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Abstract: Camellia oil is a high-value product with rich nutrients. Recently, the adulteration of
camellia oil has become an increasingly concerning issue related to human health. In this study,
electric soldering iron coupled with rapid evaporative ionization mass spectrometry (REIMS) was
employed for the identification and analysis of camellia oil without any sample preparation. REIMS
technology coupled with chemometrics was applied to develop an analysis model for the authentica-
tion of camellia oil adulterated with soybean oil, peanut oil, rapeseed oil, sunflower oil, and corn
oil (5–40%, v/v). The results showed that different types of vegetable oils could be classified using
principal component analysis-linear discriminant analysis (PCA-LDA) with a correct classification of
93.8% in leave-20%-out cross-validation and 100% correctly identified in real-time recognition. The
established prediction models were found to be particularly sensitive when the camellia oil samples
were adulterated with 5–40% of other oils, indicating that REIMS could be a powerful tool for the
authentication and adulteration analysis of camellia oil, particularly for cases where the adulteration
levels are relatively high. In conclusion, the results provide valuable insights into the potential of
REIMS for the rapid, accurate, and real-time authentication and adulteration analysis of camellia oil.

Keywords: electric soldering iron; rapid evaporative ionization mass spectrometry; camellia oil;
adulteration

1. Introduction

Camellia oil, a versatile vegetable oil, is an edible product derived from the mature
seeds of the Camellia oleifera, a plant that is widely cultivated in southern China, specifically
in regions such as Guangxi, Yunnan, and Fujian provinces, where the climate is conducive
for the growth of the plant [1]. Camellia oil boasts a high content of unsaturated fatty acids
and natural tea polyphenols. Camellia oil’s fatty acid composition closely resembles that of
olive oil, which is commonly considered an optimal oil for human consumption [2]. Due to
its health-promoting characteristics, camellia oil has been referred to as “oriental olive oil”,
as it is rich in antioxidants and phytochemicals derived from its plant. In addition to its
nutritional benefits, camellia oil has been reported to possess numerous health-promoting
properties, including antioxidant, cardiovascular, and anti-tumor properties, and it is
commonly used in the healthcare field to treat liver blood deficiency, expel parasites, benefit
the intestines and stomach, and improve eyesight [3,4]. As a result of these benefits, camellia
oil has been supported and endorsed by the Chinese government and the International
Food and Agriculture Organization as a pure, natural edible vegetable oil [5]. As a result
of increasing demand and change in consumer attitudes, the demand for camellia oil is
also on the rise, which has led to a subsequent increase in the market price of camellia oil.
However, compared to other commonly used edible oils such as rapeseed oil, soybean oil,
and peanut oil, camellia oil is generally more expensive. This higher price point is largely
due to the high cost of cultivation and production of camellia seeds. This has led some
illegal traders to adulterate camellia oil with cheaper oils in order to maximize profits [6].
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The addition of low-quality oils to camellia oil can lead to a significant reduction in its
nutritional value and overall quality. The adulterated camellia oil can subsequently pose a
significant risk to public health due to the unforeseen and potentially harmful effects of
consuming these products. Thus, it is crucial to develop reliable and accurate methods for
the identification and detection of adulteration in camellia seed oil, in order to protect the
interests of legitimate producers and consumers alike, ensuring that the oil consumers are
obtaining is of the highest quality possible.

Over these past few decades, numerous techniques have been developed and utilized
for the authentication of edible oils, including Fourier Transform Infrared Spectroscopy (FT-
IR) [5], infrared spectroscopy [7,8], Raman spectroscopy [9], fluorescence spectroscopy [10],
gas chromatography-mass spectrometry [11], ultra-performance liquid chromatography
quadrupole time-of-flight mass spectrometry [12], nuclear magnetic resonance [13], elec-
tronic nose [14], and electronic tongue [15], which are all highly sensitive and specific
methods for the authentication of edible oils. Furthermore, many of these techniques were
also utilized in the analysis and authentication of camellia oil. As reported by Dou and
coworkers, the liquid chromatography coupled with tandem mass spectrometry was ap-
plied in the evaluation of the amounts of several key compounds, which include isoflavones,
sinapic acid, and resveratrol [6]. Their results revealed that soybean oil contained four
isoflavones concurrently, whereas peanut oil had only resveratrol, and rapeseed oil had
significantly more sinapic acid than others. This method enables the detection of these
compounds as chemical markers for the adulteration of camellia oil. In Wang’s research,
fatty acid, phytosterols, and squalene were analyzed by GC and GC-MS fingerprints in
conjunction with chemometrics that were employed to identify the adulteration of camellia
oil with multiple vegetable oils [11]. As a result, in PCA, Camellia oil stood out with its
elevated levels of triterpene alcohols, enabling it to be distinguished from other vegetable
oils. By utilizing partial least squares-discriminant analysis, adulterated camellia oil, par-
ticularly when the adulterated ratio exceeded 30%, could be accurately classified with
a discrimination accuracy exceeding 92.31% of the total. On the other hand, the use of
electronic noses and electronic tongues, which consist of chemical sensors with distinct
selectivity for data acquisition, coupled with appropriate algorithms for signal processing,
also played an important role in authentication analysis [16]. In a study conducted by
Wang, they used an e-nose combined with chemometrics (PCA, LDA, ANN) for the dis-
crimination of camellia oil adulterated with maize oil [14]. The results demonstrated that
the LDA model performed better than the PCA model in distinguishing the adulterated oil.
However, the quantification model still requires improvement as the ANN model showed
limitations in accurately determining the percentage of maize oil in camellia oil. Further
research is needed to enhance the quantification capabilities of these models. In Shan’s
study, four pattern recognition methods were assessed to authenticate pure camellia oil
using near infrared spectroscopy [17]. The NIR spectral data was initially analyzed using
unsupervised methods such as PCA and HCA. Two supervised classification techniques,
DA and RBFNN, were employed to develop calibration models and predict unknown
samples. The solutions achieved a correct classification rate of 98.3%. However, if the
established methods require large and expensive devices or complex preprocessing, the
entire detection process is time-consuming, complex, and costly, making them difficult to
apply in actual situations.

Rapid evaporative ionization mass spectrometry (REIMS) is a recent form of ambient
mass spectrometry, that allows in situ, real-time analysis of tissue samples [18]. Com-
bined with mass spectrometry and a surgical diathermy device called the intelligent knife
(iKnife) [19], it could achieve handheld sampling and direct analysis of the sample with-
out preparation, generating information-rich aerosols that are then transferred via an ion
transfer pathway into the mass spectrometer for accurate molecular mass analysis in a
matter of seconds [20,21]. Based on REIMS, the analysis of samples does not require any
sample pretreatment or liquid chromatography separation and typically takes only a few
seconds to complete data collection and analysis with a high accuracy rate [22]. Meanwhile,
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many kinds of molecular species could be detected with the combined mass spectrometry
detector.

Currently, REIMS has been successfully applied in clinical tissue resection, tumor
diagnosis, microbial identification, food authentication, and other fields, providing a novel
research method and approach for lipidomics research [23–26]. In terms of the identification
of the species of origin or quality for food products, it is of utmost importance to have the
right tools and equipment to ensure accurate and reliable results, thus providing consumers
with reliable information on what they are consuming. In this respect, REIMS was used for
the identification and discrimination of shrimp, animal species, Pelodiscus sinensis, beer, and
fresh meat, etc. [25,27–30]. As a valid direct sampling analysis technique, REIMS provides
numerous advantages when utilized as an instrument for authenticity testing. One notable
benefit is its ability to drastically reduce analysis time, with results being obtained within
seconds or minutes [31]. When coupled with high-resolution mass spectrometry, REIMS
becomes even more powerful, enabling the generation of untargeted mass spectral profiles
through in situ sampling [32]. Moreover, Black’s research showed that REIMS could be
utilized to detect different fish species [33]. However, the lipid compositions of those
fish samples had little difference and the following analysis was less effective, which
showed that the analyzation of data was also important. These spectral profiles of authentic
samples could then be submitted to exercise and validate chemometric models, employing
multivariate statistical analysis algorithms. By comparing the spectral profiles of unknown
samples with the validated model through similarity scoring, real-time classification can be
achieved. This approach allows for the identification of unknown samples based on their
similarity to the established profiles [28].

The primary focus of this research was to explore the potential of REIMS in combina-
tion with contact heating using a soldering iron. This combination was specifically aimed
at authenticating camellia oil, distinguishing it from other vegetable oils, and detecting
adulteration composition and content. The goal was to utilize the capabilities of REIMS to
provide reliable and efficient methods for ensuring the authenticity and quality of camellia
oil. Orthogonal partial least squares discriminant analysis was performed to develop
qualitative and quantitative models for the identification of camellia oil adulterated with
other edible oils. This technique affords a basis for establishing the requirement of real-time
and high-throughput recognition of camellia oil and expanding the application fields of
REIMS.

2. Materials and Methods
2.1. Reagents and Materials

Methanol in mass spectrometry grade, isopropanol, and sodium formate in chromatog-
raphy grade were bought from Merck (Darmstadt, Germany). Leucine-enkephalin was
purchased from Waters (Waters Corporation, Wilmslow, UK). Six types of pure plant oils,
including pressed camellia oil, soybean oil, rapeseed oil, sunflower seed oil, peanut oil, and
corn oil were collected from markets. Through the communication of the manufacturer and
the test by the quality supervision department, these samples were all qualified pure oil
products. To simulate binary mixtures for discrimination, different proportions (2%, 5%,
10%, 20%, 30%, and 40%, w/w) of soybean oil, rapeseed oil, sunflower seed oil, peanut oil,
and corn oil were mixed into camellia seed oil as adulterants. The water was obtained by a
Milli-Q Reference ultra-pure water generator (Millipore, Milwaukee, WI, USA).

2.2. Sample Preparation

Approximately 20 g of oil samples were poured into a sample cup. The electric
soldering iron probe (ESII probe WSD151, Weller, Berlin, Germany) was used in this study,
which has a similar function to the iknife [34,35]. It was heated to 500 ◦C and touched the
sample for 0.5 s. The generated gaseous aerosols were directly collected, passed through
a high-efficiency particulate air (HEPA) filter, and subjected to the mass spectrometer for
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data acquisition [36,37]. Each sample was repeatedly tested 5 times, and the instruments
were cleaned after 10–15 times of detection by clean solvent to avoid contamination.

2.3. Analytical Conditions

The resulting aerosol was driven by a Venturi pump with nitrogen gas (2 bar) and
introduced into the Xevo G2-XS Q-ToF mass spectrometer (Waters Corporation, Wilmslow,
UK) through a PTFE tube. A mixture of isopropanol and leucine-enkephalin was used as
an auxiliary solvent and injected into the sample chamber via a syringe pump at a flow
rate of 0.1 mL/min, which was used for cleaning impurities, enhancing signal intensity,
and the mass calibration. The parameters were set as follows: the scan frequency of the
mass spectrometer was 1 s, the scanning range was 50–1200 m/z, the cone voltage was 10 V,
the heating voltage was 30 V, the collision energy was 20–80 eV, and all data were collected
in the negative ionization mode.

2.4. Optimization of REIMS Parameters

For better data collection, the heating temperatures of the electric soldering iron probe
were set from 150 ◦C to 650 ◦C. Eventually, 500 ◦C was chosen as the optimal heating
temperature [28]. The data was collected in negative ion mode, and it was found that
the signal in negative ion mode was superior to that in positive ion mode. Therefore, the
negative ion mode was adopted.

2.5. Data Processing

The raw data was obtained using the instrument control software package MassLynx
version 4.1 (Waters Corporation, Wilmslow, UK). The construction, real-time identification,
and validation of the chemical stoichiometric models of the samples were performed
using the multivariate statistical software package Live IDTM (version 1.2.1172.811, Waters
Corporation, Wilmslow, UK). The Live ID software was used to select the total ion current
(TIC) threshold value, normalize the data results, perform grouping analysis, and establish
the principal component analysis (PCA) and linear discriminant analysis (LDA) models
based on those samples.

3. Results and Discussion
3.1. Mass Spectra Identification and Comparison

In order to study the chemical compositions and characteristics of different oil types,
the experiments collected six representative oil samples including camellia oil, sunflower
seed oil, rapeseed oil, peanut oil, corn oil, and soybean oil for further investigation. The
REIMS mass spectra of six different types of oil samples were successfully generated in
this study. To ensure accurate and stable data, the ion peak at m/z 554.2615 generated from
the internal standard leucine-enkephalin was utilized for lock-mass correction [26]. The
scanning requirements in this study set a threshold of the TIC to be no less than 1 × 107,
guaranteeing sufficient data for analysis.

Figure 1 illustrates the TIC chromatograms and mass spectra of the six representative
oil samples. The scan range was set from 50 m/z to 1200 m/z, which is sufficient to excite
and detect various compounds present in the oil samples, including phenolic acids, amino
acids, fatty acids, triglycerides, phospholipids, and other components. To ensure the
accuracy and reliability of the test results, we adjusted the instrument parameters and ran
multiple tests to ensure the repeatability of the results. The TIC chromatograms indicated
distinct signal patterns for each oil category. Among them, camellia oil and sunflower
seed oil exhibit relatively high signals, followed by rapeseed oil and peanut oil, while corn
oil and soybean oil display comparatively weaker signals. Importantly, all signals exceed
2 × 107, indicating that the electric soldering iron as our ionization method was able to
produce satisfactory signal acquisition. In the comprehensive mass spectrum analysis using
the REIMS technique, many small molecules could be detected. These included free fatty
acids, monoglycerides, diglycerides, triacylglycerides, and others [34]. The former detected
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masses were between m/z 50 and 1200. However, for the purposes of building a superior
statistical model, the mass range was reduced from 50–1200 m/z to 50–1000 m/z, since most
ions are distributed within the mass range of 50–950 m/z. The reduction was performed to
ensure that the most relevant signals for each class of molecule were captured and analyzed,
which would result in a more accurate statistical model. During the ionization process, fatty
acids in the m/z 100–500 range and glycerophospholipids in the m/z 600–900 range were
found to be dominant [38,39]. This observation can be attributed to the high abundance and
low desolvation enthalpy of fatty acids and phospholipids in the oil samples. To identify
potential biomarkers, the main fragment ions were selected and identified by the software.
As compiled in Table 1, these fragment ions serve as candidate biomarkers for further
analysis and characterization of the oil samples.
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Table 1. Putative attribution of the corresponding spectrometric peak ranged from m/z 250 to 900 in
samples.

Significant Ion
(m/z)

Tentative
Assignment Main Class Formula

271.2259 Juniperic acid Fatty acids and conjugates C16H32O3
275.1991 Parinaric acid Fatty acids and conjugates C18H28O2
277.2156 Pinolenic acid Fatty acids and conjugates C18H30O2
305.2462 Sciadonic acid Fatty acids and conjugates C20H34O2
307.2616 20:2 (7Z,14Z) Fatty acids and conjugates C20H36O2
321.2767 21:2 (5Z,14Z) Fatty acids and conjugates C21H38O2
337.309 22:1 (7Z) Fatty acids and conjugates C22H42O2
339.3248 Behenic acid Fatty acids and conjugates C22H44O2
367.3553 Lignoceric acid Fatty acids and conjugates C24H48O2
395.3858 Cerotic acid Fatty acids and conjugates C26H52O2
727.4859 PG (P-16:0/18:3) Phosphatidylglycerols C40H73O9P
729.5021 PG (O-16:0/18:3) Phosphatidylglycerols C40H75O9P
753.501 PG (P-18:0/18:4) Phosphatidylglycerols C42H75O9P
755.5164 PG (O-18:0/18:4) Phosphatidylglycerols C42H77O9P
853.7217 TG (15:0/18:4/19:0) Triacylglycerols C55H98O6
881.752 TG (18:1/18:1/18:2) Triacylglycerols C57H102O6
883.7704 TG (18:1/18:1/18:1) Triacylglycerols C57H=O6
887.7182 TG (15:1/18:4/22:3) Triacylglycerols C58H96O6
889.7326 TG (18:3/18:3/19:1) Triacylglycerols C58H98O6

3.2. Model Building and Validation

To accurately develop the chemometric model, the raw spectrometric data were
meticulously acquired from authenticated samples of six different types of oil, including
camellia oil (the batch number of samples, n = 28, four samples per batch), soybean oil
(n = 19, five samples per batch), rapeseed oil (n = 21, four samples per batch), sunflower
seed oil (n = 13, five samples per batch), peanut oil (n = 23, four samples per batch), and corn
oil (n = 26, four samples per batch) for a total of 552 pieces of data. These comprehensive
analyses include comprehensive data dimensionality reduction and precise pre-grouping
of all data points, followed by advanced cluster analysis [40], aimed at revealing subtle
spectral variations and underlying structures. PCA-LDA analysis was strategically utilized
to provide a detailed representation of the classification of the different types of oils. The
insightful PCA-LDA analysis facilitated clear discrimination and clustering between the
different oil types, with samples of the same type grouping closely together, as displayed in
Figure 2, providing a visual representation of the classification results [41]. Some parameters
of the PCA-LDA model were set as follows: PCA components: 25, linear discriminants:
4, outlier setting: by standard deviation, and mass range: 50–1000 m/z. After meticulous
model construction, its accuracy was critically evaluated using a robust and trusted leave-
20%-out cross-validation approach, resulting in an impressive 93.8% correct classification
rate, as demonstrated in Table 2, reinforcing the accuracy and reliability of the developed
chemometric model [42]. Compared to other common methods of discriminating between
various types of oil samples, the REIMS method possesses distinct advantages as it does not
require any prior sample preparation, providing an efficient solution for the investigation
of oil samples. Unlike other analytical techniques, such as GC-MS and LC-MS, REIMS is
a direct analysis technique that requires only a small sample volume, making it ideal for
complex and trace analysis. The method does not require the tedious and time-consuming
process of pretreatment that is often necessary with other analytical techniques. The
acquisition and analysis of data can be completed within a matter of seconds, allowing
for a rapid and straightforward data analysis, thereby eliminating the lengthy analysis
time of traditional liquid chromatography mass spectrometry technology. In addition,
REIMS is capable of generating comprehensive molecular-scale information, enabling the
identification and quantification of various differential compounds or metabolite ions.
The ability to analyze the distribution of these ions within the oil sample can aid in the
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differentiation of oil types and provide valuable insights into the biological or chemical
composition of the sample [25].
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Table 2. Results of the leave-20%-out.

Camellia
Oil Peanut Oil Sunflower

Seed Oil
Rapeseed

Oil Corn Oil Soybean
Oil Outlier Total

Camellia oil 137 0 0 0 0 0 4 141
Peanut oil 0 110 0 0 0 0 5 115

Sunflower seed oil 0 0 57 0 0 0 8 65
Rapeseed oil 0 0 0 92 0 0 8 100

Corn oil 0 0 0 0 124 0 6 130
Soybean oil 0 0 0 0 0 86 9 95

In this study, by using the “live-recognition” function, real-time identification of oil
types for each sampling was acquired almost instantly. The LiveID™ software compared
the spectral data to the database and calculated a similarity score, allowing for the real-time
classification of “unknown” samples [43]. In addition, some samples were analyzed live us-
ing the prototype recognition software, which had not been previously used for generating
chemometric models. As a result, all of the 24 samples were correctly classified. To provide
a visual representation, Figure S1 (in Supplementary File) illustrates the software interface
of LiveID, with the left list recording historic results and the right circle indicating the sam-
ple identity [29]. These results demonstrate that the established experimental method and
model can effectively differentiate various plant oils and provide real-time identification.
The transferability of the oil detection model demonstrated here represents a significant
and powerful starting point for the potential establishment of the novel technique in the
food application field. In the context of the food industry, the ability to build a model in a
dedicated analytical laboratory, and then utilize this model in another laboratory for au-
thenticity evaluation and protection of pure oil products, represents a significant advance in
the effort to combat food fraud and counterfeiting. This approach could provide increased
protection to consumers against counterfeit or adulterated products. By developing models
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that can discriminate between authentic and fraudulent products, it becomes possible to
provide a more reliable means of authentication and to better safeguard the reputation of
these products [43].

Following the construction of the chemometric models, the corresponding loading
plots for the principal components were meticulously examined to identify the significant
ions responsible for sample differentiation. In particular, Figure 3 depicts the loading plots
for the first three components, contributing to 53%, 26%, and 7% of the discrimination,
respectively. These plots offer a valuable insight into the key ions that play a crucial role in
distinguishing the samples. In both cases, the base peaks were predominantly composed
of fatty acid species, such as linoleic acid (m/z 279.23) in the negative direction [44]. The
loading plots provide valuable information for further characterization and differentiation
of oil samples.
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Figure 3. Loadings plot PCA/LDA model showing the m/z features responsible for the discrimination
in the (a) first component, (b) second component, and (c) third component in the region between
500–1200 m/z.

3.3. Discrimination of Pure and Doped Camellia Oil

Discrimination between pure camellia oil and doped camellia oil is challenging due
to the inherent similarities in their chemical makeups. The complex and intricate blend of
components that make up plant oils makes it difficult to accurately differentiate between
pure and doped camellia oil. Compared to the search of the individual and separated
marker compounds, the chemometric approach based on a fingerprint presents greater
promise and advance. In the present study, the capability of the established model was
investigated with pure camellia oil together with adulterated camellia oil with soybean oil,
rapeseed oil, sunflower seed oil, peanut oil, and corn oil with different levels (2%, 5%, 10%,
20%, 30%, 40%).

Figure 4 illustrates the 2D PCA-LDA analysis of the pure camellia oil and adulterated
camellia oil samples. Within the five types of adulteration, the pure camellia oil samples
plotted as blue points consistently appeared in the left part of the LD1 plot (the negative
region). This phenomenon was consistent with the position of acacia honey in Cao’s
study [31]. In contrast, the adulterated camellia oil samples were positioned in the right
part of the LD1 plot (the positive region). And the position of adulterated samples was
apparently far apart from that of pure camellia oil. However, the camellia oil added with
corn oil was an exception. Several addition levels (lower than 30%) were still in the left part
of LD1 [31]. As the proportion of adulteration increased gradually, the sample locations
shifted from negative to positive along the LD1 axis. Although the trends were less apparent
for samples with lower proportions of adulteration (<10%), for example, the addition of
sunflower seed oil from 2% to 20% appeared less regularly than others, the changes were
more distinct in samples with higher proportions of adulteration (10%, 20%, and 40%),
displaying nearly linear trends towards the 100% adulterated samples. Additionally, the
direction of movement is quite different from the pure camellia oil, which could be easily
distinguished by operators. Nonetheless, the adulterated camellia oil with corn oils were
not moved in a linear way to corn oil. It was more like an arc type movement, which was
found in other research in the assessment of fruit juice adulteration (published in Chinese).
Consequently, it is evident that adulterated camellia oil can be distinguished from pure
camellia oil. Even at an adulteration level as low as 2% with peanut oil, soybean oil, or
rapeseed oil, the adulterated camellia oil samples were discernible from the pure samples.
On the other hand, differentiating between adulteration with sunflower seed oil or corn oil
was more challenging due to the presence of unclear and non-linear trends. Nonetheless,
when the adulteration level exceeded 20%, these oils could still be easily distinguished.
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These findings demonstrate the potential of combining REIMS with chemometric analysis
in investigating camellia oil adulteration.
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4. Conclusions

In this research, these detailed investigations proved that the application of REIMS, in
combination with contact heating by using a soldering iron, provided an effective means
for the thorough analysis of vegetable oil samples. Not only did it successfully authenticate
the authenticity of camellia oil, but it also differentiated it from other vegetable oils and
identified if it was adulterated with low-cost oils. The identification of these adulterations
was accomplished in a rapid and accurate manner. The correct classification rate evaluated
by the leave-20%-out cross-validation approach was 93.8%, and all of the 24 samples were
correctly classified with the “live-recognition” function. The key to achieving this was the
successful development and implementation of a PCA-LDA model. This model enabled
the differentiation of camellia oil, which was adulterated with peanut oil, soybean oil, or
rapeseed oil, from the pure sample. However, the adulteration trends of sunflower seed
oil and corn oil were found to be more complex and required further detailed exploration
using MS data mining techniques. In the following work, a comparison of the REIMS
results with other analytical techniques would be beneficial. More types of vegetable oils
including olive oil, flaxseed oil, and sesame oil could be added to the sample bank to make



Separations 2024, 11, 68 11 of 13

the model better. With the aid of new accessories, REIMS has the potential to become a
powerful tool in the fields of food, medicine, and cosmetics, contributing significantly to
these areas with its ability to provide accurate and timely results.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/separations11030068/s1, Figure S1: Real-time recognition of (a) camellia
oil, (b) peanut oil, (c) sunflower seed oil, (d) rapeseed oil, (e) corn oil, and (f) soybean oil using the
prototype recognition software.
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