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Abstract: Headspace solid-phase micro-extraction (HS-SPME) is a prevalent technique in metabolomics
and volatolomics research. However, the performance of HS-SPME can vary considerably depending
on the sample matrix. As a result, fine-tuning the parameters for each specific sample matrix is crucial
to maximize extraction efficacy. In this context, we conducted comprehensive HS-SPME optimization
for bronchoalveolar lavage fluid (BALF) samples using two-dimensional gas chromatography with
time-of-flight mass spectrometry (GC×GC-ToFMS). Our exploration spanned several HS-SPME
parameters, including vial size, dilution factor, extraction time, extraction temperature, and ionic
strength. The 10 mL vial size, no sample dilution, extraction time of 50 min, extraction temperature
of 45 ◦C, and 40% salt were identified as the optimized parameters. The optimized method was then
evaluated by a pair-wise comparison of ten sets of samples. The results revealed that the optimized
method yielded an increase of 340% in total peak area and an increase of 80% in total peak number.
Moreover, enhancements were observed across nine major chemical classes in both peak area and
number. Notably, the optimized method also doubled the number of volatile compounds consistently
detected across BALF samples, from 52 to 108.

Keywords: HS-SPME; method optimization; GC×GC; bronchoalveolar lung lavage fluid

1. Introduction

Headspace solid-phase microextraction (HS-SPME) is a convenient and solvent-free
sample preparation technique that enables the extraction of analytes with minimal matrix
interference. This technique works by exposing a coated fiber to the headspace of the
sample of interest and allowing the volatile compounds to adsorb or absorb onto the fiber
coating. The fiber is then thermally desorbed into an analytical instrument, such as gas
chromatography–mass spectrometry (GC-MS), for further analysis. HS-SPME is based
on the partitioning of the analyte between the fiber coating, the sample headspace, and
the sample itself [1,2]. The process is influenced by multiple parameters, e.g., fiber type,
incubation time, headspace-to-sample phase volume ratio, extraction time and temperature,
agitation type and speed, matrix pH, and ionic strength. Optimizing the most influential
and/or most practical parameters for specific sample types is essential for obtaining a
higher extraction efficiency [3–6].

HS-SPME has been used in various fields, such as environmental sciences [7,8], food
sciences [9,10], and metabolomics [11–13], highlighting its efficacy and advantages in sam-
ple preparation. HS-SPME is also considered one of the “greenest” methodologies as the
thermal desorption process is solvent-free, thereby enhancing the eco-sustainability of the
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method [1,14,15]. Volatolomics is a sub-field of metabolomics that studies the thousands
of volatile compounds (VCs) emitted from a biological system [16], including the human
body [17–20]. These compounds encompass a wide range of chemical classes, including
hydrocarbons, aldehydes, ketones, alcohols, nitrogen-containing, sulfur-containing com-
pounds, and others [21]. The analysis of these compounds provides information associated
with specific diseases [20], e.g., respiratory diseases [22,23], gastrointestinal diseases [24,25],
diabetes [26,27], and lung cancer [28,29]. Moreover, profiling VCs can reveal informa-
tion on other physiological statuses of an individual, such as diet and lifestyle [30] and
environmental exposure [31].

Sample preparation and extraction play a pivotal role in VC profiling. HS-SPME has
been widely used for the extraction of VCs from biofluid samples such as blood [32–34],
urine [35,36], sputum [37,38], and bronchoalveolar lavage fluid (BALF) [39–42]. With
specific regards to BALF, the matrix of interest for our study, HS-SPME has been used
in previous studies for the extraction of VCs to diagnose infections in people with cystic
fibrosis (CF) [39], evaluate primary graft dysfunction post-lung transplantation [43], and
investigate associations with CF lung microbiome [40]. Despite its research importance,
we found no published work specifically focusing on the optimization of HS-SPME for
extracting VCs from BALF samples.

GC-MS has been utilized for analyzing compounds extracted by HS-SPME. However,
conventional GC-MS can cause co-elution of compounds from complex matrices. Therefore,
our study employed a comprehensive two-dimensional gas chromatography (GC×GC)
coupled with a time-of-flight mass spectrometry (ToF MS) for VC analysis. GC×GC has
been an important technique to couple with HS-SPME, which significantly enhances the
sensitivity and selectivity compared to the conventional GC-MS system, providing three-
to ten-fold more peaks [44–46].

For advancements in volatolomics research, it is important to extract and identify
as many features as possible. Hence, here, we aimed to partially optimize the HS-SPME
method to maximize both the number and intensity of VCs extracted from BALF samples.
This optimization work will aid in the discovery of volatile biomarkers with potential
diagnostic capability.

2. Materials and Methods
2.1. Study Subjects and Specimen Collection

The BALF samples were originally collected from subjects between two months and
50 years old, all of whom had a confirmed diagnosis of CF. These samples were obtained
from 13 CF centers in the US at the time of BALF sample collection [47], following each
site’s standard clinical procedure. The samples were collected via a laryngeal mask airway
or endotracheal tube. Once collected and stored at −80 ◦C, the samples underwent an
HS-SPME [39]. The samples were then stored at −80 ◦C.

2.2. Sample Processing

For method optimization, 40 BALF samples were thawed on ice and subsequently
homogenized using a glass homogenizer (PYREX® Tenbroeck, Corning Inc., New York, NY,
USA) to generate a mixed BALF sample. Approximately 5 mL of a phosphate-buffered
saline (PBS) solution was added during sample homogenization to ensure an adequate
sample volume for the entire optimization experimental design. Subsequently, half a
milliliter of the mixed sample was transferred to an individual glass headspace vial. The
vial was then sealed with a polytetrafluoroethylene/silicone screw cap and stored at −80 ◦C
for further experiments. The vials and caps were pre-baked at 100 ◦C for 24 h before use to
minimize off-gassing.

2.3. HS-SPME Method Optimization

A few parameters were determined based on published literature and experience.
The 2 cm tri-phase polydimethylsiloxane/carboxen/divinylbenzene (PDMS/CAR/DVB)
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df 50/30 mm fiber (Supelco, Bellefonte, PA, USA) was selected for the experiment. The
incubation time was set as 10 min. The thermal desorption temperature and time were set
as 270 ◦C and 5 min to maximize the desorption efficiency and avoid carry-over issues. The
agitation speed was set at 250 rpm, as per the previous literature [48].

2.3.1. Optimization of Vial Size, Dilution Factor, Extraction Time, Extraction Temperature,
and Salt Concentration

The optimum vial size was selected by analyzing the undiluted homogenized samples
at 43 ◦C for 30 min using the HS-SPME conditions reported in the HS-SPME optimization
paper from our group [48]. Three headspace vial sizes were tested: 20 mL, 10 mL, and 2 mL
vials. Due to their height limitation, the 1 cm fiber was employed in the 2 mL vials, while
the 10 mL and 20 mL vials utilized a 2 cm fiber. Three replicates were analyzed for each
vial size.

The effect of the dilution factor was evaluated by comparing non-diluted samples
with the samples diluted (1:2% v/v) using a PBS solution. The extraction was performed at
43 ◦C for 30 min, using a 10 mL headspace vial. Three replicates were analyzed for each
dilution factor.

A two-variable (k = 2, α = 1.414, block = 2) inscribed rotatable central composite
experimental design (CCD) was used to optimize the extraction time and temperature. The
extraction time was tested between 20 and 50 min. The extraction temperature was tested
within a range of 37 ◦C to 50 ◦C. The experiment order was produced by Minitab version
21.1.1 (Minitab, LLC), including nine different sampling conditions (Table 1). Six replicates
of the center point run were performed and used to evaluate the precision of the method.

Table 1. HS-SPME temperature and time tested in the central composite design (CCD).

Order Extraction
Temperature (◦C)

Extraction Time
(Min) Order Extraction

Temperature (◦C)
Extraction Time

(Min)

1 43.5 56 8 37.0 20
2 52.5 35 9 37.0 60
3 34.3 35 10 43.5 35
4 43.5 35 11 50.0 50
5 43.5 35 12 50.0 20
6 43.5 14 13 43.5 35
7 43.5 35 14 43.5 35

The salt addition effect was assessed at three levels: 0%, 20%, and 40% (% w/v) NaCl.
All the other extraction steps were performed at the optimum condition determined in the
previous steps. Three replicates were analyzed for each salt concentration level.

2.3.2. HS-SPME Method Evaluation

To evaluate the effectiveness of our method, we selected 30 BALF samples collected
from 30 different subjects. Using samples from various subjects aims to determine whether
the optimized method remains effective for samples with diverse biological contexts. These
samples were divided into 10 sets, with each set comprising three samples. In each set,
the three samples were mixed and homogenized following the same approach described
above. The homogenized mixture was then divided into two equal parts and transferred to
two individual vials, with each containing 0.5 mL of the mixed sample. The two equally
split samples were analyzed using both pre-optimization and optimized methods.

The pre-optimization method used a 20 mL headspace vial with a 2 cm fiber. The
sample was 1:2 diluted with a PBS buffer, and no salt was added to the sample. The
optimized method used a 10 mL headspace vial with a 2 cm fiber. The sample was not
diluted, and 40% (% w/v) NaCl was added to the sample.
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2.4. Sample Instrumental Analysis

The samples were thawed at 4 ◦C on ice for 1 h and subsequently placed in the cooled
sample tray. The sample tray was maintained at 4 ◦C during the sample instrumental
analysis. The extraction was carried out using the fully automated HS-SPME mode on the
MPS system (Gerstel®, Linthicum Heights, MD, USA). Initially, the sample was incubated
for 10 min at the extraction temperature with an agitation speed of 250 rpm. Then, the
headspace extraction was performed at the determined temperature and time using a
PDMS/CAR/DVB fiber. Before sample extraction each day, the fiber was conditioned at
270 ◦C for 30 min, and then thermally desorbed into the GC×GC to ensure it is cleanliness.

After sample extraction, the fiber was injected into the Pegasus 4D (LECO Corporation®,
St. Joseph, MI, USA) GC×GC-ToFMS with an Agilent 6890 GC (Agilent Technologies,
Santa Clara, CA, USA) through the Septumless Head (SLH) injector and desorbed at 270 ◦C
for 5 min. The primary column was a standard non-polar Rxi-5 MS (Restek Corpora-
tion, Bellefonte, PA, USA) (30m × 250 µm; 0.25 µm df). The second column was a polar
Stabilwax (Crossbond® polyethylene glycol) (Restek Corporation, Bellefonte, PA, USA)
(1.5 m × 250 µm; 0.25 µm df). The primary GC oven temperature was initially set at 40 ◦C,
held for 2 min, and increased at 5 ◦C/min to 230 ◦C. The temperature offset for the sec-
ondary oven was 5 ◦C relative to the primary oven. A modulation period of 2 s was used.
A quad-jet dual-stage thermal modulator was used for modulation. The temperature offset
for the modulator was 15 ◦C relative to the secondary oven. The mass spectrometry was
performed at the electron ionization (EI) mode at 70 eV. The mass spectrum was collected
within the range of m/z 30–400 at a sampling rate of 200 Hz.

Instrument reproducibility was evaluated by running three Grob programmed test mix
injections (Supelco, Bellefonte, PA, USA) before running the actual samples. The percent
relative standard deviation (%RSD) of the area counts of each peak in the standard mix
was proved to be less than 15%. This test proved the system stability and ensured the
instrument is in good condition to analyze samples. One fiber blank was analyzed each day.
The peak number should be less than 200, and the maximum peak area should be less than
1 × 106. One alkane standard mix injection (Supelco, Bellefonte, PA, USA) and two Grob
programmed test mix injections were included in each batch of sample analysis. Instrument
tune and leak tests were performed daily. Carry-over was assessed by desorbing the blank
fiber after the Grob programmed test injection. No carry-over was observed after analyzing
the actual samples.

2.5. Data Processing

Data collection and preliminary data processing were performed using ChromaTOF
software, version 4.72 (LECO Corp). For peak finding, a signal-to-noise (S/N) cutoff of
50:1 (with a minimum of three apexing masses) was used in at least one chromatogram
and a minimum of 20:1 S/N in all others. The NIST 11 library was used for the initial
putative identification of the analytes with a match threshold > 700, as referred to in a
previous study [49]. The identified compounds were also given certain chemical classes [50].
Moreover, the chemical identities of a subset of molecules were confirmed by comparing
retention indexes with the library reference, using a criterion of difference of less than 30.

2.6. Statistical Analysis

The raw data from ChromaTOF software were input into R version 4.2.3 (R Core
Team, Vienna, Austria) for statistical analysis. Known artifacts and environmental con-
taminants [51] (Supplementary Table S1) were first removed from the raw data. Response
surface analysis (RSA) was performed using Minitab software (version 21.1.1). The sta-
tistical analyses were performed using GraphPad Prism 10 version 10.0.0. The overall
performance was evaluated by comparing two variables, including the total peak area
after peak deconvolution and the total number of peaks. A one-way ANOVA followed by
Turkey’s multiple-comparison test, and Student t-tests were employed to test if a statisti-
cally significant difference exists among the mean values of different groups. The p-value
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(<0.05) was used as the criteria to ascertain a statistically significant difference. Response
surface analysis (RSA) was implemented to interpret the CCD results.

3. Results and Discussion
3.1. HS-SPME Method Optimization
3.1.1. Optimization of Vial Size

Vial size can change the headspace-to-sample volume ratio, an important factor that
affects the HS-SPME efficiency [52]. We hypothesized that smaller vials would outper-
form the larger vials in terms of total peak area and total peak number. To evaluate our
hypothesis, we tested 2 mL, 10 mL, and 20 mL vials. It should be noted that for 10 mL
and 20 mL vials, a 2 cm fiber was used, whereas for 2 mL vial, a 1 cm fiber was used.
Although the fiber surface area has a greater impact on the amount of VC extracted, we
realized that the headspace-to-sample volume ratio can have a more substantial impact,
especially for compounds with a larger partition coefficient between headspace and sample
phase (Supplementary, Equation (S1)). The results show that the 10 mL vial surpassed the
performance of the other two vial sizes in terms of total peak area and total peak number,
showing statistically-significant differences (Figure 1). The 10 mL vial yielded the highest
total peak area, with an average value of 2.69 × 107, higher than both the 20 mL (2.37 × 107)
and 2 mL (2.57 × 107) vials. Additionally, the 10 mL vial resulted in the highest mean total
peak number of 290, surpassing both the 20 mL and 2 mL vials, which extracted an average
of 276 and 248 peaks, respectively.
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In a system in equilibrium, the amount of volatile compounds extracted on the fiber
is negatively correlated with the headspace-to-sample volume phase ratio and positively
correlated with the volume of the fiber coating [52,53]. The superior performance of the
10 mL vial, yielding both higher total peak areas and numbers compared to the 20 mL vial,
can be attributed to its smaller phase ratio. Interestingly, despite the fact that the 2 mL vial
has a more favorable phase ratio than the 10 mL vial, the total peak number extracted by
the 10 mL vial was significantly higher than the 2 mL vial, while the difference in total
peak area was not statistically significant. We speculate that the reduced fiber surface area
might be a decisive factor, resulting in a smaller extracted peak area and a lower total peak
number. Moreover, the broader diameter of the 10 mL vial provides an expanded surface
area, facilitating the transition of a higher number of compounds into the headspace from
the liquid phase [54]. Similar results were reported in an HS-SPME optimization study
for urine samples, in which the 10 mL vial yielded a significantly larger mean number of
volatile compounds than the 2 mL vial [54].
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3.1.2. The Effect of Dilution

Sample dilution is an approach that modifies the sample matrix and influences the
HS-SPME efficiency [55]. We hypothesized that undiluted samples would yield higher total
peak area and total peak numbers, which is confirmed by our results (Figure 2). Specifically,
the non-diluted samples obtained an average of 2.69 × 107 total peak area, whereas diluted
samples obtained 2.17 × 107, showing statistically significantly different (p value = 0.0167).
In addition, the non-diluted samples produced a mean of 290 peaks, which is statistically
significantly higher than the 237 peaks obtained from the diluted samples.
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It has been reported that for samples with complex and high-concentration matrices,
adding diluent may increase the extraction recovery by reducing the interference from
matrix components and promoting the shift of analytes to the free form [3]. However,
excessively diluting the sample may decrease sensitivity due to a reduced concentration.
In two HS-SPME optimization studies [56,57], the authors observed that adding diluent
initially increased the extraction performance, but an excessive dilution led to a decrease
in extraction efficiency. Another study on plasma samples reported that adding diluent
reduced the amount of extracted volatile compounds except for diazepam, which tends
to bind strongly with the proteins in plasma [58]. BALF is a saline solution primarily
composed of alveolar macrophages and some lymphocytes [59]. We suspect that the BALF
is not a complex matrix; hence, the addition of diluent led to a decrease in sensitivity.

3.1.3. Optimization of Extraction Time and Temperature

We hypothesized that an optimum combination of extraction temperature and extrac-
tion time would yield the highest total peak area and total peak number. We observed that
the highest total peak area was achieved using an extraction temperature of 50 ◦C and an
extraction time of 50 min. In contrast, the highest total peak number was obtained with
the same extraction time but at a slightly lower temperature of 45 ◦C. The total peak area
extracted by these two conditions was 2.25 × 107 and 2.31 × 107, respectively, showing a
2.7% difference. The total peak numbers extracted were 291 and 285, respectively, indicat-
ing a 2.1% difference (Figure 3). As these two differences were minor and not statistically
different, 45 ◦C and 50 min were selected as a compromise for high-throughput analysis.
The analysis of variance results revealed a lack-of-fit p-value of 0.003 for the total peak
area and 0.001 for the total peak number, respectively. The output table and Pareto Chart
for the CCD are attached in the supplementary file (Figure S1, Table S3). Six replicates of
the center point sample showed low relative standard deviation and high reproducibility
(Supplementary Figure S3; Table S4).
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In a prior HS-SPME optimization work on a cell culture infected with respiratory
syncytial virus, the authors evaluated optimization parameters using 12 compounds,
targeting a broad spectrum of major chemical classes [48]. Inspired by this approach,
we similarly tested our hypothesis by examining 41 compounds (Supplementary, Table S2)
from different chemical classes. These compounds meet one of these two criteria [48]:
(1) they have a mass spectral similarity score greater than 850, and (2) the difference between
the calculated retention index (RI) and the RI in the library is less than 30. After conducting
a response surface analysis on these 41 compounds, we observed that none exhibited an
optimum plateau in the perspective plot within the specified extraction temperature and
time range (Supplementary Figure S1).

Extraction time is a critical parameter of the HS-SPME method, determining whether
the system reaches equilibrium across the headspace, sample, and fiber phases. The
duration required for a system to reach equilibrium depends on various factors, such
as extraction temperature, sample matrix, and the nature of the analytes. For example,
the equilibrium in HS-SPME of plasma samples at 37 ◦C is reached approximately after
90 min [58]. Extraction temperature can influence the equilibrium time, meaning that
increasing temperature may shorten the time required for reaching equilibrium [3].

We suspect that our system did not achieve equilibrium under the designated con-
ditions, as indicated by the continuously rising total peak area and total peak number
within the given without reaching a maximum value. We believe this could be due to the
insufficient extraction time and the relatively low extraction temperature.

3.1.4. The Effect of Salt Addition

We hypothesized that adding salt to the sample would lead to a higher total peak
area and total peak numbers. The results show that adding 40% NaCl to the samples
significantly enhanced the number of extracted peaks and total peak area, compared to
20% and no salt addition (Figure 4a,b). Specifically, the samples with 40% salt obtained an
average total peak area count of 3.44 × 107, whereas samples with 20% salt and samples
without salt obtained 3.08 × 107 and 2.05 × 107, respectively. The samples with 40% salt
obtained an average total peak number of 373, while those with 20% and no salt obtained
an average total peak number of 358 and 312, respectively. For both the total peak area and
total peak number, the difference between 40% and no salt was statistically significant.
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Salt addition is a common technique to enhance HS-SPME efficiency. Adding salt may
increase the activity coefficient of the compounds in the sample, which subsequently leads
to an increase in the concentration of the compounds in the headspace [3]. The effect of salt
addition depends on salt concentration [53], and it is essential to experimentally evaluate
and optimize this parameter. Our finding aligns with other studies, which reported that
adding NaCl enhanced HS-SPME extraction efficiency in various sample types, including
urine [60], culture media [48], water [61], liquor [56], and cow slurry [62]. We observed that
although the average total peak area and peak number were higher in samples with 40%
NaCl than those with 20%, the difference was not statistically significant. Similar findings
have reported that the salt addition effect is non-linear and tends to reach a plateau at 35%
NaCl, approaching the saturation concentration of 40% [32].

It has been mentioned in the theory of HS-SPEM that the salt addition effect increases
with increasing compound polarity [53]. Therefore, we also hypothesized that the salt
addition would affect polar compounds more than non-polar compounds. To test this hy-
pothesis, we evaluated the salt addition effect on 46 compounds (Supplementary Materials,
Table S2), which were selected based on the criteria mentioned in Section 3.1.3. The correla-
tion analysis between the partition coefficient Kow (octanol/water partition coefficient, used
as a substitute for polarity) and the Log2 fold change of each compound showed a negative
regression trend (Figure 5). The slope is significantly different from zero (p-value < 0.001).
Furthermore, we selected the two most polar (2,3-butanedione and ethanol) and the two
most non-polar compounds (decane and 1,3-bis (1,1-dimethyl ethyl)-benzene). We studied
their variance of relative abundance with increased salt amount. The results showed that
for 2,3-butanedione and ethanol, the peak area differences among three NaCl concentration
levels were statistically significant, except for 2,3-butanedione between 20% and 40% NaCl.
For the two non-polar compounds, while decane exhibited no noticeable variation in peak
area across different NaCl concentrations, 1,3-bis(1,1-dimethylethyl)-benzene displayed a
decrease with increasing salt concentration (Figure 6).

Based on our observation, we can conclude that adding salt can significantly improve
the HS-SPME efficacy. We can also speculate that the salt addition predominantly affects
the polar compound rather than the non-polar compound, and the extent of the salting
addition effect might correlate with the polarity of the compounds.
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Figure 6. Boxplot of four selected compounds with partition coefficients (Kow) from low to high. (a,b)
show two compounds (2,3-Butanedione and Ethanol) with low Kow which demonstrate increasing
peak area as the salt concentration increases; (c,d) illustrate two compounds (Decane and 1,3-bis
(1,1-dimethyl ethyl)-benzene) with high Kow which demonstrate no change and a decreasing peak
area, respectively, as the salt concentration increase.

In summary, the following parameters were optimized (Table 2).
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Table 2. HS-SPME parameters for the pre-optimization and optimized method.

Optimized Parameter Pre-Optimization Optimized

Vial Size 20 mL 10 mL
Dilution Factor 1:2 Dilution No Dilution
Extraction Time 30 Minutes 50 Minutes

Extraction Temperature 43 ◦C 45 ◦C
Salt Addition No Salt 40% (w/v) NaCl

3.2. Method Evaluation

To evaluate the efficacy of the method optimization, we conducted a comparison of
the optimized and pre-optimization methods in terms of total peak area and total peak
number. The chemical class composition of the extracted compound is important as it may
be indicative of the origin of the volatile compounds. Therefore, we examined the peak
area and peak number in nine chemical classes. In addition, we examined the number of
compounds consistently present in all mixed BALF samples to evaluate if the optimized
method can decrease the number of missing values caused by the sample extraction step.

We hypothesized that the optimized HS-SPME method would outperform the pre-
optimization method regarding total peak area and peak number. We observed that
optimizing the method led to increased extraction efficiency for all 10 pairs of mixed
BALF samples. Specifically, the optimized method generated an average total peak area
of 4.98 × 107, a 340% increase compared to the pre-optimization method, which was
statistically significant (p-value < 0.0001) (Figure 7a). Additionally, the optimized method
generated an average of 80% more peaks compared to the pre-optimization method, also
showing a statistically significant difference (Figure 7b). Our findings show that the
optimization of vial size, dilution factor, extraction time, extraction temperature, and
salt concentration improves the HS-SPME efficiency regarding total peak area and total
peak number.
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We also compared the peak area and peak number for nine major chemical classes
in the BALF samples extracted using the pre-optimization and optimized methods. We
observed that, after optimization, the total peak area increased for nine major chemical
classes (Figure 7c). The increase ranged from 112% to 761%, among which alcohols, ketones,
and esters have the most significant increase. Specifically, the alcohols increased by 761%,
on average, compared to the pre-optimization method; the ketones increased by 447%;
and the esters increased by 425%. All nine classes demonstrated statistically significant
differences except the aliphatic hydrocarbons. The total peak number also increased for all
nine chemical classes (Figure 7d), with the increase ranging from 19% to 116%. The alcohols,
halogenated compounds, and esters showed the most notable increase of 116%, 103%,
and 79%, respectively. All nine classes demonstrated statistically significant differences.
We noticed that the chemical classes with polar functional groups demonstrated a more
significant increase. Thus, we may speculate that optimization has a more significant
impact on polar compounds.

In addition, we hypothesized that the optimized method would increase the number of
extracted volatile compounds consistently present in BALF samples. The pre-optimization
samples had 56 features consistently detected in samples, while the optimized method had
108 features consistently detected (Figure 8). We conclude that increased peak intensity can
make the peak identification more consistent.
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Figure 8. The volatile compounds that are 100% present across 10 sets of mixed BLAF samples in
eight chemical classes extracted using the pre-optimization and optimized method.

Among the 108 identified compounds, 52 compounds were presented in both methods.
Fifty-six compounds were only identified with the optimized method. Only four com-
pounds that were constantly present using the pre-optimization method were not observed
in the optimized method. We observed an increase in all eight chemical classes. Alcohols
and ketones showed the most significant increases, at 340% and 267%, respectively. For the
other six chemical classes, the increase ranged from 125% to 177%. Therefore, the optimized
parameters not only enhance the total peak area and total peak number extracted but also
improve the consistency in extracting, detecting, and identifying volatile compounds.

4. Conclusions

This study optimized a series of HS-SPME parameters, including headspace vial size,
dilution factor, extraction time, extraction temperature, and salt concentration. The effec-
tiveness of the optimized method was validated by conducting a comparative analysis
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involving the extraction of ten sample sets utilizing both the pre-optimization and opti-
mized methods. The results suggest that the optimization has increased the total peak area,
total peak number, and number of compounds constantly detected in all samples. The
increase was also observed across major chemical classes.

However, it is worth acknowledging the inherent challenges and limitations in this
study. First, considering only the factors we have used is not sufficient for a fully compre-
hensive optimization. Additional parameters, such as pH, agitation mode, and agitation
speed, may also be necessary to achieve more thorough results. Second, while we aim
to increase the total peak area and peak numbers to benefit the untargeted screening of
samples, exploring the optimum conditions for specific compounds or chemical classes
is challenging. Furthermore, it is also challenging to explain the observations by existing
HS-SPME theory. Thus, an authentic chemical standard addition should be employed to
explore the ideal conditions for individual compounds. A more sophisticated experimental
design and increased sample size are necessary to fully explain our result by theory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations11010027/s1. Figure S1. Pareto Chart of the response
surface analysis for total peak area and total peak number. Figure S2. Perspective plots of four out of
the 41 selected compounds. The unit of extraction time is minute, the unit of extraction temperature
is ◦C. Figure S3. Relative standard deviation (RSD) of individual compound in the six samples of the
center point. Table S1: Table of the known contaminants removed from the analysis. Table S2. A list of
compounds selected for the optimization of extraction time and temperature, and salt concentration.
Table S3. The central composite design (CCD) Minitab output table. Table S4. Reproducibility of the
six samples in the center point.
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