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Abstract: Organic solvent nanofiltration (OSN) is a membrane separation method that has gained
much interest due to its promising ability to offer an energy-lean alternative for traditional thermal
separation methods. Industrial acceptance, however, is held back by the slow process of mem-
brane screening based on trial and error for each solute-solvent couple to be separated. Such
time-consuming screening is necessary due to the absence of predictive models, caused by a lack of
fundamental understanding of the complex separation mechanism complicated by the wide variety
of solute and solvent properties, and the importance of all mutual solute-solvent-membrane affinities
and competing interactions. Recently, data-driven approaches have gained a lot of attention due to
their unprecedented predictive power, significantly outperforming traditional mechanistic models. In
this review, we give an overview of both mechanistic models and the recent advances in data-driven
modeling. In addition to other reviews, we want to emphasize the coherence of all mechanistic
models and discuss their relevance in an increasingly data-driven field. We reflect on the use of data
in the field of OSN and its compliance with the FAIR principles, and we give an overview of the state
of the art of data-driven models in OSN. The review can serve as inspiration for any further modeling
activities, both mechanistic and data-driven, in the field.

Keywords: organic solvent nanofiltration; data science; mathematical modeling; machine learning;
data standardization

1. Introduction

Membranes are powerful, versatile separation tools, offering an energy-lean alter-
native for traditional thermal separation methods like the ubiquitous distillations and
evaporations [1,2]. Their strength has been proven in water-based streams with numerous
large-scale implementations [3]. In the last 15 years, membranes have also shown great
potential in organic solvents, giving rise to a new field named organic solvent nanofiltra-
tion (OSN), very relevant in more sustainable chemistry [4]. Next to seriously declined
energy use and correlated low CO2 footprint, the strengths of OSN are gentle processing,
avoidance of additives, and easy scalability due to modular buildup.

Unlike membrane processes in aqueous solutions, in organic solvents, the underlying
transport mechanism is not well understood. Experimental OSN results have clearly shown
the complexity of this membrane process, influenced by the wide variety of solute and
solvent properties, and the importance of all mutual solute–solvent–membrane affinities
and competing interactions. On top of this, solvent-dependent swelling further complicates
separation for polymeric membranes, even for the membranes specifically developed for
OSN. As a result, and despite its advantages, OSN is still not widely used in industry. An
important bottleneck is this absence of a detailed fundamental understanding of the OSN
process and the lack of an efficient predictive model [5,6]. To use OSN without such a
model, membranes need to be screened based on trial and error for each solute–solvent
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couple to be separated. Consequently, the development process for OSN is tedious and
time-consuming, and needs to be repeated for each new separation case, slowing down
general industrial acceptance.

There do exist mechanistic models that can be used to try and describe OSN, though
originally developed for water filtration. However, due to the complex nature of OSN, these
models have shown only limited predictive capacity and are not general for all membranes,
conditions or maybe even solvents because a lot of interactions are not well described in the
models. Nevertheless, these mechanistic models are still used to, for example, investigate
the relative importance of different transport mechanisms (as diffusion or convection) and
of non-idealities [7].

Nowadays, data-driven modeling is receiving more and more interest in process
technology, and especially in complex processes. The combination of this general rise in
interest in data-driven approaches and the urgent need for predictive models in OSN has
resulted in the recent popularity of data-driven models in this field. These models are used
to predict membrane performance and are already outperforming the mechanistic models
that came before [8,9]. Using the predictive power that data-driven models provide, they
can help fast track the industrial acceptance of OSN. Next to prediction, data-driven models
can also be used to determine the key solute–solvent–membrane properties influencing
the separation process [6,10]. Moreover, these models are being used in combination with
mechanistic models as so-called hybrid models to provide extra insights and to reveal
possible relationships between the physical parameters of a mechanistic model and specific
solute–solvent–membrane properties [11,12]. Hence, data-driven approaches can still
provide physical insight into the separation mechanism.

This review will first give an overview of all mechanistic models relevant for OSN,
focusing on the governing parameters and assumptions of the physical context, as well
as the relations between the different models. Compared to other reviews, we want to
emphasize the coherence of all mechanistic models and we provide an overview of the
free parameters in all models. The remaining part of the review will discuss data-driven
modeling in OSN. We start with a discussion of the data itself and the importance of
complying with the FAIR principles [13]. We reflect on how well the OSN community
has been doing in this regard and discuss how and where to improve. Additionally, we
discuss the representation of the data, namely the descriptors. Thereafter, we zoom in on
data-driven approaches in general and their application to membranes in water filtration
before we give an in-depth discussion on the state of the art of data-driven modeling in
OSN and its results up to now. Finally, we conclude with an outlook on the future and the
challenges the field will face on the way.

2. Mechanistic Transport Models

In the current scientific literature, a whole set of models can be found that describe
transport through membranes based on physical principles. These models provide an-
alytical expressions for the flux of solvent(s) and solute(s) through the membrane (or
equivalently the rejection rate), along with a set of physical parameters. The choice of
a particular model is driven by the properties of the separation mechanism, the type of
membrane and, certainly in OSN [4], the solute and solvent. Different models can be
distinguished by the assumptions made on the physical context, the approximations they
apply, and the set of physical parameters they are represented by, which can differ both in
meaning and amount.

Mechanistic membrane transport models are traditionally categorized in three major
branches: solution–diffusion (SD), pore flow (PF), and irreversible thermodynamics (IT)
models [14]. SD and PF models start from specific assumptions related to the physico-
chemical properties of the membrane. SD models describe separation as a process driven
by the relative diffusion of the solute and solvent through the membrane. PF models
describe the transport of solute and solvent as viscous flow through membrane pores,
where the separation happens due to size exclusion. Hence, the choice for either SD or
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PF typically depends on the membrane: SD models are often used to describe dense
membranes (through which the permeating species can diffuse), and PF models are often
used to describe porous membranes (through which the permeating species can flow). The
third type of models, IT models, are, in that sense, less specific. They treat a membrane
without any prior assumptions and the relative transport of solute and solvent through the
membrane follows merely from energy dissipation and entropy production.

Compared to other reviews, we want to emphasize the coherence of all mechanistic
models, and we provide an overview of the free parameters in all models. The different
models were historically developed independently, but the resulting equations for solute
and solvent flux are often mathematically very similar. The reason for this is that they
can all be derived from the same general Maxwell–Stefan (MS) theory. The master model
itself follows from fundamental statistical physics [15]. The set of models has a hierarchical
structure, where a chain of assumptions leads to a specific model: the assumption of
the dominating separation mechanism, the physical parameters and their interpretation,
and the membrane-dependent assumptions on the pressure and concentration profiles.
This shows that most models are not fundamental in nature, but at the same time, it
underlines the coherence of the whole: although many models were developed with ad hoc
concepts, by making the underlying assumption explicit, the differential equations can be
explained. This is the unique, particular approach followed in this review and visualized
in Figure 1. This figure displays the amount of parameters used in each model for a binary
system (1 solute, 1 solvent) as well. Counting the parameters gives an idea of how much
information is contained within a model, as well as what information is lost when going
from a more general model to one with fewer parameters.

Figure 1. Overview of mechanistic models relevant for OSN. The parameter count is valid for binary
systems only.

This section is organized as follows. First, the general MS theory is discussed in detail.
Next each major branch is addressed together with the assumptions made to derive it from
the MS model. For each branch, some representative models will be discussed together
with the parameters needed to represent them. Specific attention is paid to the physical
meaning of the parameters. Table 1 summarizes the symbols used in the different models.
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Table 1. Nomenclature.

c [mol/m3] Molar concentration D [m2/s] Fick’s Diffusion coefficient
D [m2/s] MS diffusion coefficient F [N/mol] Force per mole

F [9.649× 104 C/mol] Faraday constant J [mol/(s m2)] Molar flux
JV [m/s] Volumetric flux K [−] Sorption coefficient
Kc [−] Conductive hindrance factor Kd [−] Diffusive hindrance factor

L Solvent permeability parameter N [−] Number of species
p [Pa] Pressure P Solute permeability parameter

R [8.314 J/(K mol)] Gas constant Ri [−] Rejection of species i
T [K] Temperature u [m/s] Diffusive velocity

x [−] Mole fraction z [m] Spatial coordinate perpendicular to
membrane surface

Z [−] Charge number α [−] Viscous selectivity
γ [−] Activity coefficient ε [−] Membrane porosity

ζ [kg/(s mol)] MS Friction coefficient η [Pa s] Viscosity
λ [−] Ratio of solute to pore radius µ [J/mol] Chemical potential

ν [m3/mol] Molar volume π [Pa] Osmotic pressure
σ [−] Reflection Coefficient τ [−] Membrane tortuosity
χ [−] Friction coefficient ψ [V] Electric potential

Subscripts
1 Solvent 2 Solute

i, j Either solute or solvent m Membrane

Superscripts
′ Feedside ′′ Permeate side

(0) External side of membrane boundary (m) Membrane side of boundary

2.1. Maxwell–Stefan Theory

The Maxwell–Stefan equation is a model that describes the diffusion and, by expansion,
viscous flow of a multi-component system [16–18]. The model generalizes Fick’s law for
diffusion, as it is possible to derive it from the MS model. Maxwell–Stefan theory relies on
the assumption that any relative diffusive movement of species is caused by a deviation
from equilibrium between molecular friction and the thermodynamic driving force. In
the steady state, the governing equation is then found by balancing the thermodynamic
driving force on a species i to the friction of i with all other species j [19]:[

driving force
on a species i

]
=

[
sum of friction with

all other species j

]
.

The friction force of species j on i is proportional to the difference in diffusive velocities
(ui − uj) of the species, with a proportionality constant ζi,j called the friction coefficient.
The only further assumptions that the model makes are thermal equilibrium (T = cst) and
that the friction force of species j on i is proportional to the mole fraction xj of species j
in the mixture. The driving force Fi contains contributions from gradients in the chemical
potential µi (as suggested by irreversible thermodynamics [20]) and external forces Fext

i as
electric potentials. The gradient ∇µi further contains contributions from the gradients of
pressure p and mole fractions xi (or equivalently concentrations ci = xictot).

This then leads to the Maxwell–Stefan equation for species i in one dimension [19,21]:

− RT
xiγi

d(xiγi)

dz
− νi

dp
dz

+ Fext
i = ∑

j
xjζi,j(ui − uj) + ζi,mui (1)

where z is the spatial coordinate perpendicular to the membrane surface, νi is the molar
volume, and γi is the activity coefficient of species i, which accounts for the non-ideality of
the mix. The membrane, denoted by subscript m, is considered a separate species with no
absolute or diffusive velocity. Accordingly, it was taken out of the summation, which now
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only sums over solutes and solvents. Note that there is a Maxwell–Stefan equation for all
components of the mix, and there is no distinction between the solvent or solute.

It is useful to rewrite the MS equations in terms of molar fluxes Ji instead of the
diffusive velocities since the flux is the actual observable. Neglecting any electrical forces,
this gives

Ji = −
RTεctot

ζi,m

dxi
dz︸ ︷︷ ︸

Diffusion

− RTεctotxi
ζi,m

d ln γi
dz︸ ︷︷ ︸

Non-ideality

− xiεctotνi
ζi,m

dp
dz︸ ︷︷ ︸

Pressure diffusion

−∑
j

ζi,j

ζi,m

(
xj Ji − xi Jj

)
︸ ︷︷ ︸

Friction

− xiεαi
dp
dz︸ ︷︷ ︸

Viscous flow

(2)

where ε is the porosity and αi accounts for the separative character of the membrane on the
viscous flow [15]. The parameters ζi,j and ζi,m account for friction between all components
in the system: solute–solvent, solute–membrane and solvent–membrane. From this form
of the MS equation, one can see that the flux gets contributions from (i) concentration
diffusion, (ii) thermodynamic non-idealities, (iii) pressure diffusion, (iv) friction with other
species, and (v) viscous flow. The term containing non-ideality is often neglected, which is
acceptable when the gradient d ln γi/dz is negligible, i.e., when the concentrations within
the membrane, or variations in concentration, are small [22]. However, several studies have
shown that non-ideal thermodynamics can have a significant impact on the separation
process [7,23,24].

Notice that Fick’s law is incorporated in the first term of Equation (2). In analogy, we
define the Maxwell–Stefan diffusion coefficient Di,j between species i and j as

Di,j =
RT
ζi,j

(3)

where j could be either the membrane (j = m) or any of the permeating species. In
the literature, one may find the Maxwell–Stefan equation to be described with either
diffusivities Di,j or friction coefficients ζi,j. It should be noted, however, that these Di,j are
not identical to the regular diffusion coefficients found in Fick’s law.

The MS theory is a very general model for membrane separation as shown by the large
number of parameters in Equation (2) describing all mutual interaction in the system. A
bookkeeping of all parameters for a system with N different species of solutes and solvents
combined is given in the following table:

Parameter ζi,m ζi,j ε αi Total

Amount N N(N − 1)/2 1 N N2/2 + 3N/2 + 1

For a binary system (i.e., one solvent and one solute) N = 2, this yields a total of
six parameters.

Alternatively, the MS equations can be written down without a separate term dedicated
to describing viscous flow. In fact, in the original MS equations, the last term in (2) is absent.
The model was only later altered by Mason and coworkers to account for viscous flow
separately [21]. To distinguish the two approaches of the MS model, the method discussed
above (Equation (2)) is referred to as the structured approach, while the one with no
distinct viscous flow term is referred to as the overall approach [19]. The physical concepts
behind the different approaches are, however, quite distinct. In the structured approach
discussed above, the membrane is considered to be a completely distinct phase, for example,
merely serving as a pore system through which the permeating species can flow. In the
overall approach, the membrane and permeating species are instead considered to be one
thermodynamic phase, making the membrane an active participant in transport. Hence, the
driving force of flux is fully described by the gradients of the chemical potentials, and there
is no need for an extra term describing the viscous flow of the mix through the membrane,
as the membrane is itself considered a stationary component of this mix. Accordingly, this
alternative overall form of the MS equations is easily obtained if one assumes that friction
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results from a difference in the absolute velocity of different species (rather than just the
diffusional velocity), i.e., by replacing ui by vi = Ji/(xictotε) in Equation (1). Then, however,
the friction coefficients, say ζ ′i,j, appearing in this alternative form, are not identical to the
ζi,j in (2), and neither is their physical interpretation [15]. Although this difference in
approach may give the impression that the two models are completely distinct, they are in
fact mathematically identical, as it has been shown that the two approaches can be obtained
from one another by pure algebraic manipulations, without any physical assumptions,
resulting in equations relating ζi,j to ζ ′i,j [19,21,25]. This means that in such models, viscous
flow may indeed be present but not in an obvious way, as it is hidden in the parameters. The
advantage of using the equations as formulated in the structured approach (Equation (2)) is
that they make investigating the contributions from different transport mechanisms easier
(see, for example, [7]).

In the structured approach, the parameters ζi,j only account for friction between
species i and j, without any (hidden) contributions from viscous flow. Accordingly, since
the friction that species i applies on j is the same as that of j on i, it makes sense that the ζi,j
are symmetric:

ζi,j = ζ j,i (4)

which can be traced back to be exactly the Onsager symmetry found in linear irreversible
thermodynamics [26]. However, in the overall approach, the Onsager symmetry might be
broken (ζ ′i,j 6= ζ ′j,i) since the friction coefficients ζ ′i,j now also contain a contribution from
viscous flow on species i that might influence the permeating species differently due to
some separative behavior of the flow. To be more precise, the symmetry is not broken
but merely hidden inside the coefficients because ζi,j = ζ j,i still holds. Note that in the
overall approach, Onsager symmetry can still hold but only if the viscous flow affects all
permeating species in the same way, i.e., when αi = αj (∀ i, j). Consequently, the symmetry
also holds in a pure diffusive system when there is no viscous flow at all. This can also be
confirmed from the equations relating ζ ′i,j to ζi,j, which show that indeed ζ ′i,j = ζ ′j,i when
αi = αj (∀ i, j) [19].

2.2. How to Solve the Differential Equations
2.2.1. Binary Systems

In practice, the approximation to binary systems (1 solvent, 1 solute) can often be
made. For these systems, the differential equations simplify significantly, and it allows us
to write them in a more elegant way. Many of the important transport theories mentioned
above were originally written down for binary systems and only later altered to apply for
multi-component systems.

Writing the differential equations in their more elegant binary form is not only possible
for a 1 solvent–1 solute system but it may also be an acceptable approximation for a multi-
component system if (i) one can treat multiple solvents as one new solvent mix, and if
(ii) one could at the same time assume that different solutes move independently from each
other (i.e., non-interacting), thus allowing one to describe solutes by multiple mutually
uncoupled differential equations of exactly the same form, only differing in the values of
their physical parameters. Under these assumptions, any binary model can be trivially
extended to a multi-component system: simply adopt the equation for solvent/volumetric
flux, which now describes the solvent mix as a whole, and make M copies of the binary
solute equation, one for each of the M solutes, which only differ by the values of their
physical parameters. Below, the solute flux Ji and all parameters {Xi} appearing in the
binary solute equation are labeled with a subscript i so that upon extension of the binary
model to a multi-component system, each extra solute j is represented by an identical
equation for Jj while having an associated set of parameters {Xj}, differing from {Xi}.
An example of how this can be performed in practice is given in Section 2.3.1. Due to the
elegance and simplicity of binary models, and their trivial extension to a multi-component
system, the majority of models discussed below are formatted to binary solutions.
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For a binary system, the MS Equation (2) reduce to

J1 +
ζ1,2

ζ1,m
(x2 J1 − x1 J2) = −

εctotx1

ζ1,m

dµ1

dz
− x1εα1

dp
dz

, (5)

J2 +
ζ2,1

ζ2,m
(x1 J2 − x2 J1) = −

εctotx2

ζ2,m

dµ2

dz
− x2εα2

dp
dz

(6)

where the gradients of the chemical potentials dµi
dz = RT d

dz ln(xiγi) + νi
dp
dz are related to one

another via the Gibbs–Duhem relation x1
dµ1
dz + x2

dµ2
dz = 1

ctot

dp
dz , and where additionally, due

to mass balance, the mole fractions are related to the molar volumes as x1ν1 + x2ν2 = 1/ctot.
Finally, in the mathematically identical overall approach of the MS model, the last terms,
separately describing viscous flow, do not appear.

It may also be useful to rewrite the flux equations for J1 and J2 to equations for solute
flux J2 and volumetric flux JV = ν1 J1 + ν2 J2, which contains, of course, the same amount of
information, only written in a different form. For example, the irreversible thermodynamics
models are formatted this way. Mason and Lonsdale derived a simple expression for the
binary MS model in terms of the volumetric flux JV , given by [15]

JV = −Lp(
dp
dz
− σv

dπ

dz
), (7)

J2 = −ωc1ν1
dπ

dz
+ c2[1− σsc1ν1]JV (8)

where π = RTc2
d
dz ln(c2γ2) is the osmotic pressure and parameters Lp, σv, σs, ω are all in

function of the MS parameters ζi,j, ζi,m, αi, ε and concentrations c1, c2 [15]. Note that these
four parameters are less than the six found in (5) and (6), so the algebraic manipulations
result in some loss of information of the model. An example of this loss of information
is that it is no longer possible, from Lp, to determine how much of the volumetric flux JV
originates from viscous flow, and how much from diffusion. Additionally, the porosity ε,
and its contribution to the flux, is completely hidden and contained within the parameters
Lp and ω. From the volumetric MS Equations (7) and (8), it is easy to see that the irreversible
thermodynamics models (see below) are a special case of Maxwell–Stefan theory.

We finally note that if a given model provides equations for solute and solvent flux
that differ in form, the user needs to be able to point out which of the particle species
is solvent and which is solute. This distinction is not necessary in, for example, the MS
model (5) and (6) where the solute and solvent are treated alike, but it is, however, necessary
for the volumetric MS Equations (7) and (8).

2.2.2. Membrane Boundary and Non-Ideal Thermodynamics

To solve the differential equations, membrane boundary assumptions are needed.
An assumption made in almost all models is that each boundary of the membrane is in
thermodynamic equilibrium, with the exception of, for example, transport models that
include chemical reactions [27]. Denoting quantities q on the membrane-phase side of the
membrane–liquid boundary as q(m) and on the external liquid side of the membrane–liquid
boundary as q(0) allows us to write this thermodynamic equilibrium condition as

µ(0) = µ(m) (9)

which holds on either side of the membrane. Note that the distance between (0) and (m) is
infinitesimal. To express this condition in terms of concentrations, one can integrate the
differential of the chemical potential dµ = RTd ln(γc) + νdp over just the membrane–liquid
boundary. Use (9), and rewrite for c(m) to obtain

c(m) = Kc(0)eν(p(m)−p(0))/(RT) (10)
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where the sorption coefficient K = γ(0)/γ(m) is defined as the ratio between the activity
coefficients of the internal and external phases. Note that Equation (10) holds on either
of the two membrane borders. Since the distance between (0) and (m) is infinitesimal,
(p(m) − p(0)) only differs from zero when the pressure changes discontinuously at the
membrane boundary. If the pressure changes continuously across the boundary, the
exponential in (10) vanishes, leaving only the condition

c(m) = Kc(0). (11)

This condition becomes important when non-ideal thermodynamics are considered
(captured by K), which can result in a significant effect on the solute rejection [7,24]. A con-
tinuously changing pressure is, however, not always the case, like in the solution–diffusion
model, where the pressure is assumed to decrease discontinuously on the permeate side of
the membrane boundary, see Section 2.3.3.

The boundary conditions (10) and (11) relate the concentration in the external liquid
to the concentration inside the membrane at either of the two borders of the membrane.
The concentration at some point within the membrane is obtained from solving the flux
differential equations for the boundary conditions at z = 0 and z = ∆z for a membrane
with thickness ∆z and starting at z = 0.

2.2.3. Rejection Calculation

Together with the flux, solute rejection is the most important quantity that one wishes
to predict for membrane processes. The rejection quantifies what fraction of solute has
successfully been held back by the membrane. While a transport model typically only
provides an equation for solute and solvent flux, the rejection usually has to be calculated
from these equations by solving them for the appropriate boundary conditions. In particular,
the rejection Ri of solute i is calculated by comparing the solute concentration at the
permeate and feed side of the membrane according to

Ri = 1−
c′′i
c′i

(12)

where c′′i = ci(z = ∆z) and c′i = ci(z = 0) are, respectively, the permeate and feed
side concentrations of the solute, and are calculated by solving the differential flux equa-
tions for the appropriate boundary conditions at z = 0 and z = ∆z before applying
Equations (10) and (11).

2.3. More Specific Models

As mentioned before, there is a vast landscape of models (SD, PF, and IT) trying to
describe transport across the membrane, all with their own assumptions. Figure 2 displays
the assumptions made on profiles of the chemical potential µi and activity ciγi of species
i and the pressure for all different model approaches in a one-component solution. A
summary of all model parameters is given in Table 2. We note that neither in the MS model,
nor any more specific model discussed below, are there any known explicit relations of these
parameters to the characteristics of solutes, solvents and membranes. To be complete, we
also mention the development of a variety of semi-empirical models, mostly elaborations
of one of the mechanistic models described here [4].
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Figure 2. Profiles of the chemical potential µi, activity ciγi, and the pressure in a one-component
solution, displayed in the format familiarly used in the literature [4,14,27,28].

Table 2. Parameters in different binary models.

Model Parameters Amount

MS ζ1,2, ζ1,m, ζ2,m, α1, α2, ε 6
MS—Volumetric form Lp, σv, σs, ω 4

IT—Kedem–Katchalsky Pi, σi, L 3
IT—Spiegler–Kedem Pi, σi, L 3

PF—ext. Nernst–Planck Kc,1, Kd,1, Kc,2, Kd,2 4
PF—Nernst–Planck Kc, Kd, L 3

PF—σ-models λ 1
SD—Imperfections Lsd, Limp, Pi,di f 3

SD—Classical P1, P2 2
SD—Simplified L, Pi 2

2.3.1. Irreversible Thermodynamics Models

Historically, these models were the first to use irreversible thermodynamics to describe
membrane transport. Later, it was shown that they can also be derived from the Maxwell–
Stefan model [15]. Unlike the SD and PF models, these models do not make any a priori
assumptions regarding membrane properties and transport modes (see also Figure 2). The
separation mechanism is purely based on energy dissipation and entropy production.

Kedem–Katchalsky model

Kedem and Katchalsky [29] were the first to create a model based on these ideas. In
their model, the volumetric flux JV and solute flux Ji are given by

JV = L(∆p− σi∆π), (13)

Ji = −Pi∆ci + JV (1− σi)c̄i (14)

where ∆π is the osmotic pressure difference over the membrane and c̄i is the mean con-
centration of solute i inside the membrane. Note that the solute flux consists of a diffusion
term, proportional to ∆c, and a convection term, proportional to JV . The binary model
provides a total of three parameters, namely L, σi, and Pi. Note that there is a pair of
parameters σi and Pi for every species of solute i in the system. The parameter L, called the
solvent permeability coefficient, is the proportionality factor between the solvent flux and
the pressure driving force. The parameter Pi is the permeability coefficient of solute i. It is
the proportionality factor between the solute flux and its concentration gradient, describing
the strength of the solute diffusion as a transport mechanism.

The parameter σi is called the reflection coefficient of solute i. If σ = 0, the convection
term is at its maximum value, meaning that the solute can become easily dragged trough
the membrane by the bulk motion of the solvent. Instead, one expects a well-performing
membrane to retain the solute or, in other words, one expects the viscous flow of solute,
caused by the bulk flow of solvent, to be reflected. Thus, σ = 0 corresponds to a non-
selective membrane, as both the solute and solvent can perfectly permeate it. If σ = 1, the
membrane is perfectly semi-permeable, i.e., the solvent can pass through the membrane,
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but the solute cannot, and the viscous flow of solute particles (caused by the solvent flow) is
reflected. However, there can still be the transport of the solute through the membrane via
diffusion. Alternatively, one can also view σ as the maximum value that the rejection can
take on; see the Spiegler–Kedem model below. Because of this, it may be helpful to rescale
the rejection R to R/σ, which always has theoretical values between 0 and 1. We mention
here that in the pore flow models, σ can be calculated from λ, the ratio of the solute size to
the pore size. For different pore structure assumptions, different σ(λ) equations apply.

Assuming no interactions between the solutes, this binary model can be trivially
extended to non-binary systems, as will be the case for all models that follow. In a non-
binary system, there exists still one equation for volumetric flux, as the solvent is modeled
as a solvent mixture, while there are M solute flux equations, one for each of the M species
of solute i, only differing in values of their physical parameters σi and Pi. Non-binary
systems containing M solutes will thus have 2M + 1 parameters.

Spiegler–Kedem model

In the Spiegler–Kedem (SK) version of the model, the equations for solute and solvent
flux JV and Ji are very similar to those in the KK model, be it in differential form, and given
by [30]

JV = L(∆p− σi∆π), (15)

Ji = −Pi∆z
dci
dz

+ JV (1− σi)ci. (16)

This model has the same parameters of L, Pi and σi as the Kedem–Katchalsky model,
and can similarly be extended to multiple solutes. Note the similarity between these
equations and the binary volumetric MS Equations (7) and (8). It can be shown that the SK
equations can in fact be derived from this volumetric Maxwell–Stefan theory by assuming
dilute ideal solutions, and taking σs = σv = σ [15]. These approximations result in some
loss of information and a decrease in the amount of parameters from four to three [15].

The solute rejection Ri ≡ (1− c′′i /c′i) can be derived by solving these differential
equations for the boundary conditions c′′i = ci(∆z) and c′i = ci(0) (the solute concentration
in the permeate and feed respectively):

Ri =
1− f

1− σi f
σi (17)

with the function f ≡ exp(−JV [1− σi]/Pi). The equation for rejection Ri clearly shows that
it has a maximum value Ri,max = σi (if f = 0), which provides the interpretation of the
reflection coefficient σi as the maximal obtainable rejection for solute i.

2.3.2. Pore Flow Models

In pore flow (PF) models, transport occurs by viscous flow through the membrane
pores [4,14]. The membrane is not an active participant but rather a pass way, where the
permeating species can flow through, unlike in SD models. The actual separation mechanism
is assumed to be size exclusion, i.e., if the solute is larger than the pore diameter, it is rejected.
Accordingly, PF models are used to describe transport through porous membranes, whereas
OSN membranes are generally between porous and dense. Such membranes are traditionally,
though not necessarily, assumed to have a constant bulk concentration throughout the inside
of the membrane (see Figure 2), but it need not be constant on the membrane–permeate
boundary, where an instant and discontinuous decrease might occur caused by rejection
due to size exclusion.

Nernst–Planck equation

To describe the solute flux, a great part of PF models use the Nernst–Planck (NP)
equation or a derivation thereof, assuming that the solutes are smaller than the pore
diameter and have in fact already passed the size excluding membrane–permeate boundary.
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In one dimension and electrostatic conditions, the NP equation describes the solute flux as
a sum of Fickian diffusion, viscous flow (or rather advection, solute transport carried by
bulk motion of solvent) and electromigration:

Ji = −Di
dci
dz

+ ciαi JV −
DiZiF

RT
ci

dψ

dz
(18)

where αi accounts, like in the MS model, for the selective character of the membrane on the
viscous flow. The concentration of solutes is allowed to vary through the membrane. For
a calculation of rejection, we refer to Bowen and Welfoot [22]. It is important to note that
the Nernst–Planck equation can be completely derived from the Maxwell–Stefan equation.
This means that all models that are derived from the Nernst–Planck equations below are
simplifications of the MS model. In PF models, the volumetric flux is only affected by a
pressure gradient due to the assumed constant bulk concentration inside the membrane
(see Figure 2):

JV = −L
dp
dz

(19)

which could be derived from either hydrodynamic analysis or irreversible thermodynamics,
while any temperature dependence can be absorbed by the proportionality factor because
thermal equilibrium is assumed. This equation provides just one parameter, L, denoting
the permeability coefficient. However, the equation for JV is of course very general, giving
no information on the permeability L. There are several models that predict specific
values for L, most notably, when the membrane can be modeled as consisting of parallel
cylindrical pores, i.e., the well-known Hagen–Poiseuille model, or consisting of closely
packed spherical beads, as in the Carman–Kozeny model [31]. In both cases, L depends on
the pore diameter, porosity, tortuosity and is inversely proportional to the viscosity.

In the context of membrane transport models, the Nernst–Planck equation is often
presented as the ’Donnan steric pore flow model’, which is mathematically completely
equivalent to the Nernst–Planck model, apart from the physical interpretation of its param-
eters. The NP equation was in this way first adapted by Bowen et al. [22,32] to be applied
to membrane transport models governed by steric effects. In particular, the diffusion
coefficient is now accompanied by the diffusive hindrance factor Kd,i, altering the strength
of diffusion, while αi is replaced by the convective hindrance factor Kc,i, which yields the
solute flux [22,32]

Ji = −Ki,dDi
dci
dz

+ Ki,cci JV (20)

where the electromigration term is neglected here. As mentioned before, the separation
mechanism in pore flow models is mainly size exclusion. Accordingly, size exclusion and
steric effects are incorporated into the physical parameters Kd,i and Kc,i, which are expected
to depend on λ, the ratio between the solute and pore radius [32].

In total, these models count three parameters, namely two describing the solute flux
(Kd,i and Kc,i), and one describing the solvent flux (L in Equation 19). When extending the
model to M solutes, it is described by M + 1 flux equations (M for the solutes and 1 for a
solvent-mix), accounting for 2M + 1 parameters (M times {Kd,i, Kc,i} and L). The decrease
in parameters compared to the MS model shows that the NP models are less general. This
loss of information is evident from, for example, the fact that only one parameter governs
the whole of the volumetric flux, without any regard for the diffusive transport of bulk
fluid, and the absence of any considerations of non-idealities (though this could be added
for the solute by replacing its concentration ci by activity γici).

There are several more examples of Nernst–Planck-derived models for membrane
transport, for example, surface force PF models [33] (and variations) and the finely porous
model [34]. Both examples use the same equation but different physical parameters, re-
placing Kd,i and Kc,i by 1/(χi,V + χi,m) and χi,V/(χi,V + χi,m), respectively, where χi,V χi,m
are interpreted as friction coefficients between solute–solute and solvent–membrane. The
difference, however, between the Donnan steric pore flow model and these example models
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are that the examples specify the solute distribution at membrane–solution boundary and
the radial dependence of the solute concentration within the pores (so these models are
necessarily 3D). They do this to account for interactions between the membrane and solute.
Similar to these examples are the space charge models, which also specify some radial
dependence of the solute concentration and additionally assume a surface charge. More
details can also be found in the following reviews [4,14].

Extended Nernst–Planck equation

Several authors also discuss the so-called extended Nernst–Planck equation, for exam-
ple, used by Bowen et al., as a model for membrane transport [22,32], given by

Ji = Kc,ici JV −
Kd,iDici

RT
dµi
dz
−

Kd,iDiZici

RT
F dψ

dz
(21)

where dµi
dz = RT d

dz ln(γici) + νi
dp
dz and JV = ∑N

i=1 νi Ji. Equation (21) holds for both the
solvent and solute, which results in a total of four parameters for a binary system (Kd,1,
Kc,1, Kd,2, and Kc,2), making the model more general than the previous NP models (see
Table 2). The main difference between the extended and regular NP model is that both the
solute and solvent are now described by the same equation (compared to the simplified
flux in Equation (19)). To a lesser extent, they also differ in the way that the extended NP
model includes non-idealities and contains a separate term describing pressure diffusion
(included in dµ/dz). The latter, however, could just as well be added to the regular NP
model (in analogy to the structured and overall approach of the MS equation), like one
may find in the literature, e.g., [22]. Similarly, non-idealities can be included by replacing
concentration c by activity γc. Also notice that the concentration of both the solute and
solvent is now not necessarily constant throughout the whole of the membrane.

Upon inspection, the extended Nernst–Planck equation is very similar to the binary
Maxwell–Stefan flux equation. Some algebraic manipulations can show that they are,
in fact, mathematically identical, up to a rescaling of parameters. Therefore, it can be
useful to think of this model as an effective implementation of the MS flux equation in the
PF formalism. That is, the MS equation, but assuming the same separation mechanism,
physical parameters, and concentration and pressure profiles as in the PF models.

Empirical σ-models

Next to the Nernst–Planck models, there exists a whole set of empirical models that
try to use arguments based on size exclusion and steric effects to describe the reflection
coefficient σ from the IT models, referred to as σ models in this review. Accordingly, they
are most appropriately classified as PF models due to the pore flow nature of the arguments
used by these models. Examples of σ models include the Verniory model, Ferry model,
steric hindrance model and log-normal model, which all describe σ as a function of λ, the
ratio of the solute to the pore radius. For a detailed discussion, we refer to the excellent
review of Marchetti et al. [4].

2.3.3. Solution–Diffusion Models

Solution–diffusion models are a class of transport models, where the transport mech-
anism is dominated by diffusion, originally developed by Lonsdale in 1965 [35]. These
models assume the permeating species to dissolve in the membrane material and molec-
ularly diffuse through it as a consequence of the concentration gradient. The membrane
material is thus assumed to be an active participant on the molecular level. Think of the
membrane as being part of the solution, a liquid component with zero velocity. This is not
the case for the PF models, where the membrane is composed of open pores through which
the permeating species can flow. Next to the concentration gradient, a pressure gradient is
also assumed not to be smooth or continuous as in the PF models but rather discontinuous
at the permeate–membrane boundary, while it is assumed that the pressure is uniform
within the membrane (see Figure 2). This internal constant pressure is a consequence of
the assumption that the membrane phase is an active participant of the solution so that the
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membrane transmits pressure in the same way as liquids. Accordingly, the membranes on
which these models apply are usually dense membranes.

Next to the generic profiles of concentration and pressure, the main assumptions of SD
models are that the flux is driven by a chemical potential gradient dµ/dz, set by a pressure
and concentration gradient, and that the flux of the solute and solvent are independent
from each other [27]. In the binary MS equation, the latter assumption would correspond
to assuming that there is no friction between the solute and solvent, or ζ1,2 = 0. The most
general equation for flux driven by a chemical potential and independent of other species is

Ji = −
Li
RT

dµi
dz

= −Li
d ln(γici)

dz
− Liνi

RT
dp
dz

(22)

which holds for every species present in the system, be it a solute or solvent. Such an
equation is also suggested by linear irreversible thermodynamics, where the proportionality
factor Li between the flux and drivings force is referred to as an Onsager coefficient. This
equation then defines regular SD models. Since there is one parameter per equation of
flux, the regular solution–diffusion model has a mere two parameters in a binary system,
one for each permeating species i (see Table 2). In much of the literature, the factor RT is
absorbed in the proportionality factor Li, which is acceptable because thermal equilibrium
is assumed. For a rejection calculation, we refer to [28].

We note that assuming that the solute flux is uncoupled from the solvent flux is a
strong approximation. For a perfect diffusive system, this can make sense since we then
assume that there is no viscous bulk motion of the solvent that drags the solute along.
But even then, one might expect some coupling, for example, originating from friction,
exactly like in the Maxwell–Stefan equation. Instead, in the regular SD models, there
is only a diffusive transport mechanism without any mutual interaction, and hence, no
solute–solvent cross coupling in the flux equations. However, for OSN, and in particular for
ceramic membranes, this cannot be accurate, as the solute flux is known to very much be
dependent on the solvent flux due to its bulk motion [36,37]. To asses these shortcomings,
more advanced SD models were developed (see further).

The classical and simplified SD models

To obtain the classical SD models, we assume γi = cst and a constant pressure within
the membrane (justified above, see Figure 2), which simplifies Equation (22) to

Ji = −
Li
ci

dci
dz

(23)

where Di = Li/ci can be recognized as a diffusion coefficient [27]. Simplification can
in this case go further by actually solving the differential equation. Integrating both
sides of Equation (23) by separating variables and assuming constant flux throughout the
membrane, as is appropriate in steady-state, gives

Ji∆z = −Di(c′′i − c′i)

with membrane thickness ∆z, and where we, again, use the notation c′′ = c(∆z) and
c′ = c(0). Finally, to obtain the flux Ji in terms of concentrations outside the membrane,
we use boundary condition (11) for the membrane surface on the feed side (where there is
no discontinuous change in pressure) and (10) for the membrane surface on the permeate
side (where there is a discontinuous decrease in pressure). This finally gives the classical
solution–sdiffusion model

Ji = Pi

(
c′i − c′′i e−νi∆p/(RT)

)
(24)

where Pi ≡ DiKi/∆z is called the permeability coefficient. For the solvent, experiencing
osmotic pressure, the flux equation can be simplified further. Consider that the pressure
difference equals the osmotic pressure ∆p = ∆π, which means that there is no solvent flux
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across the membrane, J1 = 0, leading to c′′1 = c′1 eν1∆π/(RT). Filling this back into the flux
equation for the solvent gives

J1 = P1c′1
(

1− e−ν1(∆p−∆π)/RT
)

. (25)

Finally, the simplified solution–diffusion model is obtained when the exponents in
Equations (24) and (25) are very small so that the solute and solvent fluxes become [27]

J1 = P1c′1
ν1(∆p− ∆π)

RT
≡ L1(∆p− ∆π), (26)

Ji = Pi(c′i − c′′i ) ≡ −Pi∆ci (27)

where, in the first equation, a first-order Taylor series is used, and in the second equation,
the exponent is approximated to unity. The non-linear classical SD model is reduced to
a linear one. This implies that species with a large molar volume may induce non-linear
effects. One can also notice that this simplified SD model has the same mathematical form
as the Kedem–Katchalsky model for an ideal semi-permeable membrane, so one with
σi = 1.

Extended SD models

Paul noticed the shortcomings of the solution–diffusion model due to, for example, the
uncoupled solute and solvent fluxes [28]. To overcome these shortcomings of SD models
but still keep the same separation mechanism and SD-specific assumption, like their
concentration and pressure profiles, more advanced extended SD models, directly based
on the MS equation, are used. Mathematically, these models are effectively incorporations
of the Maxwell–Stefan equation in the SD ideology, just like the extended Nernst–Planck
equation for PF models. The most prominent example of such incorporation is the extended
SD model developed by Paul, specifically for polymer membranes [28].

Solution–Diffusion with imperfections

These models combine pore flow and solution–diffusion models to account for both
diffusion, viscous flow, and interactions between the permeating species [4,15]. In particular,
the model assumes a SD transport mechanism of the solute and solvent diffusing through
dense membrane but extends it by allowing for the convective transport of solute and
solvent particles through parallel physical pathways or pores (called imperfections) that
are larger than both the solute and solvent. Mathematically, this amounts to adding a new
term to the SD flux that describes the convective flow through pores, or imperfections:

J = JSD + JPF. (28)

For example, in the simplified SD formalism, extended by Nernst–Planck (PF) models,
one would obtain

JV = Lsd(∆p− ∆π) + Limp∆p, (29)

Ji = −Pi,di f
dci
dz

+ ci JV (30)

where Lsd is the permeability coefficient of the membrane matrix, Limp is the permeability
coefficient of the imperfections, and Pi,di f is the diffusive permeability coefficient. Notice
that the solute flux is again coupled to the solvent flux via a convection term JVci like in the
SK, KK, and, in particular, the Nernst–Planck models. Thus, the resulting model assumes
the transport mechanism of SD models, while dodging possibly their biggest drawback,
namely the uncoupled (i.e., non-interacting) solute and solvent particles, at the cost of
adding an extra parameter.
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SD-imperfection models were originally made to account for swelling, which may
create free volumes and thus allow room for viscous flow, or similarly account for defects
in the membrane. For a rejection calculation, we refer to Mason and Lonsdale [15].

2.4. Challenges of Mechanistic Models in OSN

All of the mechanistic models described above were actually developed for the mem-
brane transport of aqueous streams. The strength of the SD approach to model and predict
the aqueous reverse osmosis process is well known [4]. However, all described models
have also extensively been used to model and understand OSN performance, with varying
success [4]. Experimental OSN results have clearly shown the complexity of this membrane
process, influenced by the wide variety of solute and solvent properties, and the importance
of all mutual solute–solvent–membrane affinities and competing interactions, not well
covered in many of the simpler mechanistic models. Other challenges in using mechanistic
models for fitting or performance prediction are the solvent-dependent swelling of poly-
meric membranes, even for membranes specifically developed for OSN, and the occurrence
of negative rejections in a variety of mixtures. All this leads to fluxes and rejections that are
strongly solvent-dependent, even for a fixed set of solute and membrane. Even for the non-
swelling ceramic membranes, OSN performance is shown to be solvent dependent, and
appears to be influenced by solvent–membrane affinity and the solubility of the solute in the
solvent. Due to the limited success of the mechanistic models for OSN, there is a tendency
in the field to switch to data-driven modeling. The data-driven approach aims for better
prediction power but can also help to reveal the solute–solvent–membrane descriptors
governing the performance, something that is hardly possible with the mechanistic models,
as they provide no direct relation between the solute–solvent–membrane properties and the
model parameters. The mechanistic models are, however, still valuable for retrieving the
relative importance of different transport mechanisms, like diffusion or convection, and of
non-idealities [7]. Moreover, in combination with data-driven approaches, so-called hybrid
modeling, extra insights can be derived, and possible relationships of the model parameters
with specific solute–solvent–membrane properties can be revealed. Additionally, since
every model assumes some kind of ruling separation mechanism and assumes a certain
physical context, understanding what mechanistic model describes the process best means
understanding the separation process.

For completion, we remark that in real application situations, the solute concentra-
tion can be relatively high, leading to concentration polarization effects, not covered in
the described physical models. This can, however, be assessed by using film theory in
combination with one of the physical models [4]. On the contrary, the mixtures used in lab
testing are mostly highly diluted, avoiding any concentration polarization and the need for
using film theory.

3. Data Collection
3.1. Data Availability

The general rise of data-driven modeling is in part fueled by the increase in data
availability, attributed to the steep increase in storing capabilities, and rise of the internet,
which allows for the collection and distribution of large datasets [38]. While this a general
trend, there are large differences in the data management maturity between scientific
disciplines and communities. Historically, the scientific community has had a strong
focus on the reuse of the findings of other researchers, while in the context of data-driven
modeling, there is a need for their reuse by machines. The challenges associated with this
goal are summarized in the four FAIR principles: findability, accessibility, interoperability,
and reusability of data by machines [13].

Implementing these principles in practice is challenging and requires both technologi-
cal solutions and community-agreed standardization. As made clear by recent publications
in the field of OSN, there is still a lot of room for improvement for the FAIRification of its
data and their subsequent use. In their survey on scientific publications within the field
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of OSN, Le Phuong et al. [39] note the general lack of standardization of measurement
setups, like dead-end and cross-flow processing or temperature and pressure, leading to
difficulties in comparing results as well as complicating the industrial implementation.
Moreover, there is no established, standardized membrane characterization test as molec-
ular weight cut-off (MWCO) measurements in aqueous filtrations. In [10], the authors
run into the lack of standardization and realize that membrane–solute and solute–solute
interaction assessment is limited, owing to insufficient comparable datasets in the literature.
Additionally, they note the lack of the reproducibility of results in the field of membranes,
typically caused by the insufficient availability of datasets [10]. In [40], it is stated that there
is no comprehensive study nor large dataset on the rejection behavior of solutes in a wide
range of solvents, which results in a general uncertainty in terms of the solvent effect on
solute rejection. The observations of these authors and the way they are dealing with the
challenges are important drivers to push things forward. An initiative specifically aimed
at this goal was made in 2021 when Ignacz and coworkers established an online library
(www.osndatabase.com) to collect and share OSN data [41].

3.2. Data as Driver for Models

The input of data-driven modeling is obviously the data themselves. In their raw form,
data can be considered as points in a high-dimensional descriptor space (see Section 3.2.2
for more detail). In data-driven research, an important concept is the manifold hypothesis,
which states that all natural data lay on a lower-dimensional manifold within the high-
dimensional descriptor space and that it is possible to interpolate between two points on this
manifold [38]. This is a very general principle, holding for all data-driven modeling. This
implies that the ability of a data-driven model to generalize to new data is a consequence
of the structure of the data more than being a property of the model itself. From this
perspective, there are two crucial conditions for a model to make good interpolations. On
the one hand, one needs to find a good data structure, i.e., find a limited set of descriptors
containing the necessary information about the flux and solute rejection of the separation
process. On the other hand, the input space should be sufficiently densely filled. An
overview of these two points is provided in the following subsections.

3.2.1. Data Density

While it is perhaps intuitive that data with higher density lead to better model per-
formance, this is also supported by the OSN literature. As an example, we refer to [41],
where it was found that closer chemical similarity between two molecules leads to closer
observed rejections. So for data-driven models to work in OSN, i.e., to interpolate the data
space to new solute–solvent couples, the large input space of many possible solute–solvent
couples needs to be filled to a sufficiently dense degree. However, it turns out that the
available data in OSN are currently not meeting this goal [41]. This lack of diversity in
OSN data is perhaps not surprising since most data are produced with specific applications
in mind and not aimed at filling the data space. Several authors have clearly stressed
the need for implementing fast and reliable solute-testing methods, making the parallel
with the pharmaceutical industry where high-throughput screening techniques allow the
assessment of large amounts of molecules in single systems [42]. Medium throughput sys-
tems (MTS) have been used in OSN in the past to generate a large quantity of high-quality
data [43,44]. More recently, and in light of the rising interest in data-driven approaches in
OSN, Ignacz et al. [41] proposed MTS as a robust method to efficiently fill in the chemical
space in OSN with new measurements. They proved the strength of MTS in achieving the
goal of a dense data space by measuring 336 different solute molecules with an optimized
MTS method, having a theoretical weekly throughput of over 100 compounds, doubling the
amount of unique solute molecules present in the OSN database at that point in time [41].
Such efforts to fill in the chemical data space are essential for the successful data-driven
future of OSN.

www.osndatabase.com
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Next to the call for denser data, the literature also contains questions about the fun-
damental structure of the data. It is hypothesized that the dependence of the separation
process on the membrane- and solvent properties might lead to a data space which consists
of smaller islands, complicating the generalization of data-driven models. The distinc-
tion between data collected from cross-flow versus dead-end processing in studies by
Hu et al. [6] and Kim et al. [45] is an example of this. In their studies, the distinction be-
tween these two was captured by one of the descriptors, indicating that they are essentially
described by two different models. A similar issue is at stake for ceramic membranes
versus polymeric membranes [46], where the latter experiences swelling, impacting the
parameters needed in a model design. Hence, narrowing down the data space may allow
for less general but simplified models. Note that, from a data science point of view, making
different classes of models reduces the dimension of the descriptor space since it avoids the
use of a descriptor addressing the distinct models.

3.2.2. Data Structure: Descriptors of the Input Space

The input space of OSN processes is represented by a combination of descriptors. An
active research question is determining what descriptors are most important in describing
the separation process. Often, data-driven techniques, either supervised or unsupervised,
are used to determine these key descriptors, see also Section 4.2. For example, unsupervised
techniques could be used to determine the descriptors with the largest possible data
coverage, while supervised techniques could be used to determine which descriptors
have the largest influence on the flux or solute rejection. Note that while this is crucial
for data-driven modeling, this information is clearly also relevant for mechanistic or
hybrid modeling. These key descriptors are then used to represent the input space of
the membrane–solute–solvent triplet with as much relevant information as possible while
keeping the dimension of input space low.

There exists a distinction in the nature of the descriptors that are used in the literature.
They can be divided into the so-called hand-crafted descriptors and theoretical molecular
descriptors. The hand-crafted descriptors refer to the variables that have classically been
used to directly describe certain physico-chemical observables. The viscosity of a fluid is
such an example. One could imagine instead more abstract theoretical molecular descrip-
tors, calculated at the molecular level. These can be built from descriptors as simple as
the number of atoms, their type, coordinates, bonds and electrostatic interactions, to 2D
molecular graphs, or even based on calculations from density functional theory (dft) [47].
A popular technique for finding such theoretical molecular descriptors are QSAR (quantita-
tive structure–activity relationship) models. The descriptors found by QSAR models could,
in theory, be any mathematical relationship that can be calculated from the information at
the molecular level. The most useful theoretical molecular descriptors are then determined
by supervised data-driven analysis, relating this abstract molecular-level information to
some measurable property of the molecule (like rejection, but based on the goal, it could as
well be polarity, toxicity, etc.). QSAR descriptors have been used in the past for membranes
in general, see e.g., [48,49], while Ignacz and coworkers were the first to apply them for
data-driven performance prediction in OSN [10].

Both kinds of descriptors have their advantages. Hand-crafted descriptors describe
high-level information that relate one descriptor directly to an observable property, which
results in a great degree of interpretability. However, for every new molecule or membrane
considered, the value of these descriptors often needs to be measured in wet-lab experi-
ments, which can be time-consuming, labor intensive, and expensive, certainly considering
the near infinite amount of possible solute–solvent couples in OSN [10]. Molecular de-
scriptors encompass more abstract but also more fundamental molecular-level information,
which reduces the risk of neglecting important properties. For example, they may help
to take properties, like solute geometry, into account, which are harder to cover using
traditional hand-crafted descriptors. This approach is advocated by Ignacz et al. [10]; they
hypothesized solute rejection to be dependent on its molecular structure. A downside
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of descriptors determined by QSAR techniques is the inability to verify whether they
represent the data to a sufficient degree [10].

4. Data-Driven Modeling

Nowadays, data-driven modeling is receiving more and more interest in process tech-
nology, motivated by cheaper, smarter sensor technologies allowing extensive online and
real-time monitoring, supplemented by increased computational storage and much faster
computation, as well as data transmission capacity. The current evolution in membrane
technology shows the same trend. Although a high level of skepticism exists among mem-
brane scientists, in the last 25 years, the use of data-driven, non-mechanistic modeling has
grown also in this field.

As further exemplified below, the applied methods are usually supervised classifica-
tion or regression techniques, such as artificial neural networks (ANNs), support vector
machines (SVMs), genetic programming, or variants of decision trees. To improve the
generalization of the trained models, they are often combined with techniques for (un-
supervised) dimensionality reduction, like principal component analysis (PCA). This is
related to the manifold hypothesis, mentioned in the previous section, which means that, in
general, the input data can be represented in a lower-dimensional space without significant
loss of information. Such techniques reduce the amount of data needed to train the model,
or equivalently reduce the risk of overfitting. This improves generalization, the ability
to make accurate predictions when fed with new unseen data. Next to pure data-driven
approaches, also hybrid modeling is increasingly utilized: combining a mechanistic model
with data-driven techniques.

Before we turn to OSN, we first provide a brief overview of the topic in the field of
water membrane separation in Section 4.1. It is less complex, and the field has higher
maturity but contains, from a data-driven point of view, some very similar challenges. In
Section 4.2, we provide an extensive review of data-driven modeling in OSN and also
highlight the differences with water separation.

4.1. Data-Driven Modeling in Water Membrane Separation

Regardless of the specific model used, data-driven approaches typically work with
physico-chemical properties and molecular size/geometry parameters of the solutes, de-
scriptors of the membrane and of the water matrices, and parameters related to the op-
erating conditions, as input. For a recent review, we refer to Galinha, Crespo, 2021 [50].
Crespo underlines that this data-driven modeling experience has shown that a dedicated
analysis of the functions used in the computation algorithms, often considered “black
box”, can definitely lead to a sensitivity assessment of the mixture–membrane–operation
properties that dominate the performance or that are not captured well in the existing
mechanistic models, and thus add to a better understanding of the physical phenomena
involved. Crespo et al. have particularly been active in developing (hybrid) modeling
approaches to predict the performance of membrane bio reactors (MBR) and the membrane-
based algae harvesting system. For example, Galinha et al. [51] successfully combined a
known activated sludge model (mechanistic model) strengthened by the input of on-line
2D fluorescence spectroscopy to model MBR results. A similar strategy was followed by
Sà et al. [52] to model the production of carotenoid-rich Dunaliella salina. Other com-
plexities in pressure-driven processes have also been the focus of data-driven modeling.
We present some examples selected from the vast literature. Teodosiu et al. [53] used
ANN to predict the complex phenomena of flux decline and restoration during the fouling
and backwashing of ultrafiltration membranes. About the same time, R. Bowen, one of
the experts in mechanistic model development for salt removal in nanofiltration (NF),
also successfully explored the use of ANN to predict single and mixed salt rejections [54].
Yangali-Quintanilla et al. [48] were some of the first researchers to explore machine learn-
ing by ANN based on QSARs to predict the rejection of a wide range of neutral organic
compounds in polyamide NF and RO membranes. Their study revealed that size exclusion
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and hydrophobic membrane–solute interaction dominate the rejection. Sanches et al. [55]
zoomed in on nanofiltration for the removal of micropollutants from drinking water sources
and proved the importance of size and charge but also the geometry of the micropollutants
in predicting their rejection. Barello et al. [56] focused on the desalination performance of
the RO membrane under fouling conditions and were able to predict RO performance for
different membranes in a wide range of feed salinity and operating pressure. More recently,
other groups worked on the modeling of thin film nanocomposite (TFN) membranes for RO.
For example, Yeo et al. [57] and Fetanat et al. [58] used ANN to analyze the literature data
of a broad range of TFN membranes with a wide variety and concentration of nanoparticles
to predict permeability, salt rejection and fouling behavior, and to steer the synthesis of
optimized TFNs. Other researchers have also covered other pressure-driven membrane
processes such as pervaporation [59], membrane distillation [60] and electrodialysis [61].

4.2. Data-Driven Modeling in OSN
4.2.1. Drivers for Data-Driven OSN

Next to the opportunities that data and data science offer in general, discussed above,
we see two specific drivers for data-driven approaches in OSN: an operational one and
a conceptual one. While in membrane filtration in water, the solvent is obviously fixed
and the process is mainly governed by size exclusion, in OSN, this is supplemented by a
whole set of important interactions between all three constituent components of the solute–
solvent–membrane. This complexity currently makes detailed ab initio modeling very
difficult. The lack of predictive power of the current models [5,6] has major implications
on the development process of new operational OSN applications. For each given solute–
solvent couple to be separated, membranes and operational parameters need to be screened
nearly on a trial and error basis. This results in a repetitive, tedious and time-consuming
development process in OSN. Consequently, data-driven models with good predictive
power are sought simply because of their high operational value. At the same time, it can be
questioned whether a single data-driven model can cover the whole domain and all needs
in the field of OSN. This is connected to the need for explainability and more insight into
the underlying processes, e.g., for delineating the application area of certain models and for
the development and selection of new membrane properties. Also at this conceptual level,
data-driven techniques have a role to play. They can help in uncovering key descriptors
of the solute–solvent–membrane and correlate them with membrane performance. They
can provide insight into the relation between these descriptors and the parameters of the
mechanistic models and drive the understanding of the complex physics of OSN.

While most initiatives in data-driven OSN are recent, the field is developing fast, and
we provide a review in the following subsection.

4.2.2. Data-Driven OSN: State of the Art

Santos et al. 2007 [62] were the first to use data-driven modeling to assess solvent
fluxes for a series of first-generation polymeric OSN membranes with different chemistry
(polyamide, polyimide, polyethersulphone, and PDMS). They combined their own ex-
perimental data with literature data for a series of solvent–solvent mixtures measured at
variable pressures. They compared predictions of the SD model (mechanistic) and several
ML models such as PLS, ANN, a combination of PCA and ANN, and all combined hybrid
SD-ML models (data-driven models). The descriptors used include standard solvent prop-
erties (such as density, viscosity, dielectric constant, molar volume, and dipole moment), as
well as the geometrical aspects of solvent molecules. To account for membrane–solvent
interactions, the difference between membrane and solvent surface tension and Hansen
solubility parameters (HSP) was taken into account. For the membrane itself, only the
molecular weight cut-off (MWCO) was used. The results suggest that the solvent transport
in OSN for the studied first-generation membranes is dominated by solvent density and
viscosity and by the membrane MWCO. Furthermore, it can be concluded that membrane–
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solvent affinity is best described by the HSP (and not surface tension) difference, and that
the SD model particularly misses the incorporation of solvent polarity.

Goebel et al. 2020 [8] continued data-driven modeling to predict pure or mixed
solvent fluxes for a first and a new generation of PDMS membranes (later supplied by
GMT) and for different ceramic nanofiltration membranes (supplier Inopor). The peculiar
ML approach, utilized on each membrane type separately, is a combination of nonlinear
regression methods and genetic programming for automatic model development and
optimization, leading to a compact (membrane specific) model equation with a strong data
prediction capacity, able to outperform mechanistic models. Similar solvent descriptors
were used, such as those by Santos, but Goebel also included the total and three partial
HSP values (envisioned to play a role in membrane swelling), as well as the connectivity
index, allowing to differentiate between linear and branched molecules. To catch the
solvent–membrane affinity in the PDMS membranes, the HSP difference was again used,
now in combination with the HSP interaction radius (not used for the ceramics). No further
membrane–specific descriptor was added.

Shortly after the first paper, Goebel et al. 2020 [9] extended the same data-driven
modeling approach to predict the rejection of a variety of solute–solvent couples for PDMS-
based Evonik membranes (Puramem). In their introduction, the authors underlined that
the strength of data-driven modeling for rejection predictions is even larger than that for
flux predictions, due to the observed importance and complexity of all mutual interactions
(solute–solvent–membrane), not well described in the mechanistic models. One of the signs
of this complex interplay of interactions is the regular observation of negative rejections
in OSN. The obtained membrane-specific models have very good prediction capacity and
confirm the importance of solute and solvent polarity next to the solute size, consistent with
the experimental observations. The developed models allow to draw practical triangular
rejection maps.

All previously mentioned papers used relatively small datasets. Hu et al. 2021 [6]
were the first to create large-scale data-driven models based on 38,430 data points from
67 sources in the literature (mainly from polymeric membranes but including some data for
ceramic membranes as well). The dataset covers results from 35 commercial membranes,
11 solvents, and different solutes, mainly in high dilution. They made three different kinds
of ML models, namely ANN, SVM, and random forests (RFs), which could predict flux and
rejection with an accuracy (R2) up to 98% and 91%, respectively, proving the strength of
data-driven modeling in OSN. The only clear trend uncovered in their exploratory data
analysis is an increase in the rejection as solute MW increases. The analysis also hints
to a linear correlation between flux and the characteristic solvent parameter (given by
δp/(ηd2

m), where δp is the polar HSP and dm is the molar diameter of the solvent [63]).
However, due to large data deviations (even for the same membrane), they concluded that
the performance of OSN membranes is multi-dimensional and a complex function of many
variables. To make sense of this, they used PCA to find the key descriptors affecting this
multi-dimensional system and reduce the data dimension. Specifically, six descriptors out
of the total 18 they considered were found to be important. Among these six were always
the membrane MWCO, the solute MW, the concentration of the solute, the characteristic
solvent parameter, the temperature and pressure, and the configuration (i.e., a categorical
feature which is either dead-end or cross-flow). Their choice of solute concentration as
a descriptor was made because of its impact on performance via the effects of osmotic
pressure. Out of these descriptors, solute MW, solute concentration, and the solvent factor
were deemed the most important for describing membrane permeability and rejection. The
data, pre-processed with PCA, were used to build the successful ML models.

Kim et al. 2021 [45], among the collaborators of the Hu paper discussed in the last
paragraph, conducted their own study on ML approaches for OSN modeling, finding the
optimal operation specifications and process design. To achieve this, they collected and
curated 884 OSN datasets, which were found to be highly structured. They then used SVM
and hyperparameter-optimized SVM (HO-SVM) models that predict membrane perfor-
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mance (flux and rejection) from the key descriptors influencing performance, which were
assessed by a PCA. They used the same descriptors as Hu et al., namely membrane MWCO,
solute MW, solute concentration, characteristic solvent parameter, pressure, temperature,
and process configuration (dead-end or cross-flow). The ML models reached accuracies
(R2) for flux and rejection of, respectively, 91.4% and 90.6% for the SVM models, and 92.3%
and 96.0% for the HO-SVM models, again showing the strength of ML models to predict
OSN performance.

Ignacz et al 2022. [10] developed new data-driven models specifically for rejection
prediction, which were trained on a large and chemically diverse dataset. The dataset was
specifically created for this goal using the same medium-throughput system, three types
of polyimide Duramem membranes (previously commercially available from Evonik),
a wide variety of different solutes, two pressures, a fixed temperature, and only one
solvent, methanol (see also Ignacz 2023 [40]). Their data are freely available on the OSN
database website (www.osndatabase.com). Whereas in previous work, the solute was
only described by its molecular weight, Ignacz et al. were the first to also take the solute
structure specifically into account. The importance of structural solute properties is clearly
underlined by the failure of building a nice MWCO curve for each membrane using the
raw data. To be able to use structural features in the modeling, they included the molecular
structures as SMILES (simplified molecular-input line-entry system, giving a direct string
representation of a molecule) in the created open access OSN database. These SMILES, the
open-access Mordred [64], and RDKit Python packages, were used to produce relevant
molecular descriptors. This allows for the creation of a wide variety of QSAR descriptors
(1241 in this case) that also contain information on the 3D electro-topological structure
and available functional groups, not captured in the earlier hand-crafted descriptors (like
molecular weight). Because the amount of descriptors was higher than the amount of
rejection points (416 coming from as many different solutes), partial least square (PLS)
regression was used in combination with variable importance in projection (VIP) for the
removal of low-value descriptors, and a genetic algorithm (GA) for model optimization.
This approach was compared with a graph-encoding or graph-convolutional deep neural
network (DL) approach, working directly on the SMILES and the graphs derived from it.
Both model approaches showed quite good prediction of solute rejection in methanol, with
R2 scores between 84 and 90%. From the PLS results, it can be concluded that descriptors
catching charge, electronic and topological features of the solute molecules influence
rejection the most, while molecular weight does not appear important at all (as was already
clear from the raw data). We remark that this conclusion is only valid for rejections of
Duramem membranes in methanol. From the DL results, conclusions are drawn using a
visualization method highlighting which molecular features (functional groups and type of
bonds) increase or decrease the rejection.

Wang et al. 2023 [65] developed ML algorithms to predict performance for specifically
thin film nanocomposite (TFN) membranes in OSN. The data they used were collected
from 20 papers on 119 different TFN membranes in OSN, obtained through their tables
and figures, which constitute 9252 data points. TFN membranes are fairly flexible in the
sense that their properties can easily be tuned, properties which are determined by the
membrane fabrication conditions, such as support type, nanoparticle size, type and loading,
amine monomer and concentration, and chlorine monomer and concentration. Their
aim here was to use ML models to really aid the development of membranes themselves
by finding the optimal fabrication conditions. They did this by using these fabrication
variables, and some common solute, solvent and membrane characteristics as descriptors,
in total about 19. They used four different data-driven models, namely SVM, boosted
tree (BT), ANN, and linear regression. The BT model turned out to be the best model
with R2 values of 92% for permeability and 85% for rejection. They pinpointed the most
important of descriptors affecting permeance and rejection by parameter contribution
analysis. From this, they concluded that nanoparticle loading, amine concentration and
chloride concentration are the most important fabrication parameters for both permeability
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and rejection. On top of this, the water contact angle, solvent viscosity and molar volume
strongly influence permeability, while the rejection is affected more by the solute molecular
weight. Additionally, they used partial dependence plots to evaluate the influence that
the fabrication descriptors have on the prediction. From this analysis, it can be derived
that nanoparticle loading is extremely critical, and is preferentially kept below 5 wt%. The
nanoparticle type is quite unimportant. Similar conclusions can be drawn for the other
TFN synthesis parameters.

Ignacz et al. 2023 [40] investigated specifically the effect of solvent descriptors on
the solute rejection using graph neural networks (GNN). This study was triggered by the
experimental observations that the solute structure plays a role in solute rejection (ob-
served for one solvent, methanol, by Ignacz 2022 [41]) but that these characteristics seem
to influence the performance mainly when the membrane–solvent affinity is low [66]. To
train their model, they used data from their own experiments consisting of 5004 measure-
ments with over 400 chemically diverse solutes in 11 green solvents using one particular
polyimide membrane (Duramem 300 previously supplied by Evonik), created in a medium-
throughput cross-flow OSN system already used in their previous study. The new data
have, again, been added to their open database. The raw data show that the average rejec-
tion (over the wide range of solutes) is strongly related to the average solvent permeance
and to the solvent polarity: lower polarity and permeance lead to lower average rejection.
This observation is confirmed by the literature data in the database. As in their previous
ML work, instead of using handmade descriptors (like solvent viscosity or dipole moment),
Ignacz et al. again used more fundamental molecular descriptors obtained from the atom
and bond scale, containing also a lot of structural information (using Mordred software).
Their models were the first to use descriptors based on the chemical structure for both
solutes and solvents. The study revealed that the rejection of solutes heavily depends
on the solvent flux, as well as the solvent’s electronic properties (e.g., polarity and LogP)
and topology, which agrees with the literature. As the values of such properties might
be hard to derive analytically, ML methods as described here can be very valuable for
this. Furthermore, to demonstrate the robustness and generalization power of their model
(R2 = 86.4%), it was tested against literature data for the same membrane, showing good
results (R2 = 71.4%). However, it revealed some limitation of generalization to new solvents,
as the model performed worse on some solvents that were not part of the original training
dataset. They attributed this lack of generalization to using no features based on inter-
molecular (solute–solvent) interactions so that the model has to make predictions just based
on similarity between solvents in the training set. Considering that they chose solvents
with minimal similarity, their model was still able to make relatively good extrapolations
to new solvents. Additionally, they showed that models not including solvent structural
features performed significantly worse in predicting rejection, indicating the importance
of considering molecular solvent descriptors, and thus the significant effect of the solvent
type on rejection in OSN. The influence of swelling on this solvent effect in solute rejection
was not assessed.

Recently, Xu et al. 2023 [11] looked at the optimization of the synthesis of polymer
OSN membranes with intrinsic microporosity (PIM) using data-driven ML in combination
with molecular simulation. They concentrated on finding a PIM with optimal solvent
permeability. A literature-derived dataset of 152 solvent permeabilities originating from
35 different membranes (not only PIM) and 16 solvents drove the modeling. The raw
data already show the strong effect of the membrane polymer type, solvent molecular
size and viscosity on the permeability. Three different ML methods were used, namely
kernel ridge regression (KRR), gradient boosting regression (GBR) and the least absolute
shrinkage and selection operator (LASSO). As first descriptors, single solvent (diameter,
viscosity, and HSP) and membrane (thickness, water contact angle, and nitrogen sorption
capacity) properties were used in linear and logarithmic forms, as well as all possible
combinations of one solvent plus one membrane descriptor (144 in total). This analysis led
to a meaningful phenomenological equation for permeability containing the key descriptors:
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solvent viscosity, membrane thickness and water contact angle. In a second approach,
relatively more fundamental molecular representations (by numerically fingerprinting
chemical structures) of solvents and membranes were used as descriptors. From this,
the top 10 influencing fragments of solvents and membranes were derived. ML models
using these descriptors were able to predict PIM membrane permeabilities well. In a next
step, molecular dynamics simulations were used to quantify swelling in methanol for
three types of PIMs, pinpointing the responsible structural features, and confirming its
correlation with membrane–solvent affinity. Molecular dynamics simulations were also
utilized to assess methanol permeability (using a pressure difference), which was shown
to be correlated well to the ML results and the membrane-swelling degree. All modeling
suggested an improved type of PIM, and the choice was confirmed by the performance of
the synthesized membrane, outperforming existing membranes in the literature (highest
methanol permeability, combined with high rejection). The study proved the synergy of
ML and molecular dynamics simulations in obtaining microscopic insights in membrane
transport and swelling.

Gallo-Molina et al. 2023 [12] explored the potential of hybrid data-driven modeling
to better elucidate the link to the physical phenomena driving OSN. They focused on
data from ceramic OSN membranes, both native and chemically modified (partly from
the literature, partly created). This class of membranes was particularly chosen due to
their non-swelling behavior, possibly leading to less-complex models. XGBoost data-
driven modeling was used in combination with the mechanistic SD model, both in a
parallel and a serial way. Non-idealities in the mixtures were taken into account via
activity coefficients estimated via UNIFAC. This approach proved to lead to better flux
and rejection predictions compared to the mechanistic model alone. A set of 22 available
or easy-to-calculate physico-chemical properties for membranes, solutes and solvents
(including HSPs for all) were used as descriptors. Shape indices were included as solute
descriptors. The parallel hybrid modeling architecture proved to be the strongest with
very high R2 values of 99% for permeability, and 96% for rejection. From their results,
it can be concluded that solvent transport is strongly influenced by solvent polarity and
solvent–membrane affinity (captured by the difference in surface energy and in HSP
values). Solute transport appears more complex: next to the size exclusion parameters, all
mutual affinities between membrane, solute and solvent seem important (captured by the
HSP differences, and ratios thereof). Solvent viscosity does not pop up as an important
parameter in solvent transport but it does in solute transport, most likely pointing to a
partly coupled solute–solvent transport, not included in the SD model. It was expected
that hybrid modeling allows better extrapolations to unknown areas in the descriptor
space. This was challenged by performance prediction for particular systems where strong
membrane–solute affinities are expected to play a role. The relatively low rejections in these
cases were quite well confirmed.

5. Conclusions

The field of OSN is following the trend of the widespread increasing interest in data-
driven approaches. Recent advances in the field showcase data-driven models able to
predict membrane performance to an unprecedented degree of accuracy, outperforming
mechanistic models. Such advances may help to speed up process development in OSN,
which is generally slow due to time-consuming membrane screening, and thus fast-tracking
the industrial implementation of OSN. Moreover, not only can data-driven modeling help
predict membrane performance but it can also assess the key descriptors and main transport
mechanisms influencing the separation process, thus providing physical insight into the
process. Recent work on data-driven modeling investigated both classical hand-crafted
descriptors (like viscosity or molar volume) as well as a wide variety of more structural
molecular descriptors. The latter group contains more fundamental information, like 2D
geometry of the molecules or 3D electronic structure, which is not described by classical
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descriptors. Such features, both for solute and solvent, appear important for a good
description of OSN.

Needless to say, the strength of data-driven models depends on the structure of the
data space on which the model is built. In particular, for an optimal performance, the
data space should be densely and diversely filled. Recently, dedicated efforts were aimed
at the creation of data to cover the whole chemical space spanned by OSN, using, for
example, medium-throughput filtration systems. However, achieving this goal will still
prove to be an intricate objective in the future, certainly considering the near infinite
amount of possible solute–solvent couples in OSN. Furthermore, much work is still needed
to comply with the FAIR (findability, accessibility, interoperability, and reusability of data)
principles. In particular, we note a lack of standardization of the measurement process, lack
of a standardized membrane characterization test (like MWCO measurements in aqueous
filtrations), and insufficient accessible datasets. Also in this regard, recent advances have
been taking steps in the right direction with, for example, the establishment of an open-
source database, which forms a platform on which data can be freely shared and collected,
and further calls for standardization. We believe that a next, ambitious step could be an
orchestrated approach to lift interests to the level of the entire discipline, finding ways
to overcome hurdles of confidentiality and avoid focusing only on specific projects or
short-term goals. Such a realization would obviously benefit not only data-driven models
but certainly also mechanistic models and crucially, in our view, a combination of both.
Where the balance between the two will lie in a data-intensive discipline, the future will tell.

Mechanistic models, successful in describing membrane separations in water, show
only limited applicability in organic solvents. This is due to fluxes and rejections being
strongly solvent dependent, even for a fixed set of solute and membrane, which results
from the solute–solvent–membrane interactions that complicate the separation process.
However, the rise of data-driven models does not at all mean the end of mechanistic
models. In fact, fitting the membrane performance to mechanistic models can still reveal
information on the relative importance of different transport mechanisms, like diffusion
and viscous flow, or reveal the effects of non-idealities. Moreover, in combination with data-
driven modeling, so-called hybrid models have a great potential to provide extra insights,
and possible relationships of model parameters with specific solute–solvent–membrane
properties can be revealed. These approaches using mechanistic models, alongside using
data-driven models to investigate descriptor importance, can provide physical insight into
the separation process and can ultimately help unravel the transport processes in OSN.
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