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Abstract: This work presents a biological remediation process for molybdenum-bearing wastewater
which may lead to the fabrication of biogenic Mo chalcogenide particles with (photo)catalytic proper-
ties. The process is based on dissimilatory sulphate reduction, utilising sulphate-reducing bacteria
(SRB), and reductive precipitation of molybdate which is the predominant species of molybdenum in
oxygenated water/wastewater. The SRB culture was established in a biofilm reactor which was fed
with synthetic solutions containing sulphate (17.7 mM), molybdate molybdenum (2 mM), divalent
iron (1.7 mM) and ethanol as the carbon/electron donor. The performance of the bioreactor was
monitored in terms of pH, sulphate and molybdenum (Mo(VI) and total) content. The presence
of thiomolybdate species was studied by scanning UV-Vis absorbance of samples from the reactor
outflow while the reactor precipitates were studied via electron microscopy coupled with energy
dispersive spectrometry, X-ray diffractometry and laser light scattering. A molar molybdate/sulphate
ratio of 1:12.5 proved effective for molybdate reduction and recovery by 76% in 96 h, whereas sulphate
was reduced by 57%. Molybdenum was immobilised in the sulphidic precipitates of the bioreactor,
presumably via two principal mechanisms: (i) microbially mediated reduction and precipitation, and
(ii) thiomolybdate formation and sorption/incorporation into iron sulphides.

Keywords: molybdate reduction; molybdenum disulphide; molybdenum chalcogenides;
bioprecipitation; sulphate reduction; metal sulphides

1. Introduction

Molybdenum (Mo) is a transition metal of growing economic importance which occurs
naturally as molybdenite (MoS2) and is recovered as a by-product of copper and tungsten
mining operations. Mo, which is used mainly in steel and chemicals but also in industrial
lubrication and catalysis applications [1], is needed in all technologies in the upcoming
green energy transition [2]. As the European Union (EU) is totally dependent on Mo
imports [3], particular attention has been paid to improve Mo recovery rates from waste
and wastewater.

In addition to mining wastewater and metallurgical slags, additional secondary Mo
sources have recently been identified. For example, molybdenum-containing catalysts are
widely used in the petroleum refining industry for mild hydrogenation and removal of
sulphur (hydrodesulfurization, HDS), nitrogen and oxygen. Spent HDS catalysts usually
consist of molybdenum sulphide mixed with sulphides of vanadium, cobalt and nickel
on an alumina carrier. The composition of such a spent catalyst is 2–10% Mo, 0–12%
V, 0.5–4% Co, 0.5–10% Ni, 10% S and 10% C, with the balance being Al2O3 [1]. In ad-
dition, Mo-containing solutions may originate from the wastewater generated during
the hydrometallurgical treatment of waste electronic equipment, such as thin-film photo-
voltaic (PV) panels [4] for the recovery of critical metals [5]. Based on the installed and
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expected PV capacity, global PV waste is estimated to reach 1.7–8 million tonnes by 2030
and 60–78 million tonnes by 2050 [6]. Thus, end-of-life thin-film PV panels could also serve
as a significant potential secondary source of Mo.

Molybdenum, which is found as Mo(VI) in such wastewater and leachates, can be
recovered via various methods [7,8], such as precipitation [9,10], adsorption [11,12] and
solvent extraction [13,14]. Among the precipitation methods, sulphide precipitation is
generally advantageous due to the lower solubility of metal sulphide precipitates, faster
reaction rates, better settling properties and potential for selective metal removal and further
valorisation of sulphide precipitates by smelting or hydrometallurgical treatment [15].
For molybdenum in particular, its potential selective recovery from leachates by adding
biogenic H2S [16] and aqueous Na2S [17,18] has been experimentally evaluated. Vemic
et al. [18] identified MoO3 in the precipitates and Cibati et al. [16] reported molybdenum
recovery as a sulphide/oxide precipitate, whereas Hamza et al. [17] produced a pure MoS2
solid material after a multi-stage leaching/precipitation process.

Molybdenum (di)sulphide (MoS2), a chalcogenide with a two-dimensional layered
structure, has recently received much attention due to its wide range of environmental and
energy applications [19], such as hydrogen production [20,21] and CO2 reduction [22]. In
addition to various conventional synthesis methods [23], several efforts have been made
to fabricate metal chalcogenide particles via microbially mediated pathways [24]. Among
these, methods based on biogenic sulphide and dissimilatory sulphate reduction [25,26]
have driven research to produce metal sulphide nanoparticles.

Biological sulphate reduction, utilising sulphate-reducing bacteria (SRB) [27], has been
demonstrated in lab- and pilot-scale studies [28] for the treatment of wastewater with a
significant sulphate and metal content. This process occurs anaerobically via the oxidation
of organic carbon sources (or H2) and the reduction of sulphate (SO4

2−) to sulphide (H2S,
HS−) by SRB [29]. Sulphide and bicarbonate ions, which are formed during sulphate
reduction and carbon source oxidation, buffer the solution pH around neutral to slightly
alkaline values. Therefore, sulphate-reducing bioreactors are considered advantageous
for metal sequestering from wastewater by bioprecipitation [30] and/or other secondary
mechanisms [31], such as reductive precipitation [32]. Molybdate (MoO2−

4 ), which is a
structural analogue of sulphate, can be reduced by SRB into Mo(V) and finally into Mo(IV)
which can then precipitate as sulphide [33–36]. However, this remediation approach has
not been extensively evaluated due to the reported inhibitory effects of molybdate on
microbial activity [37–40].

This work demonstrates the capacity of a biofilm reactor to treat solutions containing
Mo(VI), simulating wastewater generated upon leaching with H2SO4, for the recovery
of sulphidic particles of molybdenum and presents a remediation process for Mo-laden
wastewater which may lead to the fabrication of biogenic Mo chalcogenide particles.

2. Materials and Methods
2.1. Sulphate-Reducing Bioreactor

The sulphate-reducing bioreactor used in this study has been set up and run for the
remediation of acidic industrial wastewater [41]. In short, the reactor was a plexiglass tube
(length: 50 cm; I.D.: 9.5 cm) which was packed with porous, sintered-glass cylindrical
pieces (length: 2.5–3.5 cm; diam.: 1 cm—Biohome® Ultimate Marine [42]), resulting in
a bed height of 40 cm and reactor effective volume of 1.7 L. The reactor was inoculated
by transferring sufficient packing material with already grown microbial biomass from
a previously operated bioreactor with ethanol as carbon/electron source. The bacterial
culture was initially dominated by Desulfobacter postgatei [43], an acetate-utilising species.

The reactor operated at constant room temperature (25 ◦C) in fed-batch upflow mode;
it was fed from a 2 L bottle via a peristaltic pump (2 L/h). The feed solution was re-
newed periodically, without emptying the reactor, at intervals of four days. The reactor
was fed with synthetic solutions based on a modified Postgate’s medium (DSMZ GmbH,
Desulfovibrio medium no.63), where lactate was replaced with ethanol. The basal medium
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contained 0.5 g/L K2HPO4, 1 g/L NH4Cl and 0.1 g/L CaCl2·2H2O. The feed solution also
contained divalent iron (100 mg/L, added as FeSO4·7H2O), molybdenum (200 mg/L added
as Na2MoO4·2H2O) and sulphate (1700 mg/L, added as Na2SO4 and MgSO4·7H2O).

Ethanol is proposed as an alternative carbon source/electron donor for sulphate-
reducing bacteria for several reasons, including ease of availability and low cost. Moreover,
White and Gadd demonstrated that ethanol was more effective in stimulating sulphide
production than lactate which, however, produced the greatest biomass [44]. Ethanol, like
lactate, can be incompletely oxidised to acetate (reaction (1)) or completely oxidised to CO2
(reaction (2)) via the oxidation of acetate (reaction (3)), depending on the SRB species [29].
Acetate oxidation (reaction (3)), which depends on the presence of acetate-utilising SRB
in the microbial consortium, has been proven to be the critical step, as it controls the
generation of alkalinity and the residual organic content of the effluent. Acetate may also
inhibit sulphate reduction at a high concentration and low pH [45], being highly toxic to
SRB in undissociated forms [46]. Thus, avoiding acetate accumulation via its oxidation is
considered a key factor for the optimisation of the entire process.

Ethanol was supplied with 20% surplus over the stoichiometric quantity required
for the reduction of sulphate (Reaction (2)) and molybdate, considering (i) the complete
oxidation of ethanol based on the capacity of the dominant species to metabolise acetate
and (ii) the assimilation of carbon for the growth and preservation of biomass. For the
reduction of molybdate, which progresses enzymatically and not merely chemically [36],
the half reaction was considered for the complete oxidation of ethanol into carbon dioxide
(Reaction (4)) [47].

2CH3CH2OH + SO2−
4 → 2CH3COO− + HS− + H+ + 2H2O (1)

2CH3CH2OH + 3SO2−
4 → 4HCO−

3 + 3HS− + 2H2O + H+ (2)

2CH3COO− + 2SO2−
4 → 4HCO−

3 + 2HS− (3)

1
12

CH3CH2OH +
1
4

H2O → 1
6

CO2 + H+ + e− (4)

2.2. Experimental Procedure and Analytical Determinations

The bioreactor performance was monitored in terms of pH, sulphate and molybdenum
(Mo(VI) and total) content. Sampling was performed at the feeding bottle each time the
solution was renewed as well as at the reactor outlet after 1, 2, 3, 4, 5, 24, 48, 72 and 96 h.

Solution pH was determined in unfiltered samples, which were then vacuum-filtered
through 0.2 µm sterile membranes (Whatman® ME24/21) before any other chemical de-
termination. The presence of any intermediate thiomolybdate species was identified by
scanning the UV-Vis absorbance of the reactor outflow, immediately after sampling and
filtering, in the 250–500 nm range (Hach DR/6000). Sulphate concentration was deter-
mined via turbidimetry at 450 nm after formation of BaSO4 (Hach DR/6000, Method 8051).
Molybdate molybdenum concentration was determined at 420 nm after a reaction with
mercaptoacetic acid (Hach DR/6000, Method 8036). This method involves pH buffering
and the prevention of Mo(VI) reduction into Mo(V) before the addition of mercaptoacetic
acid. The Mo(VI) concentration is proportional to the yellow colour, which is formed
when mercaptoacetic acid reacts with Mo(VI) (Figure 1). Therefore, this colorimetric
method allows for the quantitative determination of Mo(VI), which is found in molybdate
and thiomolybdate species. The concentration of total molybdenum was determined by
inductively coupled plasma optical emission spectroscopy (Leeman Labs, Inc., Mason,
OH, USA).
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Figure 1. Reaction (5).

All experiments were carried out in duplicate; the presented results are mean values
of the results obtained after operating the reactor with the aforementioned feed solutions
for six months. For comparison, at the end of the six-month period, the reactor was run
with a feed solution without molybdate.

All concentration results are presented in dimensionless form to the initial concentra-
tion determined after 1 h of solution circulation, when the new feed solution is assumed to
have been completely mixed with the reactor content.

The initial concentration values determined after 1 h of solution circulation were also
input into Hydra-Medusa [48], a chemical speciation software, in order to calculate the
concentration fraction of the various Mo species at the equilibrium established at selected
redox conditions as well as to predict the predominant aqueous species and solid phases.
Mo speciation was determined at 25 ◦C, at ESHE = 500 mV (corresponding to the oxic feed
solution) and at ESHE = −250 mV (corresponding to the anoxic conditions established in
the sulphate-reducing bioreactor).

2.3. Sampling and Physical–Chemical Analysis of the Reactor Precipitates

For the physical–chemical analysis of the reactor precipitates, a sludge sample was
collected from the reactor bottom, centrifuged (for 10 min at 4000 rpm) and decanted
immediately after centrifugation. In order to prevent oxidation and remobilisation, or
redistribution among fractions, of the metals contained therein, the solid material was
transferred into a desiccator, where it was kept under a nitrogen atmosphere, at room
temperature (approx. 25 ◦C) [49]. The dehydrated material was then homogenised. All
subsequent tests were conducted under ambient air conditions.

The particle size distribution (PSD) of the reactor precipitates was determined using
laser light scattering (Horiba Partica LA-960V2). This method uses the volume of the
particle to measure its size based on the Mie theory for light scattering by spherical particles
and it was selected due to the extremely fine grain size of the sludge [49,50]. The sludge
sample was analysed in an aqueous suspension.

For the identification of the various mineral phases, powder X-ray diffraction (XRD)
analysis was performed using a Bruker D8 Focus X-Ray Diffractometer (Bruker, Germany)
with nickel-filtered CuKa radiation (λ = 1.5406 Å) at 40 kV and 40 mA. The samples were
slowly step-scanned from 10◦ to 80◦ (2θ), at a step of 0.02◦ and step time of 6 s. This low
scan rate was selected in order to detect the precipitated Mo phases accurately.

Microstructural and morphological observation of the reactor precipitates was carried
out on polished sections using a scanning electron microscope (JEOL JSM 6380-LV) in
low-vacuum mode (accelerating voltage: 20 kV). Microanalyses were carried out with an
Oxford INCA (Oxford Instruments, UK) energy-dispersive spectrometer (EDS) connected
to the microscope. Polished sections were prepared following typical procedures for
metallographic specimens: sludge samples, after being impregnated in a low-viscosity
epoxy resin (Akasel Denmark) under vacuum, were cut via micro saw, then ground down
to 2000 SiC paper grit and polished through three stages (6 µm and 1 µm diamond paste,
followed by colloidal silica gel) on a lapping disk.

The nanoscale investigation of the reactor precipitates was carried out with a high-
resolution JEOL 2100 LaB6 transmission electron microscope (HRTEM) operating at 200 kV.
Prior to the analysis, a sample suspension (about 0.1 g of sample in 100 mL ethanol) was
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prepared and cured with ultrasound to disaggregate any agglomerated particles. A drop
from the suspension was then placed on a 300-mesh carbon coated copper grid and air-
dried overnight. The grain microstructure was also studied using a bright-field detector in
scanning (STEM) mode. Elemental analysis was performed using an Oxford X-Max 100
Silicon Drift energy-dispersive X-ray spectrometer (EDS) in connection with TEM, with a
probe size ranging from 2 to 5 nm in STEM mode.

3. Results and Discussion
3.1. Mo Speciation

Figure 2 depicts the simulation results of molybdenum speciation given by Hydra-
Medusa. Under oxic conditions (Figure 2a), molybdenum occurs predominantly as MoO2−

4 ,
as protonation occurs significantly only below pH 5. However, under anoxic and sulphidic
conditions (typical conditions found in a sulphate-reducing bioreactor, Figure 2b), Mo is
found as MoS2 up to a pH of 8.5. Above a pH of 8.5, under anoxic conditions, the dominant
stable phases are MoO2 when 8.5 < pH < 9, and MoO2−

4 when pH > 9.
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conditions for the Mo–Fe–O–H–S system at 25 ◦C for
[
SO2−

4

]
= 15.65 mM,

[
Fe2+] = 1.70 mM and[

MoO2−
4

]
= 1.25 mM (calculated with Hydra-Medusa [48]; “cr” stands for crystalline solid and “s”

for solid of unknown crystallinity).

Moreover, under anoxic and sulphidic conditions, molybdate undergoes sulphidation
forming thiomolybdate species (MoOxS2−

4−x; i.e., MoO2−
4 → MoO3S2− → MoO2S2−

2 →
MoOS2−

3 → MoS2−
4 ) which are stable when the pH is near neutral and alkaline values [51].

A study of Mo speciation in anaerobic, weakly sulphidic ([H2S] < 11 µM) natural waters [52]
has reported that the molybdate sulphidation reaction is faster at a lower pH; at a pH of
6.24, the reaction went nearly to completion in less than three days, whereas at a pH of
8.96 little to no MoS2−

4 was present after 12 days, and the dominant species was MoOS2−
3 .

It has also been reported [53] that a 3-fold change in [H2S] produces a 100-fold change
in MoO2−

4 /MoS2−
4 while each successive sulphidation reaction is one order of magnitude

slower than the previous one.
Spectral analysis of the reactor outflow, which had a characteristic purple colour,

revealed absorbance peaks at 290, 320, 390 and 468 nm (Figure 3). Similar absorbance peaks
were identified after scanning the centrifugate of the growth medium when D. vulgaris
was grown in media containing 0.1 mM sodium molybdate [33]. Based on the literature
(Table 1), these spectra indicate the formation of intermediate thiomolybdate species and
ultimately MoS2−

4 after 24 h. Figure 3 also shows that the concentration of MoS2−
4 was

reduced by 55% by the end of the experiments (96 h).
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Table 1. Wavelengths of UV-Vis absorbance maxima for thiomolybdate species.

Species λmax (nm)
[54]

λmax (nm)
[53]

λmax (nm)
[55]

λmax (nm)
[56]

λmax (nm)
[57]

MoO2−
4 207

MoO3S2− 290 290 292 288
314 392

MoO2S2−
2

286 290 288
321 322 320 319
395 394 393 393 394

MoOS2−
3

312 312 308 319
396 396 395 393 392
461 462 457 470 460

MoS2−
4

317 318 316 316
468 468 467 470 463

3.2. Reduction of Sulphate and Molybdate

Figure 4 shows that sulphate reduction (Figure 4a) proceeded along with molybdate
sequestering (Figure 4b) and a pH increase (Figure 4c), validating the concept of the
proposed process.

Sulphate reduction in the presence of 1.25 mM molybdate reached 57% after 96 h,
whereas sulphate was reduced by approximately 76% during a control experiment which
was carried out without adding molybdate into the feed solution (Figure 4a). The limited
electron exchange in the presence of molybdate indicates a potential inhibitory effect on
the SRB metabolic activity which, however, needs to be further verified in conjunction
with the oxidation of the electron donor by the microorganisms established in the reactor
biofilm. Nevertheless, similar results were reported for pure SRB cultures when 0.5–2 mM
molybdate was added to solutions containing 20 mM sulphate [33]; Desulfovibrio gigas
and D. vulgaris were more sensitive to molybdate than D. desulfuricans, which was in-
hibited by 50% at 1 mM molybdate. Above 2 mM molybdate, sulphate reduction was
completely inhibited and the corresponding ratio of molybdate/sulphate was calculated
as 1:10. In this study, a molar molybdate/sulphate ratio of 1:12.5 also proved effective for
molybdate recovery.
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(d) E–pH diagram for the Mo–Fe–O–H–S system at 25 ◦C for
[
SO2−

4

]
= 15.65 mM,

[
Fe2+] = 1.70 mM

and
[
MoO2−

4

]
= 1.25 mM (calculated with Hydra-Medusa [48]).

When comparing sulphate reduction in the absence of molybdate with the previously
reported efficiency of the biofilm reactor a year ago [41], or the initial microbial culture [43],
it is less efficient as 25% of the initial sulphate content remains in the reactor outflow after 96
h. Sulphate reduction is even lower than the results attained in the presence of molybdate
four months ago [58]. This finding may be connected with a possible alteration of the
initial microbial population [43] or long-term exposure (over six months) to feed solutions
containing molybdate, which stimulates the growth of methanogens or other anaerobes.
As these microbes compete with SRB for the electron donor, the species comprising the
microbial population of the reactor biofilm need to be further identified.

The concentration of molybdate molybdenum and total molybdenum in the reac-tor
outflow is depicted in Figure 4b. It is indicated that Mo(VI) is reduced and recovered
by 76% in 96 h. This finding is consistent with Figure 3 and indicates that all residual
Mo is present as MoS2−

4 , meaning that Mo recovery is limited by Mo(VI) reduction. The
fact that Mo recovery is not restricted by the available sulphide is also indicated by the
stoichiometry of the precipitation reactions: the biogenic sulphide which is produced by
the end of the experiments due to sulphate reduction (15.65 mM × 0.57 = 8.9 mM) is
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theoretically sufficient for the quantitative precipitation of iron (1.7 mM) and molybdenum
(1.25 mM) as sulphides (3.4 mM sulphide for FeS2 + 2.5 mM sulphide for MoS2 = 5.9 mM).

The attained recovery rate is lower than the preliminary results attained after feeding
the bioreactor with molybdate-containing solutions for two months (presented in [58]).
This also underlines the strong link between molybdenum recovery and microbial activity
in the reactor.

3.3. Characterisation of the Reactor Precipitates

The particle size distribution of the reactor precipitates (Figure 5) revealed two discrete
grain size distributions in the 0.4–300 µm range, namely 0.4–12 µm (peak value at 10 µm) for
the fine fraction and 12–300 µm (peak value: 70 µm) for the coarser and possibly aggregated
particles. Moreover, it is shown that the particle diameter is smaller than 108.5 µm (by 90%),
25.2 µm (by 50%) and 3.5 µm (by 10%).
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Figure 5. Particle size distribution of the reactor precipitates.

The grain size of the precipitates is larger than previously reported results [49] and
this may be due to the limited sulphate reduction shown in Figure 4a. It has been demon-
strated that PSD is affected by the sulphide concentration as, under a sulphide surplus,
the precipitated metal phases are characterised by smaller particles with worse settling
properties [59,60]. Nevertheless, if the produced solid material is intended to be utilised in
applications where the grain size is critical (as for example, in photocatalytic applications
where nanoscale materials exhibit enhanced catalytic properties [19]), the grain size of the
reactor precipitates can be further optimised via a strict control of the reactor operating
conditions.

SEM-EDS and TEM-EDS results for the reactor precipitates are depicted
in Figures 6 and 7, respectively. Most of the particles have been deposited on the surface
of the packing material and present spherical development (Figure 6a; SEM micrograph
taken before impregnation of the sample in the resin). EDS spectra indicate that molyb-
denum is generally immobilised in microcrystalline sulphidic phases that also contain Fe
(Figures 6e and 7e,f), Mn (Figures 6f and 7e,f) and Zn (Figure 7e,f). The X-ray diffractogram
(Figure 8) also indicates the main mineral phases identified in the reactor precipitates: sul-
phur (S), molybdenum sulphide (MoS2), iron sulphide (FeS2), struvite (NH4MgPO4·6H2O)
and magnesium phosphate (Mg3(PO4)2·8H2O).

Divalent iron is generally added in the solutions fed to the reactor and precipitates
as FeS or FeS2 in the presence of biogenic sulphide [43,49]; thus, sulphidic phases of iron
are typically abundant in sulphate-reducing bioreactors. Zinc and manganese were found
in acid mine drainage feed which was treated in the reactor during previous reported



Separations 2024, 11, 9 9 of 15

runs [41]. As most divalent metals under sulphidic conditions, Zn precipitates as sulphide
(Zn precipitation as wurtzite and sphalerite was already demonstrated [43,49]). Manganese
could have precipitated as sulphide upon reduction or oxide under the alkaline reactor
conditions. Calcium, magnesium and phosphorus detected in EDS spectra are contained
in the basal medium and may have precipitated as phosphate phases [50], whereas the
presence of Si in the reactor sludge is attributed to the abrasion of the inert packing material.
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Figure 6. SEM micrographs of the reactor precipitates (a) before impregnation in the resin and
(b–d) on polished sections after impregnation in the resin (dark areas correspond to the surface of
the inert packing material of the reactor). (e,f) EDS spectra on spots marked with a red cross on the
relevant micrographs (spectrum 1 corresponds to (c) and spectrum 2 corresponds to (d)).
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Figure 7. (a–d) Bright-field TEM micrographs of the reactor precipitates and selected area diffraction
patterns (SAED) of mixed (c) FeS2 and (d) MoS2 particles; (e,f) EDS spectra on spots marked with a
red cross on the relevant micrographs (spectrum (e) corresponds to (c) and spectrum (f) corresponds
to (d)).
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Figure 8. XRD analysis of the reactor precipitates.

Molybdenum is expected to have precipitated as MoS2 in the reactor bed, as molyb-
denum sulphide is the predominant phase depicted in the E-pH diagram (Figure 4d) for
alkaline-reducing conditions. Molybdenum disulphide was also identified via energy
dispersive X-ray analysis of the deposits found extracellularly on the surface and the
periplasm of D. gigas and D. desulfuricans cells grown in media containing 0.1 mM sodium
molybdate [33]. Moreover, the analysis of the electron diffraction pattern of the black
precipitate formed in cell suspensions of D. desulfuricans in the presence of Mo(VI) and
sulphate revealed that the Mo(IV) phase was nanoscale MoS2 [36].

In this study, although the EDS spectra cannot unambiguously indicate the presence
of MoS2 due to the intense overlap of the L series peaks of Mo and the S Kα peak, MoS2
was identified in the electron diffraction pattern (Figure 7d) and in the X-ray diffractogram
(Figure 8) which verified the reduction of Mo(VI) into Mo(IV) and its subsequent precipita-
tion as sulphide. The X-ray diffraction pattern showed that MoS2 had a hexagonal structure
and the detected diffraction peaks at 14.39◦, 32.69◦ and 39.49◦ corresponded to the (002),
(100), (103) crystal planes. Further study of the nature and the crystalline structure of the
precipitate via HRTEM revealed that MoS2 had a layer-like structure and was developed in
nanosheets and aggregated layers. The bioreactor precipitate, consisting of Mo, S and small
amounts of iron and oxygen, had a nano flower-like structure assembled from nanosheets.
The nanosheets were detected being slightly stuck around each other, or with bubble-like
structures, with very sharp and thin sheets of MoS2.

In addition to the thermodynamically favoured MoS2 formation upon the interaction
of Mo(IV) with biogenic sulphide, another mechanistic approach was proposed for the im-
mobilisation of Mo in sediments under anoxic and sulphidic conditions, i.e., the Fe sulphide
pathway. It has been suggested that the latter is initiated with the formation of thiomolyb-
date [61], which interacts with Fe sulphide leading to the adsorption of Mo onto pyrite,
or the incorporation of Mo into Mo-Fe-S cubane structures, such as FeMoS2(S2) [52,62–65].



Separations 2024, 11, 9 12 of 15

These mechanisms may explain the presence of molybdenum in sulphidic phases where
the electron diffraction pattern corresponds to FeS2 (Figure 7c).

As a result, microbial activity promoted the development and precipitation of mixed
Mo and Fe sulphides. Further research will clarify the mechanism of molybdenum immo-
bilisation in such a sulphate-reducing system. This understanding will facilitate process
design for the selective precipitation of Mo and control of the purity of the biogenic Mo
precipitates.

4. Conclusions

This work demonstrates a microbially mediated process for the fabrication of molyb-
denum chalcogenides from wastewater containing sulphate and molybdate. A molar
molybdate/sulphate ratio of 1:12.5 proved effective for molybdate recovery by 76 % from
solutions containing 2 mM Mo as MoO2−

4 . Molybdenum was retained in the sulphidic
precipitates of the bioreactor, presumably via the following two principal mechanisms:
(i) microbially mediated reduction and precipitation and (ii) thiomolybdate formation and
sorption/incorporation into iron sulphides.

Further investigation of the mechanism regulating the immobilisation of molybdenum
may tune the entire process in order to fabricate a valuable material, i.e., MoS2, with
desirable properties for a wide range of environmental and energy applications.
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