28560x5+216720x4+880320x3+1794240x2+1572480x+403200
US4 Urbanovici and Segal IV [35] exp(−x)

x2 (2 + 2
x −

√
1 + 8

x + 4
x2 )

CL Chen and Liu [36] exp(−x)
x2

3x2+16x+4
3x2+12x+30

O3 Órfão III [17] exp(−x)
x

0.9999936x3+7.5739391x2+12.4648922x+3.6907232
x4+9.5733223x3+25.6329561x2+21.099653x+3.95849

J3 Ji III [37] exp(−x)
x2

x3+9.27052x2+16.79440x+1.20025
x3+11.27052x2+33.33602x+24.21457
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Table 4. The temperature integral value calculated by the present method and the other approximation methods.

X = Ea/(RT)
(T = 600 K) MTALAB

Present
Solution (n

= 10)

Numerical
Quadra-

ture
D CR G1 SY4 PC8 US4 CL O3 J3

1 7.8106 ×
101

7.8106 ×
101

8.9108 ×
101

6.6486 ×
10−1

−2.2086 ×
102

6.3661 ×
101

7.7575 ×
101

7.8076 ×
101

7.6156 ×
101

9.8401 ×
101

7.8106 ×
101

7.8362 ×
101

2 2.1597 ×
101

2.1597 ×
101

2.2517 ×
101

6.2429 ×
10−1

−6.6416 ×
101

1.9419 ×
101

2.1575 ×
101

2.1597 ×
101

2.1429 ×
101

2.8311 ×
101

2.1597 ×
101

2.1601 ×
101

4 1.9093 ×
100

1.9093 ×
100

1.9187 ×
100

1.7034 ×
10−1

1.3648 ×
100

1.8221 ×
100

1.9092 ×
100

1.9093 ×
100

1.9059 ×
100

2.5173 ×
100

1.9093 ×
100

1.9094 ×
100

6 1.9083 ×
10−1

1.9083 ×
10−1

1.9096 ×
10−1

3.1556 ×
10−2

1.6513 ×
10−1

1.8579 ×
10−1

1.9083 ×
10−1

1.9083 ×
10−1

1.9071 ×
10−1

2.4537 ×
10−1

1.9083 ×
10−1

1.9083 ×
10−1

8 2.0481 ×
10−2

2.0481 ×
10−2

2.0490 ×
10−2

5.1394 ×
10−3

1.8868 ×
10−2

2.0126 ×
10−2

2.0481 ×
10−2

2.0481 ×
10−2

2.0475 ×
10−2

2.5632 ×
10−2

2.0481 ×
10−2

2.0481 ×
10−2

10 2.2981 ×
10−3

2.2981 ×
10−3

2.2982 ×
10−3

7.8368 ×
10−4

2.1792 ×
10−3

2.2700 ×
10−3

2.2981 ×
10−3

2.2981 ×
10−3

2.2978 ×
10−3

2.8087 ×
10−3

2.2981 ×
10−3

2.2981 ×
10−3

12 2.6575 ×
10−4

2.6575 ×
10−4

2.6576 ×
10−4

1.1470 ×
10−4

2.5601 ×
10−4

2.6332 ×
10−4

2.6575 ×
10−4

2.6575 ×
10−4

2.6572 ×
10−4

3.1836 ×
10−4

2.6575 ×
10−4

2.6575 ×
10−4

14 3.1404 ×
10−5

3.1404 ×
10−5

3.1402 ×
10−5

1.6322 ×
10−5

3.0546 ×
10−5

3.1182 ×
10−5

3.1404 ×
10−5

3.1404 ×
10−5

3.1402 ×
10−5

3.6997 ×
10−5

3.1404 ×
10−5

3.1404 ×
10−5

16 3.7724 ×
10−6

3.7724 ×
10−6

3.7724 ×
10−6

2.2751 ×
10−6

3.6926 ×
10−6

3.7512 ×
10−6

3.7724 ×
10−6

3.7724 ×
10−6

3.7723 ×
10−6

4.3821 ×
10−6

3.7724 ×
10−6

3.7724 ×
10−6

18 4.5901 ×
10−7

4.5901 ×
10−7

4.5900 ×
10−7

3.1218 ×
10−7

4.5126 ×
10−7

4.5690 ×
10−7

4.5901 ×
10−7

4.5901 ×
10−7

4.5900 ×
10−7

5.2684 ×
10−7

4.5901 ×
10−7

4.5901 ×
10−7

20 5.6429 ×
10−8

5.6429 ×
10−8

5.6430 ×
10−8

4.2306 ×
10−8

5.5651 ×
10−8

5.6213 ×
10−8

5.6429 ×
10−8

5.6429 ×
10−8

5.6428 ×
10−8

6.4106 ×
10−8

5.6429 ×
10−8

5.6429 ×
10−8
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4. Results and Discussion

The dependence of the temperature integral on Ea and T has always been a mysterious
relationship. Here, we show the true value of the integral in Figure 2a. This image is
drawn based on 200 × 200 calculation nodes, and each node is computed with the Taylor
order of 20 to ensure the numerical value is accurate enough. It can be seen that the
integral value declines by an order of magnitude with the growth of the activation energy,
proving that the integral value is extremely sensitive to the activation energy. Therefore,
the approximation method often provides an inaccurate value and fails to distinguish
the kinetic mechanisms [26]. The integral value tends to be equivalent to the value of ∆T
when Ea infinitely approaches 0 kJ/mol, while the integral value declines by an order of
magnitude and tends to be 0 when Ea is greater than about 75 kJ/mol.

There is also an interesting phenomenon in that the profile of the 3D surface is relatively
similar to others if the independent variables (temperature, activation energy) are arbitrarily
truncated, such as in images (b), (c), and (d). Image (a) is drawn based on a 200 × 200 node
network, and each node is computed with the Taylor order of 20 to ensure the numerical
value is accurate enough. Independent variables Ea and T vary from 2 to 200,002 J/mol and
300 to 1200 K, respectively. In the aforementioned node network (200 × 200), mid nodes (Ea
varies from 50,002 to 149,002 J/mol, and T varies from 529.5 to 975 K) are chosen to form a
new node network (100 × 100); then, image (b) can be drawn. The node network of image
(c) is 50 × 50, and its values of Ea and T change from 20,002 to 69,002 J/mol and from 300 to
520.5 K, respectively. Regarding image (d), its node network is 49 × 63, and corresponding
ranges of Ea and T are 52,002 to 100,002 J/mol and 651 to 930 K, respectively. As we can
see, the truncated images b, c, and d are similar to the original image a. This phenomenon
indicates the self-similarity property of the figure according to fractal theory [38].
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5. Conclusions

Because of the demand for accurate solutions related to non-isothermal kinetics,
previous researchers have provided various methods to solve the temperature integral,
but the error usually becomes significant when the value of x (x = Ea/RT) is too small or
too large. A numerical method is proposed to obtain an accurate value of the temperature
integral. Multi-step and 20th Taylor expansion are applied to ensure the high accuracy of
results calculated by the new method.

The results show that, when the upper limit temperature is greater than about 350 K,
the error rises with the decreasing upper limit or the increasing activation energy; when
the temperature is between 298 and 350 K, the error rises with the increasing upper limit or
the increasing activation energy.

The temperature integral function is very sensitive to the activation energy according
to the error analysis and could be well displayed by the 3-D image. The reason why the
solution is always divergent when the value of x (x = Ea/RT) is too small or too large, as
widely encountered in previous study, can be well interpreted by the contour image of
the minimum Taylor order required when using the present method within the iterative
tolerances. More interesting, the 3-D image of the temperature integral demonstrates
self-similarity according to fractal theory.

6. Resource Codes

Here we share our resource codes for scientific purposes. Anyone who directly
uses/translates these codes to produce new papers must cite this paper. All codes below
are written in Visual Basic language.

These codes are easily transplanted into a project because they are written in functions.
To use these codes, one should first define the environmental temperature (T0, default as
298 K), the presupposed Taylor expansion order (s), the Arrhenius energy (Ea), and the
upper limit temperature (T1) of the integral. If the precision worsens, it only requires a
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smaller iteration temperature (default as 50 K in the code) and a larger Taylor expansion
order. Usually, an iteration temperature of 50 K and a Taylor expansion order of 10 are
good enough to reach a rational precision.

Option Explicit
Public T0 As Double’ T0 is the initial reaction temperature, default as 298K
Public i As Integer, k As Integer
Public ddg() As Double
Public store() As Double ‘Dynamic array for storage
Public store2() As Double
Public sum As Double

Function Psai(s As Integer, Ea, t1) ‘ Main function: calculation at an arbitrary temperature T1
Dim hun As Integer, jj As Integer
hun = Int((t1 − T0)/50)
ReDim Preserve store2(hun)
Dim sum0 As Double
sum0 = 0
If hun = 0 Then
Psai = gT(s, Ea, t1, T0)
Else
For jj = 1 To hun
store2(jj − 1) = gT(s, Ea, T0 + jj * 50, T0 + (jj − 1) * 50)
sum0 = sum0 + store2(jj − 1)
Next jj
Psai = sum0 + gT(s, Ea, t1, T0 + hun * 50)
End If
End Function

Function Factorial(n) ‘The n-th Factorial
If n = 0 Then
Factorial = 1
Else
Factorial = 1
For i = 1 To n
Factorial = Factorial * i
Next
End If
End Function

Function dg(n As Integer, Ea, T) As Double ‘ n-th derivative of g(T) for successive calculation.
Erase ddg()
ReDim ddg(n) ‘The n-th item in the polynomial expression of n-th-order derivative
ReDim Preserve store(n)
sum = 0
ddg(0) = Exp(−Ea/(8.314 * T))
store(0) = ddg(0)
If n > 0 Then
ddg(1) = Ea * Exp(−Ea/(8.314 * T)) * T ˆ −2/8.314
store(1) = ddg(1)
End If
If n = 0 Then
dg = ddg(0)
ElseIf n = 1 Then dg = ddg(1)
Else
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Dim m As Integer
m = n − 1
For k = 0 To m Step 1
ddg(k + 1) = (−1) ˆ (m − k) * (m + 1 − k) * (Factorial(m)/Factorial(k)) * store(k) *

T ˆ (k −m − 2)
sum = sum + ddg(k + 1)
Next k
store(n) = sum * Ea/8.314
dg = store(n)
End If
End Function
Function dg_X(n As Integer, Ea, T) ‘ n-th-order derivative of g(T), unconditional
ReDim Preserve store(n)
For i = 0 To n
store(i) = dg(i, Ea, T)
Next i
dg_X = store(n)
End Function

Function gT(n As Integer, Ea, T, T00) ‘ Calculation for temperature difference smaller
than 50 K

Dim j As Integer
sum = 0
For j = 1 To n
sum = sum + dg_X(j − 1, Ea, T00) * (T − T00) ˆ j/Factorial(j)
Next j
gT = sum
End Function

7. Standard Integral Values

To be compared with the other values of temperature integrals, the standard integral
values calculated by the present method are reported in Table 5 below.
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Table 5. Standard values of temperature integral calculated by present method.

T/K Ea = 2 J/mol Ea = 20,002
J/mol

Ea = 40,002
J/mol

Ea = 60,002
J/mol

Ea = 80,002
J/mol

Ea = 100,002
J/mol

Ea = 120,002
J/mol

Ea = 140,002
J/mol

Ea = 160,002
J/mol

Ea = 180,002
J/mol

Ea = 200,002
J/mol

300 1.9984 × 100 6.4068 ×
10−4

2.0545 ×
10−7

6.5897 ×
10−11

2.1142 ×
10−14

6.7844 ×
10−18

2.1777 ×
10−21

6.9916 ×
10−25

2.2453 ×
10−28

7.2121 ×
10−32

2.3172 ×
10−35

318 1.9984 × 101 8.1688 ×
10−3

3.4100 ×
10−6

1.4524 ×
10−9

6.3035 ×
10−13

2.7834 ×
10−16

1.2483 ×
10−19

5.6766 ×
10−23

2.6130 ×
10−26

1.2157 ×
10−29

5.7090 ×
10−33

336 3.7971 × 101 1.9709 ×
10−2

1.0915 ×
10−5

6.3972 ×
10−9

3.9296 ×
10−12

2.5059 ×
10−15

1.6455 ×
10−18

1.1055 ×
10−21

7.5617 ×
10−25

5.2465 ×
10−28

3.6823 ×
10−31

354 5.5959 × 101 3.6632 ×
10−2

2.7010 ×
10−5

2.1870 ×
10−8

1.8958 ×
10−11

1.7247 ×
10−14

1.6239 ×
10−17

1.5678 ×
10−20

1.5425 ×
10−23

1.5400 ×
10−26

1.5556 ×
10−29

372 7.3947 × 101 6.0526 ×
10−2

5.9036 ×
10−5

6.5170 ×
10−8

7.8001 ×
10−11

9.8417 ×
10−14

1.2870 ×
10−16

1.7265 ×
10−19

2.3604 ×
10−22

3.2746 ×
10−25

4.5961 ×
10−28

390 9.1935 × 101 9.3187 ×
10−2

1.1877 ×
10−4

1.7523 ×
10−7

2.8220 ×
10−10

4.7989 ×
10−13

8.4604 ×
10−16

1.5301 ×
10−18

2.8199 ×
10−21

5.2736 ×
10−24

9.9776 ×
10−27

408 1.0992 × 1002 1.3659 ×
10−1

2.2414 ×
10−4

4.3258 ×
10−7

9.1447 ×
10−10

2.0423 ×
10−12

4.7284 ×
10−15

1.1229 ×
10−17

2.7174 ×
10−20

6.6724 ×
10−23

1.6574 ×
10−25

426 1.2791 × 1002 1.9288 ×
10−1

4.0116 ×
10−4

9.9213 ×
10−7

2.6921 ×
10−9

7.7171 ×
10−12

2.2931 ×
10−14

6.9882 ×
10−17

2.1700 ×
10−19

6.8371 ×
10−22

2.1792 ×
10−24

444 1.4590 × 1002 2.6432 ×
10−1

6.8611 ×
10−4

2.1336 ×
10−6

7.2838 ×
10−9

2.6265 ×
10−11

9.8160 ×
10−14

3.7621 ×
10−16

1.4691 ×
10−18

5.8205 ×
10−21

2.3327 ×
10−23

462 1.6389 × 1002 3.5330 ×
10−1

1.1278 ×
10−3

4.3345 ×
10−6

1.8290 ×
10−8

8.1498 ×
10−11

3.7631 ×
10−13

1.7817 ×
10−15

8.5949 ×
10−18

4.2063 ×
10−20

2.0823 ×
10−22

480 1.8189 × 1002 4.6228 ×
10−1

1.7901 ×
10−3

8.3718 ×
10−6

4.2978 ×
10−8

2.3293 ×
10−10

1.3079 ×
10−12

7.5303 ×
10−15

4.4167 ×
10−17

2.6281 ×
10−19

1.5817 ×
10−21

498 1.9988 × 1002 5.9379 ×
10−1

2.7540 ×
10−3

1.5456 ×
10−5

9.5179 ×
10−8

6.1862 ×
10−10

4.1652 ×
10−12

2.8751 ×
10−14

2.0216 ×
10−16

1.4420 ×
10−18

1.0404 ×
10−20

516 2.1787 × 1002 7.5038 ×
10−1

4.1200 ×
10−3

2.7401 ×
10−5

1.9987 ×
10−7

1.5384 ×
10−9

1.2263 ×
10−11

1.0021 ×
10−13

8.3418 ×
10−16

7.0436 ×
10−18

6.0155 ×
10−20

534 2.3586 × 1002 9.3461 ×
10−1

6.0104 ×
10−3

4.6837 ×
10−5

4.0012 ×
10−7

3.6055 ×
10−9

3.3646 ×
10−11

3.2183 ×
10−13

3.1354 ×
10−15

3.0985 ×
10−17

3.0969 ×
10−19

552 2.5385 × 1002 1.1490 × 100 8.5707 ×
10−3

7.7461 ×
10−5

7.6707 ×
10−7

8.0102 ×
10−9

8.6610 ×
10−11

9.5978 ×
10−13

1.0833 ×
10−14

1.2401 ×
10−16

1.4358 ×
10−18

570 2.7184 × 1002 1.3962 × 100 1.1972 ×
10−2

1.2433 ×
10−4

1.4140 ×
10−6

1.6953 ×
10−8

2.1043 ×
10−10

2.6767 ×
10−12

3.4675 ×
10−14

4.5560 ×
10−16

6.0542 ×
10−18

588 2.8984 × 1002 1.6786 × 100 1.6410 ×
10−2

1.9419 ×
10−4

2.5151 ×
10−6

3.4332 ×
10−8

4.8509 ×
10−10

7.0233 ×
10−12

1.0355 ×
10−13

1.5485 ×
10−15

2.3418 ×
10−17
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Table 5. Cont.

T/K Ea = 2 J/mol Ea = 20,002
J/mol

Ea = 40,002
J/mol

Ea = 60,002
J/mol

Ea = 80,002
J/mol

Ea = 100,002
J/mol

Ea = 120,002
J/mol

Ea = 140,002
J/mol

Ea = 160,002
J/mol

Ea = 180,002
J/mol

Ea = 200,002
J/mol

606 3.0783 × 1002 1.9987 × 100 2.2112 × 10−2 2.9587 × 10−4 4.3305 × 10−6 6.6785 × 10−8 1.0659 × 10−9 1.7432 × 10−11 2.9029 × 10−13 4.9027 × 10−15 8.3734 × 10−17

624 3.2582 × 1002 2.3588 × 100 2.9328 × 10−2 4.4062 × 10−4 7.2372 × 10−6 1.2522 × 10−7 2.2419 × 10−9 4.1121 × 10−11 7.6803 × 10−13 1.4547 × 10−14 2.7864 × 10−16

642 3.4382 × 1002 2.7613 × 100 3.8340 × 10−2 6.4261 × 10−4 1.1769 × 10−5 2.2698 × 10−7 4.5293 × 10−9 9.2588 × 10−11 1.9271 × 10−12 4.0673 × 10−14 8.6810 × 10−16

660 3.6181 × 1002 3.2084 × 100 4.9459 × 10−2 9.1936 × 10−4 1.8663 × 10−5 3.9888 × 10−7 8.8190 × 10−9 1.9973 × 10−10 4.6052 × 10−12 1.0768 × 10−13 2.5458 × 10−15

678 3.7980 × 1002 3.7022 × 100 6.3022 × 10−2 1.2921 × 10−3 2.8918 × 10−5 6.8119 × 10−7 1.6597 × 10−8 4.1417 × 10−10 1.0522 × 10−11 2.7106 × 10−13 7.0607 × 10−15

696 3.9780 × 1002 4.2448 × 100 7.9394 × 10−2 1.7866 × 10−3 4.3858 × 10−5 1.1330 × 10−6 3.0267 × 10−8 8.2811 × 10−10 2.3065 × 10−11 6.5139 × 10−13 1.8601 × 10−14

714 4.1579 × 1002 4.8382 × 100 9.8971 × 10−2 2.4329 × 10−3 6.5210 × 10−5 1.8388 × 10−6 5.3615 × 10−8 1.6009 × 10−9 4.8659 × 10−11 1.4995 × 10−12 4.6725 × 10−14

732 4.3378 × 1002 5.4841 × 100 1.2217 × 10−1 3.2666 × 10−3 9.5191 × 10−5 2.9175 × 10−6 9.2446 × 10−8 2.9995 × 10−9 9.9066 × 10−11 3.3172 × 10−12 1.1231 × 10−13

750 4.5178 × 1002 6.1844 × 100 1.4944 × 10−1 4.3290 × 10−3 1.3660 × 10−4 4.5323 × 10−6 1.5545 × 10−7 5.4593 × 10−9 1.9514 × 10−10 7.0716 × 10−12 2.5910 × 10−13

768 4.6977 × 1002 6.9407 × 100 1.8124 × 10−1 5.6671 × 10−3 1.9292 × 10−4 6.9041 × 10−6 2.5538 × 10−7 9.6713 × 10−9 3.7276 × 10−10 1.4565 × 10−11 5.7539 × 10−13

786 4.8777 × 1002 7.7547 × 100 2.1808 × 10−1 7.3347 × 10−3 2.6845 × 10−4 1.0326 × 10−5 4.1051 × 10−7 1.6707 × 10−8 6.9194 × 10−10 2.9052 × 10−11 1.2332 × 10−12

804 5.0576 × 1002 8.6277 × 100 2.6045 × 10−1 9.3922 × 10−3 3.6840 × 10−4 1.5183 × 10−5 6.4661 × 10−7 2.8188 × 10−8 1.2505 × 10−9 5.6239 × 10−11 2.5568 × 10−12

822 5.2376 × 1002 9.5613 × 100 3.0890 × 10−1 1.1908 × 10−2 4.9903 × 10−4 2.1970 × 10−5 9.9934 × 10−7 4.6526 × 10−8 2.2043 × 10−9 1.0586 × 10−10 5.1393 × 10−12

840 5.4175 × 1002 1.0557 × 101 3.6398 × 10−1 1.4956 × 10−2 6.6780 × 10−4 3.1317 × 10−5 1.5172 × 10−6 7.5228 × 10−8 3.7955 × 10−9 1.9410 × 10−10 1.0035 × 10−11

858 5.5975 × 1002 1.1615 × 101 4.2624 × 10−1 1.8620 × 10−2 8.8349 × 10−4 4.4018 × 10−5 2.2653 × 10−6 1.1931 × 10−7 6.3933 × 10−9 3.4725 × 10−10 1.9066 × 10−11

876 5.7774 × 1002 1.2737 × 101 4.9628 × 10−1 2.2991 × 10−2 1.1564 × 10−3 6.1058 × 10−5 3.3297 × 10−6 1.8581 × 10−7 1.0549 × 10−8 6.0707 × 10−10 3.5313 × 10−11

894 5.9574 × 1002 1.3925 × 101 5.7468 × 10−1 2.8168 × 10−2 1.4983 × 10−3 8.3647 × 10−5 4.8224 × 10−6 2.8447 × 10−7 1.7073 × 10−8 1.0385 × 10−9 6.3849 × 10−11

912 6.1373 × 1002 1.5179 × 101 6.6205 × 10−1 3.4258 × 10−2 1.9229 × 10−3 1.1326 × 10−4 6.8879 × 10−6 4.2858 × 10−7 2.7130 × 10−8 1.7405 × 10−9 1.1286 × 10−10

930 6.3173 × 1002 1.6500 × 101 7.5901 × 10−1 4.1377 × 10−2 2.4458 × 10−3 1.5167 × 10−4 9.7100 × 10−6 6.3598 × 10−7 4.2375 × 10−8 2.8613 × 10−9 1.9529 × 10−10

948 6.4972 × 1002 1.7888 × 101 8.6618 × 10−1 4.9650 × 10−2 3.0845 × 10−3 2.0100 × 10−4 1.3520 × 10−5 9.3033 × 10−7 6.5120 × 10−8 4.6192 × 10−9 3.3118 × 10−10

966 6.6772 × 1002 1.9345 × 101 9.8419 × 10−1 5.9209 × 10−2 3.8590 × 10−3 2.6375 × 10−4 1.8606 × 10−5 1.3426 × 10−6 9.8548 × 10−8 7.3300 × 10−9 5.5104 × 10−10

984 6.8571 × 1002 2.0872 × 101 1.1137 × 100 7.0196 × 10−2 4.7913 × 10−3 3.4288 × 10−4 2.5324 × 10−5 1.9130 × 10−6 1.4698 × 10−7 1.1444 × 10−8 9.0052 × 10−10

1002 7.0371 × 1002 2.2468 × 101 1.2553 × 100 8.2759 × 10−2 5.9062 × 10−3 4.4183 × 10−4 3.4108 × 10−5 2.6929 × 10−6 2.1623 × 10−7 1.7594 × 10−8 1.4468 × 10−9

1020 7.2170 × 1002 2.4134 × 101 1.4096 × 100 9.7058 × 10−2 7.2309 × 10−3 5.6459 × 10−4 4.5484 × 10−5 3.7473 × 10−6 3.1398 × 10−7 2.6657 × 10−8 2.2872 × 10−9

1038 7.3970 × 1002 2.5872 × 101 1.5774 × 100 1.1326 × 10−1 8.7955 × 10−3 7.1572 × 10−4 6.0085 × 10−5 5.1581 × 10−6 4.5032 × 10−7 3.9834 × 10−8 3.5609 × 10−9

1056 7.5770 × 1002 2.7680 × 101 1.7592 × 100 1.3153 × 10−1 1.0633 × 10−2 9.0047 × 10−4 7.8665 × 10−5 7.0268 × 10−6 6.3830 × 10−7 5.8746 × 10−8 5.4638 × 10−9

1074 7.7569 × 1002 2.9561 × 101 1.9556 × 100 1.5206 × 10−1 1.2779 × 10−2 1.1248 × 10−3 1.0212 × 10−4 9.4789 × 10−6 8.9471 × 10−7 8.5562 × 10−8 8.2686 × 10−9

1092 7.9369 × 1002 3.1513 × 101 2.1674 × 100 1.7504 × 10−1 1.5272 × 10−2 1.3954 × 10−3 1.3149 × 10−4 1.2667 × 10−5 1.2409 × 10−6 1.2315 × 10−7 1.2350 × 10−8

1110 8.1168 × 1002 3.3537 × 101 2.3952 × 100 2.0067 × 10−1 1.8156 × 10−2 1.7199 × 10−3 1.6801 × 10−4 1.6778 × 10−5 1.7036 × 10−6 1.7524 × 10−7 1.8216 × 10−8

1128 8.2968 × 1002 3.5634 × 101 2.6395 × 100 2.2914 × 10−1 2.1474 × 10−2 2.1067 × 10−3 2.1310 × 10−4 2.2035 × 10−5 2.3165 × 10−6 2.4671 × 10−7 2.6550 × 10−8

1146 8.4768 × 1002 3.7803 × 101 2.9010 × 100 2.6067 × 10−1 2.5276 × 10−2 2.5652 × 10−3 2.6840 × 10−4 2.8704 × 10−5 3.1210 × 10−6 3.4376 × 10−7 3.8259 × 10−8

1164 8.6567 × 1002 4.0045 × 101 3.1804 × 100 2.9548 × 10−1 2.9615 × 10−2 3.1059 × 10−3 3.3578 × 10−4 3.7104 × 10−5 4.1682 × 10−6 4.7432 × 10−7 5.4538 × 10−8

1182 8.8367 × 1002 4.2360 × 101 3.4782 × 100 3.3380 × 10−1 3.4544 × 10−2 3.7402 × 10−3 4.1741 × 10−4 4.7609 × 10−5 5.5203 × 10−6 6.4836 × 10−7 7.6941 × 10−8

1200 9.0166 × 1002 4.4748 × 101 3.7950 × 100 3.7584 × 10−1 4.0124 × 10−2 4.4808 × 10−3 5.1571 × 10−4 6.0659 × 10−5 7.2526 × 10−6 8.7835 × 10−7 1.0748 × 10−7
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