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Abstract: Poly(methyl methacrylate) (PMMA) is characterized by high CO2 capture yield under
mild pressures and temperatures. A morphological modification of powdery amorphous PMMA
(pPMMA) is carried out by electrospinning to increase the surface/volume ratio of the resulting
electrospun PMMAs (ePMMAs). This modification improves the kinetics and the capture yields. The
rate constants observed for ePMMAs are two to three times higher than those for pPMMA, reaching
90% saturation values within 5–7 s. The amount of sorbed CO2 is up to eleven times higher for
ePMMAs at 1 ◦C, and the highest difference in captured CO2 amount is observed at the lowest tested
pressure of 1 MPa. The operating life of the ePMMAs shows a 5% yield loss after ten consecutive runs,
indicating good durability. Spent electrospun PMMAs after several cycles of CO2 sorption-desorption
can be regenerated by melting and again electrospinning the molten mass, resulting in a CO2 capture
performance that is undistinguishable from that observed with fresh ePMMA. Scanning electron and
atomic force microscopies show a reduction in surface roughness after gas exposure, possibly due
to the plasticization effect of CO2. This study shows the potential of electrospun PMMAs as solid
sorbents for carbon capture from natural gas or pre-combustion and oxyfuel combustion processes.

Keywords: CO2 capture; solid sorbents; poly (methyl methacrylate); polymer plasticization;
electrospinning; natural gas

1. Introduction

Climate change has become one of the most alarming issues that our society ever
faced, urging the development of green alternatives to fossil fuels. However, the transition
to fully renewable energy sources is slow, and the combustion of oil and gas is still the
main source of our energy needs. In this scenario, it is crucial to develop efficient and
sustainable technologies for Carbon Capture and Storage (CCS), which relates to the body
of technologies devised to capture anthropogenic carbon dioxide. These techniques can
be roughly divided into (i) post-combustion capture, where the gas is captured at the end
of a combustion process; (ii) pre-combustion capture, where the fossil fuel is partially
oxidized in order to form a syngas mix, and CO2 is then separated therefrom; (iii) oxy-fuel
combustion, where the fossil fuel is burned into an oxygen-enriched atmosphere, thus
increasing the amount of CO2 produced and making the process of extraction easier [1,2].

At present, the most advanced technologies relating to CO2 mitigation are focused
on post-combustion processes, where the flue gas is processed for CO2 removal under
low pressures. Traditional methods for CO2 capture under ambient pressures are based
on amine-based solvents. In comparison to other capture methods, the employment
of chemical absorption through amines in post-combustion settings can directly extract
carbon dioxide from flue gas, and is readily adapted to common power plants [3]. However,
other CO2-containing gas mixtures (e.g., pre-combustion and oxyfuel combustion, as
well as natural gas) are processed under higher pressures, where polymeric membranes
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seem cheaper and more effective than liquid sorbents [4]. A recent review reports on
the major challenges in the application of polymer membranes for CO2 separation [5].
One interesting material in this regard is poly(methyl methacrylate) (PMMA), whose
swelling and sorption properties have been comprehensively studied by Wissinger in
1987 [6,7]. Those studies show a remarkable sorption behavior under a range of CO2
pressures (0.1–10 MPa) and good swelling abilities [6,8–10], displaying higher affinity
between PMMA and carbon dioxide as compared to other polymers [11,12] Due to this
ability, which is also typical of other materials [13], PMMA has been also studied in foaming
processes [14–16]. The solubility of high-pressure carbon dioxide into PMMA depends on
the operating temperature and pressure. Specifically, subcritical carbon dioxide increases its
solubility in the polymer as the temperature decreases [6,8,17–20]. The interaction between
the polymer side chains, composed of a methyl ester, and CO2 was studied, inter alia, by ab
initio calculations, FT-IR spectroscopy, and Raman spectroscopy, showing that the carbonyl
group is involved in a Lewis acid-base relation with CO2 [18,21–25]. The interaction is
extremely dynamic and is dependent on pressure and temperature [26]. Also, considering
the Flory-Huggins parameter in the study of the interactions between the polymer and a
penetrant gas, it was shown that their interaction is stronger at lower temperatures [27].
The interaction and penetration of the gas into PMMA are characterized by both a Fickian
diffusion of the gas within the rubbery region of the polymer and a non-Fickian behavior
when PMMA is in the glassy state, possibly also affected by the relaxation that occurs
during its plasticization by CO2 [28].

Most polymers show a glass transition phenomenon, which is characterized by a cou-
ple of temperature and pressure values at which the polymer shifts from glassy to rubbery
form [29–31]. One of the most interesting aspects of the CO2 sorption properties of PMMA
is its so-called retrograde vitrification, according to which—under certain pressures—the
polymer exists in a rubbery state at low and high temperatures, and in a glassy form at
intermediate temperatures [32]. The transition between the glassy and rubbery forms of
the polymer depends mostly on the temperature, but there is also a contribution from the
gas pressure and the inherent plasticizing property of carbon dioxide. In a plot of the state
of the polymer as a function of temperature and pressure, the phenomenon of retrograde
vitrification causes the split of the curve basically in three regions defined by the transi-
tions from rubbery to glassy states [32–38]. These phase changes were also characterized
by Raman spectroscopy [23], and this technique basically agrees with gravimetric and
calorimetric measurements in the determination of the plasticization phenomenon induced
by CO2. Also, time-resolved Raman shifts can be used to derive the gas sorption kinet-
ics [39,40]. Considering that the glassy and rubbery forms of PMMA have different CO2
sorption characteristics, it is important to recognize these forms during the CO2 capture
process in order to explain the sorption profiles of PMMA. Particularly important is the
alteration of other properties of the polymer, such as the heat capacity, heat of sorption,
and plasticization caused by CO2 [41–43]. It is known that the plasticization of the polymer
by carbon dioxide is more pronounced at lower temperatures (due to an increase in CO2
solubility) [44], and this increased plasticization is paralleled by the transition into the
rubbery state and a general decrease in Tg [34].

Due to the interaction properties of PMMA with CO2, as summarized above, PMMA
may be developed into a carbon capture medium in practical applications requiring CO2
removal from gas mixtures, such as oxy-fuel, biogas, syngas, and natural gas. PMMA
was also used in co-polymer membranes, and PMMA hybrid membranes containing AgCl
nanoparticles [45,46]. While the use of membranes is effective, they show some limitations
from an industrial standpoint, such as high working pressures and low resistance to
mechanical stress.

In the present work, we have addressed some of the above issues, with the aim to
improve the CCS performance and life cycle of PMMA through structural modification by
electrospinning, which enabled us to fabricate oriented polymer fibers from commercial
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PMMA powder. Electrospun fibers were also examined by AFM, FT-IR, SEM, TGA, and
BET analyses.

2. Experimental Section
2.1. Chemicals and Materials

Amorphous poly (methyl methacrylate) (pPMMA), average Mw 120.000, and an-
hydrous N,N-Dimethylformamide (DMF, 99.8%) were purchased from Sigma-Aldrich
(Mailand, Italy). SS-grade CO2 (>99.8% CO2) was obtained from SOL S.p.A. (Monza, Italy).

Electrospun PMMAs (ePMMAs) were made as follows: the polymer powder was
solubilized (31 wt%) into DMF by magnetic stirring at 28 ◦C for 18h at 250 RPM. The
electrospinning apparatus that was used is schematically described in [47]. The solution
was electrospun by placing the metal needle in a vertical arrangement with respect to the
steel collector, which was suitably covered with aluminium foil and kept at a distance of
21–22 cm. Temperature, relative humidity, and solution flow were fixed at 28 ◦C, 35% RH,
and 1.5 mL/h, respectively, throughout the process. The polarity of the electric field was set
and directed from positive to negative charge for ePMMA+, and from negative to positive
for ePMMA-. The DC voltage applied to the first and second sample types were 12 kV
and 15 kV, respectively. Recycled electrospun membranes were also made by recovering
exhausted PMMAs used for gas sorption experiments, and using the same procedure and
parameters described above.

2.2. Experimental Apparatus

The experimental apparatus for gas sorption measurements is shown in Figure 1 and
is based on a previously described device with slight modifications [48–50]. The reaction
chamber was a small AISI 316L stainless-steel reactor, with an internal volume of 10 mL and
an operating pressure of up to 6 MPa. The temperature was controlled using a chiller unit
with a cooling power of 1000 W, which was also used for controlling the temperature of the
gas line from the mass flow meter to the reactor. The gas flow was measured using an F131
M series thermal mass flow meter (Bronkhorst High-Tech B.V. Ruurlo, The Netherlands)
with a measuring range of 1–100 NmL/min and an operating pressure of up to 20 MPa.
Gas inflow readings can be directly converted into gas moles through the integration of
flow/time curves. This approach allowed the measurement of both the kinetics of the
process and the equilibrium amounts of sorbed carbon dioxide. Proper control of the input
gas pressures was achieved through a Tescom CC Series micrometering valve (Emerson,
St. Louis, MO, USA). Gas pressures within the reactor were measured with a 4–20 mA
pressure transducer (Gems Sensors & Controls; Brighton, UK) with a measuring range
of 0–10 MPa. The reactor was equipped with two resistive temperature detectors (RTD)
PT100 class 1/3 DIN purchased from OMEGA Engineering, Inc. (Norwalk, CA, USA). A
custom-built process controller was assembled to record the pressure, temperature, and
gas flow by using an ELCO Top 7 PLC (ELCO, Schio, Italy).

2.3. Determination of CO2 Capture

Into the reactor, 1.00 g of powder or electrospun PMMA was introduced. The system
was set at a temperature setpoint for about 5 min before charging with the gas. The reactor
chamber was connected to a line vacuum system (0.02 MPa) to remove atmospheric air.
During this evacuation, the CO2 introduction valve was opened for short periods to intro-
duce small amounts of carbon dioxide into the chamber. Then, the gas was introduced into
the reactor up to the target pressure. The CO2 flux at the beginning was at 400 NmL/min
and then decreased following a PID algorithm. After the pressure setpoint was reached (1, 2,
3, and 4 MPa at 20 ◦C; 1, 2, and 3 MPa at 1 ◦C; 4 MPa was not tested at 1 ◦C because of CO2
liquefaction), the CO2 influx data from the flowmeter were recorded. The two temperatures
adopted in this work (20 ◦C and 1 ◦C) were chosen with the aim of gathering information
on the temperature dependency of CO2 solubility in the polymer while remaining within
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the glassy region of PMMA. Also, these T/P values are compatible with the ranges for
some industrially relevant processes, such as the removal of CO2 from natural gas [51].
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With the aim to consider only the gas that interacts with the polymer, a preliminary
reference experiment was run to measure the volume of gas inside the reactor while it
was filled with inert material having the same volume as the PMMA sample. Then, using
arithmetical manipulation, we obtained the exact gas amount. Sample densities were
measured using a helium pycnometer. After a sorption cycle, the pPMMA sample was
degassed for 30 min at 1.7 kPa (line vacuum) before subjecting it to the next sorption step.

All sorption profiles were consistent with the apparent first-order kinetics, according
to the rate law:

rate = d[CO2]/dt = kobs[CO2].

kobs values were obtained using a least-squares fitting of the experimental data.

2.4. Method Validation

The validation was performed under selected pressures (1, 2, 3, and 4 MPa), tem-
peratures (1 ◦C, 20 ◦C), and volumes, by comparing gas flow readings to gravimetric
measurements, carried out by weighing sorbed CO2 amounts with an analytical balance.
The method could be considered validated since the weight measured in this way differed
by ≤0.5 wt% from the mass calculated from the flowmeter. The accuracy of the flowmeter
measurements was ±0.5% of reading (Rd), whereas repeatability was <0.2% Rd.

2.5. Brunauer–Emmett–Teller (BET) Analysis

The isotherms were acquired using the ASAP 2020 Plus adsorption analyzer from
Micromeritics, equipped with high-accuracy pressure transducers (precision 0.15% of
absolute pressure reading) allowing for measurements in nitrogen at 77 K. Before sorption
analysis, the sample was degassed at a temperature of 70 ◦C for 12 h under ultrahigh
vacuum. Relative pressure points P/P0 in the range 0.0001–0.01 were included to assess the
extent of any microporosity within the samples. BET surface area was calculated over a
nominal pressure range of 0.05–0.25.
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2.6. Scanning Electron Microscopy

SEM micrographs were acquired by using the Phenom XL Desktop apparatus. Images
were obtained under high vacuum (1Pa) in backscatter mode with an optical magnification
of 10,000× and acceleration voltages of 15KV. The images were analyzed using the Phenom
ProSuite software to obtain information on fiber sizes. Each sample was sputtered with a
very thin layer of gold in order to improve the resolution using an Electron Microscopy
Sciences SEM K550 sample preparation sputter coater.

2.7. AFM Analysis

AFM in tapping mode was used for the morphological characterization at a nanoscale
level of the PMMA fibers, before and after the cycles of CO2 sorption. The analyses were
conducted on pristine and exhausted ePMMA+ and ePMMA- samples using a Multimode
8 AFM (Bruker Corp., Billerica, MA, USA) with a Nanoscope V controller and a J scanner.
Tapping mode measurements were performed using a rectangular cantilever RTESPA-150,
which had a resonance frequency and spring constant of 150 kHz and 5 N/m, respectively.
The mats of the PMMA fibers were fixed on an adhesive substrate, and multiple scans of
single fibers were taken for each sample. Roughness calculations were performed using
the software Nanoscope Analysis 1.8 (Bruker Corp., Billerica, MA, USA), and the average
roughness (Ra) and root mean square roughness (Rq) parameters were used to describe the
surfaces of the fibers.

2.8. TGA Analysis

Thermogravimetric analyses were conducted on a PerkinElmer STA6000 (PerkinElmer
SpA, Milan, Italy) using Pyris software. The TGA curves of the electrospun negative (grey
line), positive (red line), and powder (blue line) PMMAs are shown in part c of Section 3.2.
Each sample was heated under a nitrogen flow of 20 mL/min at a rate of 10 ◦C/min to
700 ◦C with a final isotherm of 15 min.

2.9. FT-IR Analysis

IR spectra were taken using a Shimadzu IRAffinity-1S FTIR spectrophotometer (Shi-
madzu Italia S.r.l., Milan, Italy) equipped with a sealed and desiccated interferometer, a
DLATGS (Deuterated Triglycine Sulphate Doped with L-Alanine) detector, and a single
reflection diamond ATR crystal (QATR 10, Shimadzu Italia S.r.l., Milan, Italy). Spectra were
recorded in the range from 3250 to 450 cm−1, co-adding 45 interferograms at a resolution
of 4 cm−1 with Happ–Genzel apodization. The ATR crystal was carefully cleaned before
each analysis, a background was recorded for each sample, and the measurements were
performed in triplicate. Further description of the spectral processing is reported in the
Supplementary Material.

3. Results
3.1. Sorption Experiments

a. Powder PMMA

Commercial PMMA in powder form (pPMMA) was subjected to three consecutive
pressurization (sorption)/depressurization (desorption) cycles (shown as I, II, and III in the
Figures) under different CO2 pressures (1, 2, 3, and 4 MPa) and temperatures (1 ◦C and
20 ◦C). Figure 2 shows the sorption profiles of pPMMA at 20 ◦C and 1 ◦C.

At 20 ◦C, pPMMA shows a moderate amount of CO2 sorption, which is proportional
to the gas pressure. Under 1 MPa, only ca. 6–8 mg of CO2 is captured by 1 g of the polymer,
and this amount increases up to ca. 120–150 mg at 4 MPa (Table 1). In general, the sorption
kinetics are slower for the first cycle, but the plateau values are higher than those reached
from the second and successive cycles, with the latter having a faster sorption rate than
the first cycle. This phenomenon is mainly due to the first-pass plasticization effect: the
gas is adsorbed into the free volume between polymer chains, so that chain mobility is
accelerated, dilation and deformation are enhanced, and viscosity decreases [43]. The
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modifications related to plasticization increase the sorption rate of the gas after the first
cycle. In particular, for the experiments at 4 MPa, a remarkable decrease in the sorption
amount is observed after the first cycle when the pPMMA is degassed for 30 min at 1.7 kPa
(line vacuum) before subjecting it to the next sorption step.
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Table 1. Amounts of sorbed CO2 (in mg) for g of PMMA under the tested pressures and temperatures
for three repeated cycles (I, II, and III). For each cycle (i.e., cycles I, II, and III), all the experiments
were performed in triplicate.

pPMMA

20 ◦C 1 ◦C

I II III I II III
1 MPa 8.0 ± 1.8 6.1 ± 1.2 5.9 ± 1.3 5.3 ± 0.9 3.8 ± 0.9 4.7 ± 1.1
2 MPa 45.8 ± 1.9 40.1 ± 3.0 40.4 ± 2.4 59.3 ± 0.8 51.8 ± 1.2 56.6 ± 2.0
3 MPa 114.3 ± 3.2 91.2 ± 2.9 87.1 ± 2.7 206.3 ± 3.8 166.2 ± 3.2 168.6 ± 3.3
4 MPa 158.2 ± 2.5 118.0 ± 3.1 121.0 ± 3.1 --- --- ---

ePMMA+

20 ◦C 1 ◦C

I II III I II III
1 MPa 46.1 ± 1.5 43.8 ± 1.3 43.6 ± 1.8 60.6 ± 1.7 64.4 ± 1.4 64.7 ± 2.0
2 MPa 84.2 ± 2.1 83.0 ± 2.2 81.7 ± 2.8 143.3 ± 3.5 134.5 ± 3.7 138.1 ± 3.3
3 MPa 124.9 ± 3.8 121.9 ± 3.5 118.4 ± 2.2 259.2 ± 4.0 223.9 ± 4.2 227.2 ± 4.6
4 MPa 142.2 ± 4.1 148.9 ± 3.6 143.9 ± 3.1 --- --- ---

ePMMA-

20 ◦C 1 ◦C

I II III I II III
1 MPa 46.0 ± 1.0 45.9 ± 2.1 45.3 ± 1.6 56.8 ± 2.1 55.4 ± 1.4 57.0 ± 1.1
2 MPa 96.1. ± 2 91.5 ± 2.2 85.8 ± 1.9 141.4 ± 3.0 139.5 ± 2.3 134.0 ± 2.8
3 MPa 126.0 ± 2.5 114.7 ± 3.8 114.4 ± 2.1 201.7 ± 4.2 195.0 ± 4.5 201.9 ± 4.0
4 MPa 179.3 ± 3.1 156.1 ± 2.0 161.8 ± 3.6 --- --- ---

The behavior of pPMMA is qualitatively similar at 1 ◦C, but a slight moderate in-
crease in CO2 sorption is observed compared to that at 20 ◦C. Particularly striking is the
amount of CO2 sorbed at 3 MPa/1 ◦C, which is approximately twice the amount at 20 ◦C
(Table 1). This higher amount of bound CO2 may reflect a stronger interaction at a lower
T, following the Flory–Huggins interaction theory, which is known to decrease as the
temperature increases [27]. Also, at 1 ◦C, the kinetics of the first sorption are remarkably
slower than those of the subsequent cycles, but the plateau values are higher at 3 MPa.
Experiments at 4 MPa/1 ◦C could not be performed due to the liquefaction of CO2 (see the
Experimental Section).
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b. Positive electrospun PMMA (ePMMA+)

The situation is different when using ePMMA+ polymers (Figure 3), where sorption
cycles are more consistent and sorbed CO2 amounts are negligibly different among the
cycles. Sorbed gas amounts increase with pressure and were higher than those measured
using pPMMA. It is worth noting that the difference in the amount of sorbed CO2 drastically
increased at the lowest tested pressure (1 MPa) at both 1 ◦C (ca. 11-fold increase) and 20 ◦C
(ca. 6-fold increase; see Table 1) compared to the corresponding values of pPMMA. The
best performance was observed with ePMMA+ at 3 MPa/1 ◦C, where ca. 260 mg of CO2
was captured using 1g of ePMMA+, qualitatively following the same overall kinetics as
cycles #2 and #3.

Separations 2023, 10, x FOR PEER REVIEW 7 of 16 
 

 

4 MPa 142.2 ± 4.1 148.9 ± 3.6 143.9 ± 3.1 --- --- --- 
 ePMMA- 
 20 °C 1 °C 
 I II III I II III 

1 MPa 46.0 ± 1.0 45.9 ± 2.1 45.3 ± 1.6 56.8 ± 2.1 55.4 ± 1.4 57.0 ± 1.1 
2 MPa 96.1.  ± 2 91.5 ± 2.2 85.8 ± 1.9 141.4 ± 3.0 139.5 ± 2.3 134.0 ± 2.8 
3 MPa 126.0 ± 2.5 114.7 ± 3.8 114.4 ± 2.1 201.7 ± 4.2 195.0 ± 4.5 201.9 ± 4.0 
4 MPa 179.3 ± 3.1 156.1 ± 2.0 161.8 ± 3.6 --- --- --- 

The behavior of pPMMA is qualitatively similar at 1 °C, but a slight moderate in-
crease in CO2 sorption is observed compared to that at 20 °C. Particularly striking is the 
amount of CO2 sorbed at 3 MPa/1 °C, which is approximately twice the amount at 20 °C 
(Table 1). This higher amount of bound CO2 may reflect a stronger interaction at a lower 
T, following the Flory–Huggins interaction theory, which is known to decrease as the tem-
perature increases [27]. Also, at 1 °C, the kinetics of the first sorption are remarkably 
slower than those of the subsequent cycles, but the plateau values are higher at 3 MPa. 
Experiments at 4 MPa/1 °C could not be performed due to the liquefaction of CO2 (see the 
Experimental Section).  

b. Positive electrospun PMMA (ePMMA+) 

The situation is different when using ePMMA+ polymers (Figure 3), where sorption 
cycles are more consistent and sorbed CO2 amounts are negligibly different among the 
cycles. Sorbed gas amounts increase with pressure and were higher than those measured 
using pPMMA. It is worth noting that the difference in the amount of sorbed CO2 drasti-
cally increased at the lowest tested pressure (1 MPa) at both 1 °C (ca. 11-fold increase) and 
20 °C (ca. 6-fold increase; see Table 1) compared to the corresponding values of pPMMA. 
The best performance was observed with ePMMA+ at 3 MPa/1 °C, where ca. 260 mg of 
CO2 was captured using 1g of ePMMA+, qualitatively following the same overall kinetics 
as cycles #2 and #3. 

 
Figure 3. Kinetic profiles of CO2 sorption by ePMMA+ at 20 °C and 1 °C, under the indicated pres-
sures. 

c. Negative electrospun PMMA (ePMMA-) 

Similar findings were obtained for ePMMA- (Figure 4), where the plateau values of 
sorbed CO2 are roughly close to those for ePMMA+ at 20 °C and marginally lower at 1 °C.  

Figure 3. Kinetic profiles of CO2 sorption by ePMMA+ at 20 ◦C and 1 ◦C, under the indicated pressures.

c. Negative electrospun PMMA (ePMMA-)

Similar findings were obtained for ePMMA- (Figure 4), where the plateau values of
sorbed CO2 are roughly close to those for ePMMA+ at 20 ◦C and marginally lower at 1 ◦C.
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Figure 5 shows a comprehensive comparison of the first-order rate constants (kobs) for
CO2 sorption by pPMMA and ePMMAs under the tested conditions. The values of kobs
for ePMMAs are generally 2–3 times higher than those for pPMMA, with the fastest being
observed at 1 MPa CO2 pressure. Cycle I is much slower than cycles II and III for pPMMA
under all conditions, whereas ePMMAs show smaller differences in kobs values at higher
pressures (2–4 MPa). Faster rates at 1 MPa may be explained considering that a lower gas
pressure applies a milder compression to the polymer chains, thus reducing the shrinking
of inter-chain voids or free volume as compared to higher pressures; this leads to a higher
diffusivity of CO2 into the polymer’s free volume, as reported in the literature [37]. On the
other hand, higher pressures eventually result in higher sorption amounts (Figures 2–4).



Separations 2023, 10, 505 8 of 16

Separations 2023, 10, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 4. Kinetic profiles of CO2 sorption by ePMMA- at 20 °C and 1 °C, under the indicated pres-
sures. 

Figure 5 shows a comprehensive comparison of the first-order rate constants (kobs) for 
CO2 sorption by pPMMA and ePMMAs under the tested conditions. The values of kobs for 
ePMMAs are generally 2–3 times higher than those for pPMMA, with the fastest being 
observed at 1 MPa CO2 pressure. Cycle I is much slower than cycles II and III for pPMMA 
under all conditions, whereas ePMMAs show smaller differences in kobs values at higher 
pressures (2–4 MPa). Faster rates at 1 MPa may be explained considering that a lower gas 
pressure applies a milder compression to the polymer chains, thus reducing the shrinking 
of inter-chain voids or free volume as compared to higher pressures; this leads to a higher 
diffusivity of CO2 into the polymer’s free volume, as reported in the literature [37]. On the 
other hand, higher pressures eventually result in higher sorption amounts (Figures 2–4). 

 
Figure 5. First-order rate constants for CO2 sorption by PMMAs under the reported conditions. 

The durability of ePMMA- was also preliminarily investigated by performing a 
higher number (i.e., >3) of sorption/desorption cycles using the same polymer specimen. 
ePMMA- was chosen due to its slightly better handling properties compared to ePMMA+. 
Figure S9 shows the efficiency loss during consecutive experiments, each obtained after 
depressurization and equilibration of the polymer sample at the end of the previous cycle. 

Figure 5. First-order rate constants for CO2 sorption by PMMAs under the reported conditions.

The durability of ePMMA- was also preliminarily investigated by performing a higher
number (i.e., >3) of sorption/desorption cycles using the same polymer specimen. ePMMA-
was chosen due to its slightly better handling properties compared to ePMMA+. Figure S9
shows the efficiency loss during consecutive experiments, each obtained after depressur-
ization and equilibration of the polymer sample at the end of the previous cycle. From
Figure S9a, it is clear that the CO2 capture properties of ePMMA- remain unchanged upon
repeated use, as the efficiency after the last cycle was only about 5% lower than the first.
The efficiency for the nth cycle is defined as (mg of sorbed CO2 in the nth cycle)/(mg of
sorbed CO2 in the first cycle) × 100.

The possibility of recycling used PMMA was investigated. Spent electrospun PMMAs
were obtained by exposing the samples to several cycles of CO2 sorption–desorption,
followed by a regeneration process by melting their fibers and performing electrospinning
again on the molten mass. CO2 sorption experiments carried out on these regenerated
fibers show that the carbon dioxide capture performances were superimposable to those
observed with ePMMA- obtained from pristine raw materials (Figure S9b).

3.2. Structural Characterization of Electrospun PMMAs

a. AFM

Pristine (i.e., non-previously exposed to CO2) ePMMA+ fibers showed considerable
roughness, with Ra and Rq values of 39.1 nm and 45.9 nm, respectively, which may provide
a large gas absorption surface (Figure 6a). Also, the small thickness of the electrospun
fibers should allow a very quick sorbing/desorbing of CO2. The morphology of pristine
ePMMA- samples showed a similar profile compared to ePMMA+ with a slight decrease in
surface roughness, with values of Ra = 26.4 nm and Rq = 31.7 nm (Figure 6b).

After the first pressure treatment cycle, the ePMMA+ sample showed a more regular
and partially “melted” surface, probably due to the plasticizing action of the gas, with
the disappearance of the characteristic roughness of the untreated polymer (Figure 6c).
A stronger morphological change was observed for exhausted ePMMA-, for which the
roughness drastically decreased (Ra = 14.3 nm and Rq = 17.8 nm), making the surface of
the fibers very smooth (Figure 6d).
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Figure 6. (a–d): AFM images of pristine ((a), top left; (b), top right) and spent ((c), bottom left; (d), bottom
right) ePMMA+ and ePMMA- fibers.

b. SEM

Figure 7 shows SEM images of ePMMA+ and ePMMA- under two different magni-
fications. No major differences were observed between the two species in terms of the
morphology of fibers, and average diameters were 1.76 µm and 2.68 µm for ePMMA+ and
ePMMA-, respectively. Both materials show a random distribution of the fibers which are
homogeneous and free of surface swelling or beads.

c. TGA

Thermogravimetric analysis of electrospun polymers (Figure 8) shows similar degra-
dation kinetics for pPMMA and ePMMA-. It is worth noting that the ePMMA+ tends to
lose weight at a slightly faster rate compared to ePMMA- and pPMMA, possibly due to
a higher display of hydroxy groups on the outer surface of the fibers. This may be the
consequence of a higher surface/volume ratio for ePMMA+ fibers, as determined by an
average diameter of ePMMA+ fibers, which is about 35% lower compared to ePMMA-
(Figure 7). The observed differences may be explained by recalling that electrospinning
modifies the physical state of the bulk polymer by orienting fiber bundles according to
the applied tension without affecting the inter-chain chemical bonds (i.e., the dynamic
cross-links). Using differential thermal analysis (Figure 8, dashed lines), it is found that two
distinctive steps are present for both species. The first step may be related to a structural
reorganization with a loss of vinyl unsaturation around 318–329 ◦C, and the second step is
ascribed to the usual decomposition/fragmentation of polymer chains around 429–434 ◦C.
A complete degradation of the polymers is observed before reaching 500 ◦C.
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d. BET

BET analyses of electrospun PMMAs show a marked difference in the nitrogen sorp-
tion/desorption behaviors for the two oppositely charged polymers. ePMMA+ has a
monotonic, linear kinetics of nitrogen sorption, which perfectly superimposes with the des-
orption (Figure 9a), thereby suggesting that pores are easily accessible, and the adsorption
and desorption mechanisms occur through the same type of process. On the other hand,
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ePMMA- shows a Type 4-like isotherm with an apparent hysteresis between the two curves
(Figure 9a) [52]. This difference underlines the importance of the electrospinning process,
whereby the same starting material (PMMA) can be worked into end products provided
with quite different morphological and functional properties. The observed hysteresis loop
for ePMMA- indicates a mesoporous adsorbent where adsorption occurred with capillary
condensation [52]. In general, for both samples, the shape of adsorption isotherms indicates
a small content of micropores and a significant content of mesopores (pore size 2–50 nm).
The apparent surface areas of ePMMA- and ePMMA+ calculated using the BET method in
the relative pressure (P/P0) range from 0.05 to 0.25 are 613.49 m2 g−1 and 519.63 m2 g−1,
respectively (Figure 9b).
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e. FT-IR

Infrared spectra show that the process of sorption/desorption of carbon dioxide does
not modify the chemistry of the backbone and pendant groups of the polymers (Figures
S1–S6). They also show that the chemical composition of electrospun PMMAs does not
change as compared to pristine PMMA (Figures S7 and S8). The spectra present some
typical PMMA features, such as the C−H stretching modes of α-methyl, ester-methyl, and
methylene groups at 2900−3000 cm−1 and the C-H bendings at 1350–1450 cm−1, as well as
the C=O stretching at 1726 cm−1 and the three main bands in the 1350–1100 cm−1 region
of ester group stretching vibrations. The distinctive CO2 peaks around 2340 cm−1 are not
present in the post-adsorption spectra, possibly due to at least two processes: (i) pressure
release to the ambient atmosphere upon opening of the reactor, and (ii) placing the polymer
onto the ATR that lead to a quick release of the gas from the polymer itself.

4. Discussion

The bonding of CO2 with PMMA is reported as a Lewis acid-base interaction between
the oxygen lone pairs in the polymer’s carbonyl groups, and the bond dipoles of carbon
dioxide [21,25]. This interaction leads to a perturbation of the dynamic cross-links among
the polymer chains, thereby promoting their plasticization or rubber transition [26]. Electro-
spinning treatment of PMMA, while reasonably not affecting this perturbation mechanism,
remarkably changes its CO2-sorption properties in several respects. The first difference
is in the kinetic profiles, where pPMMA shows slower sorption kinetics in the first cycle
(with a higher plateau value for bound CO2) compared to subsequent ones. This behavior
appears to be generally independent of the pressures and temperatures employed in the
experiments. Conversely, electrospun PMMAs provide kinetic parameters of the first sorp-
tion profiles, which are broadly superimposable to those of the following cycles, except
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at the lower pressure tested (1 MPa). This difference in the sorption behavior of pPMMA
and ePMMAs may be partly related to the much higher surface/volume ratio of the latter,
whereby plasticization of the polymer surface, which is a known irreversible effect of the
action of CO2 on several synthetic polymers, occurs almost exhaustively during the first
sorption cycle across the whole fiber sections, as can be seen from the AFM data and images
(Figure 6), which show a reduction in surface roughness caused by plasticization. On the
other hand, plasticization may occur less extensively into the core of pPMMA particles
due to their larger sizes. Rapid surface plasticization of ePMMAs fibers then results in the
observed consistency of the kinetics of CO2 sorption, as found from the comparison of
kinetic rate constants (Figure 5) for sorption cycles I to III under each set of P/T conditions
(except at 1 MPa). The observed difference in nitrogen adsorption/desorption mechanisms
between ePMMA+ and ePMMA- (see Section 2.d above) is apparently also unimportant
when the gas is carbon dioxide instead of nitrogen due to their very different solubility
and mechanisms of interaction with the polymer’s functional groups. It should also be
noted that the present work focuses on a possible application of ePMMAs as CCS media;
therefore, sorption/desorption cycles were carried out within short time frames of 60 min
for sorption and 30 min for desorption under line vacuum (1.7 kPa). Sorbed CO2 amounts
for ePMMAs reach 90% of plateau values in a matter of seconds (Table S1) and up to three
times faster than with pPMMA, thus making these materials reasonably fast for use in
membranes for CO2 separation. It should be noted, however, that exhaustive dissolution of
CO2 into (and desorption from) PMMA may require much longer times, as pointed out by
some authors [7,53].

Another difference between pPMMA and ePMMAs relates to the amounts of sorbed
CO2. Under the higher tested pressures of 4 MPa (20 ◦C) and 3 MPa (1 ◦C), the weights
of CO2 bound by the ePMMAs are higher by approximately 25% and 30%, respectively,
compared to pPMMA under the same conditions. The most interesting finding in this
respect is in the amounts of captured CO2 under the lower pressures, where CO2 amount
of up to 11 times higher was found for ePMMAs compared to pPMMA at 1 MPa (Table 1).
This remarkable improvement in capture efficiency under low CO2 pressures may be
particularly beneficial for technological applications, such as in the development of cheap,
solid-state devices for CCS. Preliminary results also show a <5% decrease in the amount of
sorbed CO2 after 10 sorption/desorption cycles (Figure S9).

The rationale for higher sorbed CO2 amounts but slower kinetics as the pressure
increases may be found in the opposite effects of hydrostatic pressure and plasticization by
a “solvent” gas such as CO2. An increase in gas pressure causes a mechanical (hydrostatic)
effect leading to a reduction of the free volume among polymer chains, which slows down
the diffusion of gas molecules into the polymer and promotes vitrification [35,54]. At the
same time, CO2 molecules penetrating the free volumes cause perturbation of dynamic
cross-links between adjacent chains, thus accelerating chain mobility and depressing the
polymer viscosity and Tg [55–59]. Conversely, at 1 MPa the hydrostatic shrinking of inter-
chain spaces is low, thereby promoting the entropically driven filling of voids by CO2
molecules. This process is very effective when the polymer is spun into micro-fibers such
as the ePMMAs while being much less important in pPMMA where the gas mass transfer
is inherently hindered by the large cross-section of bulk polymer particles.

As mentioned in the Introduction, PMMA shows a peculiar dependence of its Tg from
temperature and CO2 pressure, which is known as retrograde vitrification. The experiments
in the present work were conducted under the glassy region for PMMA, but it should be
mentioned that tests carried out at 1 ◦C/3 MPa are close to the glass-rubber transition
curve [12,26,29,30,33,35,36,60,61] Therefore, it should be assumed that sorption kinetics
consistently follow a non-Fickian behavior over the range of P/T conditions adopted, but
this assumption seems inconsistent with the finding that the first-cycle sorption curves for
each P/T couple are markedly different from the following cycles, at least for pPMMA [28].
This phenomenon appears much weaker in ePMMAs, possibly due to their much larger
surface-to-volume ratio, and the axial stretching and orientation of the polymer macro-
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molecules due to the electrospinning process. Recent studies on the effective glass transition
temperature (Tg,eff) of different grades of PMMA have highlighted the need of determining
the Tg,eff for each polymer grade, and the development of the present study will follow this
suggestion [32]

5. Conclusions

Electrospun PMMAs form micron-sized, electrostatically oriented fibers with a similar
arrangement of pendant groups in the inter-chain spaces. The fibers showed a better
CO2 capture performance under high pressures than the pristine PMMA powder, both
in terms of sorption kinetics and the amount of sorbed carbon dioxide. Kinetics are
2–3 times faster for ePMMAs than for pPMMA, and this effect has been ascribed to a higher
surface-to-volume ratio for the polymeric fibers. The amount of sorbed CO2 was a function
of gas pressure in all PMMA samples, but up to an 11-fold increase in sorbed gas was
observed in ePMMAs at the lower tested pressure of 1 MPa, possibly due to the reduction
in hydrostatic shrinking of inter-chain voids. The release of CO2 from the polymer mass
under ambient pressure and temperature is extremely quick, which makes these samples
very promising for fast carbon dioxide capture/release from high-pressure exhaust gas
mixtures, as found in pre-combustion and oxyfuel combustion processes, or from natural
gas. A future perspective is the possible implementation of PMMA electrospun fibers into
solid-state carbon capture devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/separations10090505/s1, (A) FT-IR characterization of pristine and
electrospun PMMAs under CO2 pre- and post-adsorption conditions. (B) Characterization of the
efficiency losses for pristine and regenerated ePMMAs. (C) Comparison of CO2 saturation times for
pPMMA and ePMMAs.
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