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Abstract: Cordyceps fumosorosea is a common species within the Cordyceps genus. In this study, the
protective effect of Cordyceps fumosorosea mycelium was investigated to clarify the potential mecha-
nism of alleviating acute lung injury in mice using serum metabolomic analysis, which could provide
a theoretical basis for the clinical application of C. fumosorosea. Sixty mice were divided into six
groups (NS, LPS, MIX, COR, COC and DMX). Lung cell nuclei were analyzed using hematoxylin and
eosin staining and cellular changes were observed using transmission electron microscopy (TEM).
Metabolomic analyses using liquid chromatography-mass spectrometry (LC-MS) were used to iden-
tify various compounds. In all six groups, lung nuclear inflammation was observed in the COR, COC
and DMX groups, whereas the NS, LPS and MIX groups showed no cellular changes, indicating good
health. Metabolomic analysis using LC-MS identified 1607 compounds across various classes. Statis-
tical analyses, including the coefficient of variation and OPLS-DA, revealed distinct metabolic proles,
indicating significant changes after the consumption of C. fumosorosea mycelia. Lipids constituted
the largest proportion (30.37%) of the 30 identified classes and subclasses of metabolites. A total of
617 differentially accumulated metabolites (DAMs) were identified, both unique and shared be-
tween comparisons. Metabolite analysis identified 617 differentially accumulated metabolites, with
493 common to the LPS vs. MIX group, 75 in the LPS vs. NS group and 49 in the LPS vs. NS group and
LPS vs. MIX group. This comprehensive investigation suggests that C. fumosorosea mycelia treatment
holds promise as a therapeutic intervention for lung injury, influencing both the histopathological
(lung) features and serum metabolic profiles.

Keywords: alleviating; acute lung injury; mice serum; metabolomics; Cordyceps fumosorosea

1. Introduction

Traditional Chinese Medicine (TCM) originated in China and has a rich history span-
ning millennia [1]. This medical system has garnered significant attention owing to its
potential anti-inflammatory properties and its ability to enhance the immune response
of the body. These attributes have been suggested to contribute to the prevention and
protection against acute organ injuries (AOI), while also improving symptoms, quality
of life and lung function [2,3]. Acute lung infections (ALI) and their severe form, acute
respiratory distress syndrome (ARDS), can ultimately result in multiple organ dysfunction
syndrome (MODS) in lung tissues [4]. In MODS, respiratory dysfunction can manifest
as pulmonary infiltrates and hypoxemia. Pulmonary infiltrates involve abnormal sub-
stances such as fluid, cells or inflammatory debris in the lung tissue or airspaces. ALI, on
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the other hand, is a severe respiratory condition triggered by various factors, including
pneumonia, sepsis, burns, trauma and systemic inflammatory reactions rooted in diffuse
lung cell injuries (DLCI) [5]. ALI is characterized by lung tissue damage and intense
oxidative stress caused by pathogens, chemicals and trauma, making it a serious and
potentially life-threatening condition [6]. Both ALI and ARDS are characterized by se-
vere hypoxemia, pulmonary edema and neutrophil accumulation in lung tissues. These
conditions frequently afflict critically ill patients and can result in significant morbidity
and mortality [7,8]. Sepsis, which is a systemic inflammatory response to infection, is a
major cause of ALI. Lipopolysaccharide (LPS), a core component of the outer membrane of
gram-negative bacteria, is a potent inducer of inflammatory responses and is capable of
replicating human ALI features in mice [9,10]. Pulmonary macrophages (PM), also known
as alveolar macrophages, are primary inflammatory cells found in the alveoli during the
early stages of ALI [11,12]. Alveolar macrophages are a type of pulmonary macrophage
(PM) that play a critical role in lung immune defense against micro-organisms and clearing
them from the respiratory system. When stimulated by LPS and other factors, the release
of TNF-α and other proinflammatory agents can initiate a cascade of events, leading to
uncontrolled inflammation. This excessive inflammatory response can result in damage to
various tissues and organs, including the lungs, and in severe cases ALI and ARDS [13,14].
ARDS has emerged as a significant focus of clinical research, owing to its complex nature
and high mortality rate. Despite recent advances in ARDS diagnosis and treatment, effec-
tive management remains a formidable challenge [15,16]. Periplaneta americana, commonly
known as the American cockroach, belongs to the insect class Insecta, order Dictyoptera and
family Blattidae [17]. Dried worms or fresh adult P. americana have been used in Traditional
Chinese Medicine (TCM) [18]. The active compounds extracted from P. americana have been
formulated into clinical drugs in China, including “Xiaozheng Yigan Tablets,” “Kangfuxin
Liquid,” “Ganlong Capsule,” and “Xinmailong Injection.” Among these, “Xiaozheng Yigan
Tablets” are notable oral medications with strong antitumor and antibacterial properties.
Research has demonstrated its efficacy in reducing liver inflammation, promoting liver
function recovery and diminishing liver fibrosis in individuals with hepatitis B virus (HBV)
infection [18,19]. Insect pathogenic fungi have long been considered potential agents for the
biological control of various insects. Kepler et al. reclassified I. fumosorosea, S. fumosorosea
and P. fumoroseus as C. fumosorosea [20,21]. Cordyceps fumosorosea has a broad geograph-
ical distribution, strong ecological adaptability, ease of cultivation, rapid growth, spore
production and widespread use in biological control. Owing to its wide host range, it
is a highly efficient and cost-effective insecticide with a broad spectrum of activity, low
production costs and safety for both humans and nontarget species [22]. Nevertheless,
there are challenges associated with C. fumosorosea, such as a delay in the manifestation of
its effects after practical application and susceptibility to environmental factors. Recent
studies have indicated that nanoparticles of C. fumosorosea can effectively manage various
insect pests [23,24]. Different strains of C. fumosorosea have also demonstrated pathogenicity
against various insect species worldwide [25,26]. This study was aimed at investigating
the protective effect of C. fumosorosea mycelium and clarifying the potential mechanism
of alleviating acute lung injury in mice using serum metabolomic analysis, which could
provide a theoretical basis for the clinical application of C. fumosorosea.

2. Materials and Methods
2.1. Testing Samples

(1) Cordyceps fumosorosea: Cordyceps fumosorosea is an important species in the genus of
Cordyceps; (2) Periplaneta americana: the American cockroach, Periplaneta americana (Linnaeus)
is the largest of the common peridomestic cockroaches; (3) Kunming mice (KM): Kunming
mice (KM) are the most widely used strain in China.
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2.2. Preparation of C. fumosorosea Mycelium Solution

Cordyceps fumosorosea cultures were placed in a 250 mL Erlenmeyer flask containing
100 mL of basal medium, which consisted of soaking the P. americana 35 g/flask in water for
4 h before use, glucose (C6H12O6) 1.35 g, 5 mL/flask of water and 0.3 g/flask of glycerin
(C3H8O3). The mixture was sterilized at 121 ◦C and 105 Pa for 30 min and subsequently
introduced into a sterile culture dish to create 24 solid media [27]. Wild C. fumosorosea
specimens were collected in Dayao County, Chu Xiong City, Yunnan Province, China. The
culture medium was inoculated with C. fumosorosea using a tissue separation technique.
The mycelia of C. fumosorosea were cultivated for 2 months at 18 ◦C. Following the removal
of the culture medium, 20 g of fresh C. fumosorosea mycelia was obtained through artificial
cultivation. The mycelia were then dried at 50 ◦C for 10 h, ground into a fine powder and
passed through a 100-mesh sieve. To prepare a solution, 1.5 g of C. fumosorosea mycelia was
mixed with distilled water to obtain a 45 mg/mL concentration of C. fumosorosea mycelium
solution. The solution was then stored at 4 ◦C [28].

2.3. Grouping and Administration

The experiment involved animals that were maintained under controlled environmen-
tal conditions for 1 week at a temperature of 20 ± 2 ◦C and a relative humidity of 55 ± 5%.
The animals were subjected to a 12-h day–night cycle and had unrestricted access to food
and water. The study protocol was approved by the Medical Ethics Committee of Yunnan
University (MECYU). Sixty mice were divided into six distinct groups: NS (normal saline),
LPS (lipopolysaccharide), MIX (C. fumosorosea mycelia + Periplaneta americana), COR (C.
fumosorosea mycelia), COC (Periplaneta americana) and DMX (5-Dehydro-m-xylylene). On
the first day, the mice in the NS and LPS groups were intraperitoneally injected with physi-
ological saline. In contrast, the COR and DXM groups received injections of C. fumosorosea
solution (45 mg/mL), mixture (COR + COC) solution and dexamethasone solution for
seven consecutive days. After the 7-day treatment, the LPS, COR, mixture (COC) and DXM
groups were anesthetized and their tracheas were surgically exposed. Tracheal puncture
was performed using a miniature sampler and LPS solution (5 mg/kg) was administered
to induce acute lung injury. In the NS group, 15–20 min following the administration of
physiological saline, the mice were anesthetized and sterile saline was dripped into their
tracheas. Blood samples were collected from the orbital plexus of each mouse 6 h after
the establishment of the acute lung injury model for each group. The collected blood was
cooled on ice, followed by centrifugation at 3500 rpm for 10 min to separate the serum,
which was subsequently stored at −80 ◦C in a refrigerator [29].

2.4. Acute Lung Injury Induced by Lipopolysaccharides

The mice were anesthetized with an intraperitoneal injection of 1% sodium pentobar-
bital at a dose of 30 mg/kg. Following anesthesia, the limbs and teeth of the mice were
immobilized and sterilized using a 75% alcohol wipe. A longitudinal incision was made
along the central neck of each mouse. This incision provided access to the tracheal cartilage
ring, which is part of the airway. A microinjector, which is a device for injecting small
volumes of substances, was directed toward the proximal level of the tracheal cartilage
ring. LPS, and was used to induce acute lung injury by slowly injecting the mice through
a microinjector. In contrast, the control group, known as the normal saline (NS) group,
received an injection of sterile saline instead of LPS. The microsampler was then withdrawn,
indicating that the injection procedure was complete. The mice were immediately placed
in an upright position and rotated.

2.5. Ratio of Wet and Dry Weight

The weight of the mice was measured before the start of the experiment. Anesthesia
was administered to ensure that the mice were unconscious and free from pain. The entire
lung of each mouse was extracted and any remaining blood in the lung tissue was removed
using wet cotton. The weight of the middle lobe of the right lung was measured and
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recorded as the wet weight. The lung samples were then placed in an oven at 60 ◦C for
24 h to complete the drying process. After drying, the lung samples were weighed again
and their weights were recorded as the dry weight of the lungs. The lung coefficient
was calculated as a percentage using the following formula: lung coefficient (%) = lung
wet/dry weight ratio Ã–100. The data were statistically analyzed using SPSS software
(version 22.0; IBM Corp., Armonk, NY, USA). Data that adhered to a normal distribution
are presented as mean ± standard deviation (x ± SD). For multiple sample comparisons
where variances were equal, a one-way analysis of variance (ANOVA) and q-test were
used. In cases where variances were unequal, a rank-sum test was performed for multiple
sample comparisons. For two-group comparisons, a rank-sum test was performed for two
independent samples [29].

2.6. Hematoxylin and Eosin Stains

Lung tissue samples were acquired and preserved in a 10% paraformaldehyde solution.
Subsequently, 5-µm sections were generated from paraffin-embedded tissue blocks and
subjected to hematoxylin and eosin (HE) staining. The stained sections were observed
under an optical microscope (Olympus, Tokyo, Japan). To compute the lung injury score,
two independent researchers, who were unaware of the group identities, adhered to a
previously established protocol [30]. The lung injury score was determined based on
five distinct factors: the presence of neutrophils in the alveolar space; neutrophils in the
interstitial space; the existence of hyaline membranes; the presence of proteinaceous debris
within airspaces; and the thickening of alveolar septa [30].

2.7. Microscopic Observation

The samples were placed in a fixation solution overnight at 4 ◦C, consisting of 2.5%
glutaraldehyde [C5H8O2] in 0.1 M phosphate buffer (pH 7.2), and subsequently rinsed
3 times for 7 min each with the same 0.1 M phosphate buffer (pH 7.2). Subsequently, the
samples were post-fixed in a solution containing 1% osmium tetroxide [OsO4] and 1.5%
potassium ferrocyanide [K4Fe(CN)6] for 2 h at 4 ◦C, followed by a triple rinse in “double-
distilled water” [ddH2O] for 7 min each. Next, the samples were subjected to a series of
dehydration steps using ethanol [C2H5OH] and then transitioned into acetone [(CH3)2CO]
for 5-min intervals before being embedded in SPI-Pon 812 resin and polymerized at 60 ◦C for
48 h. Uniform sections measuring 60 nm in thickness were prepared using a Leica EM UC7
ultramicrotome. These ultrathin sections were affixed to copper grids and double stained
with a solution of 2% uranyl acetate [UO2(CH3CO2)2·H2O] and lead citrate [C6H8O7]. The
prepared samples were examined using a JEM-1400 Plus transmission electron microscope
at an operating voltage of 80 kV [29].

2.8. Extraction of Metabolite from Serum

Fifteen quality control (QC) samples were collected at various intervals during the
sample mass spectrometry. The assessment of data quality involved the analysis of the
repeatability of QC sample testing. To commence the procedure, frozen serum and QC
samples were defrosted in a refrigerator until all observable ice had liquefied. Subsequently,
100 µL of each sample, including the QC samples, was transferred to an Eppendorf (EP)
tube, while the rest of the samples remained frozen. Subsequently to this, 700 µL of an
extractant solution containing the internal standard 1 (a mixture of methanol [CH3OH], ace-
tonitrile [C2H3N] and water [H2O]) was added to each tube. The samples were thoroughly
mixed and stored in a refrigerator at −20 ◦C for 2 h. The samples were then centrifuged
at 25,000× g at 4 ◦C for 15 min. The resulting supernatant was carefully transferred to a
new EP tube and a drying apparatus was employed to eliminate the solvent. Subsequently,
180 µL of methanol/pure water solution (1:1 v/v) was combined with the dried residue
and the mixture was vortexed for 10 min until complete dissolution was achieved in the
reconstituted solution. This solution was subjected to another round of centrifugation
and the resulting supernatant was transferred to another EP tube. Finally, 20 µL of each
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sample was combined with the QC samples and the prepared supernatant was subjected to
LC-MS/MS analysis [29].

2.9. UPLC-MS Analysis

Metabolite detection was performed using a Waters 2777c ultraperformance liquid
chromatography (UPLC) system (Waters, Milford, MA, USA) combined with a Q Exactive
HF high-resolution mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).
Separation of compounds was achieved using a Waters ACQUITY UPLC BEH C18 column
(1.7 µm, 2.1 mm × 100 mm) maintained at a temperature of 45 ◦C. The composition of the
mobile phase varied depending on the ion mode. In the positive mode, the mobile phase
consisted of 0.1% formic acid (A) and acetonitrile (B), whereas the negative mode consisted
of 10 mM ammonium formate (A) and acetonitrile (B). The elution program involved the
following steps: 0–1 min, 2% B; 1–9 min, 2–98% B; 9–12 min, 98% B; 12–12.1 min, 98–2% B;
and 12.1–15 min, 2% B. The flow rate of the mobile phase was set at 0.35 mL/min, with an
injection volume of 5 µL. Mass spectrometry analysis was performed using a Q Exactive HF
instrument with primary and secondary mass spectrometry data acquisition. The full scan
range was set from 70 to 1050 m/z (mass-to-charge ratio) at a resolution of 120,000. The
automatic gain control (AGC) target for MS acquisition was set to 3 × 106, with a maximum
ion injection time of 100 ms. The top 3 precursor ions were selected for subsequent MS/MS
(tandem mass spectrometry) fragmentation, with a maximum ion injection time of 50 ms
and a resolution of 30,000. The AGC was set to 1 × 105 and the stepped normalized collision
energies were set to 20, 40 and 60 eV. The electrospray ionization (ESI) parameters were
configured as follows: sheath gas flow rate of 40; auxiliary gas flow rate of 10; spray voltage
of 3.80 (in positive-ion mode) or 3.20 (in negative-ion mode); capillary temperature of
320 ◦C; and auxiliary gas heater temperature of 350 ◦C [31,32].

2.10. Extraction and Identification Metabolite Ion Peak

The mass spectrometry data were imported into Compound Discoverer v.3.3, software
developed by Thermo Fisher Scientific (Waltham, MA, USA). Subsequently, the mass spec-
trometry data were analyzed alongside the BGI metabolome database (IMDb), McCloud
database and the online ChemSpider database. This comprehensive analysis yielded a
data matrix containing details such as metabolite peak areas and identification outcomes.
This table was further scrutinized and processed using specific parameters, including
maintaining a parent ion mass deviation of less than 5 ppm, ensuring a mass deviation of
fragment ions of less than 10 ppm and maintaining a retention time deviation of less than
0.2 min. Statistical evaluation of metabolites with detailed identification was performed
based on their final classification [29].

3. Statistical Analysis

The Compound Discoverer-generated file was subjected to the initial data processing
and subsequent analysis using MetaX. The data preprocessing steps involved the follow-
ing procedures: (1) Signal correction was performed using a quality-control-based robust
LOESS to rectify batch effects [33]; (2) normalization was conducted to obtain the relative
peak areas using probabilistic quotient normalization [34]; (3) metabolites with a coeffi-
cient of variation exceeding 30% in their relative peak areas in excluded QC samples were
excluded. Principal Component Analysis (PCA) and partial least squares discriminant
analysis (PLS-DA) were performed using the SIMCA software Version 14.1 (Umetrics AB,
Umeå, Sweden). For each comparison group, the fold change of each metabolite was calcu-
lated and statistical significance was assessed using Student’s t-test. The p-value was used
to determine the significance level of the difference between the two sample groups. The
fold change indicated whether the mean values of the metabolites in both sample groups
exhibited changes, whereas the p-value determined whether these changes were statistically
significant. Only metabolites meeting the criteria of fold change p-values ≥ 1.2 or ≤0.83
and p-values < 0.05 were categorized as differential metabolites. To analyze the metabolic
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pathways associated with the differentially expressed metabolites, we employed the online
tool MetaboAnalyst (https://www.metaboanalyst.ca/ [accessed on 3 March 2023]).

4. Results
4.1. Lung Wet/Dry Weight

The lung wet/dry weight ratio showed (Figure 1) substantial variation among the
groups. In particular, the lung coefficients of mice in the LPS group were significantly
higher than those of mice in the NS group (p < 0.001). In contrast, both the MIX and DXM
groups displayed a declining trend in lung index compared to the LPS group (p < 0.01) but
also showed an increase compared to the NS group (p < 0.05). These findings suggest that
C. fumosorosea mycelia have the potential to decrease lung coefficients in mice, similarly to
the effects of DXM, COR and COC.
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Figure 1. Shows lung coefficients (n = 10). Comparisons were made as follows: LPS vs. NS,
statistically significant at p < 0.001; LPS vs. MIX, statistically significant at p < 0.01; LPS vs. DXM,
statistically significant at p < 0.01; NS vs. MIX, statistically significant at p < 0.05; NS vs. DXM,
statistically significant at p < 0.05.

4.2. Hematoxylin and Eosin

Examination of lung tissues by histopathology revealed that, in control mice, the lung
structure appeared typical and showed no histopathological changes when viewed under a
light microscope. Alveolar macrophages (AM) are a type of pulmonary macrophage (PM)
that are crucial in improving acute lung injury (ALI) as they produce and release various
inflammatory mediators in response to infection or noninfectious stimuli. Hematoxylin
and eosin (HE) staining suggested that the lung tissue structure of mice in the NS group
was clear, with no inflammatory cell exudation in the alveolar cavity and no thickening of
the alveolar septa. In contrast, the model group displayed indications of alveolar collapse,
thickened alveolar walls, alveolar edema and significant infiltration of inflammatory cells.
Conversely, both the MIX and NS groups showed fewer occurrences of alveolar collapse,
no thickening of alveolar walls and no notable infiltration of inflammatory cells. Their
therapeutic effects were comparable to those of DXM, COC and COR compared to the LPS
group (Figure 2).

https://www.metaboanalyst.ca/
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4.3. Transmission Electron Microscopy (TEM) Observation

The observations made using transmission electron microscopy were consistent with
the results obtained from HE staining (Figure 3). The electron density of the mitochondrial
matrix was higher than that of the mitochondrial membrane. The rough endoplasmic
reticulum surrounded the mitochondria and lamellar bodies with ribosomes attached to
the surface. The lamellar body shape was normal and the cell surface was rich in microvilli.
Mitochondria in the LPS group showed severe swelling and cristae fractures and obvious
pyknosis of the inner mitochondrial membrane structure was observed. The endoplasmic
reticulum was relatively normal, myeloid inclusions appeared in some cell nuclei and
lamellar bodies were normal. However, the massive fusion of the microvilli on the cell
surface almost disappeared. In the COC group, the mitochondria were severely swollen,
electronic density was low and cristae almost disappeared. Abnormal membrane pyknosis
or karyopyknosis produced a myeloid structure inside the mitochondria and there seemed
to be a tendency for fusion between mitochondria. The structure of the endoplasmic
reticulum was relatively normal, lamellar bodies had the largest number of holes among
the six groups and the microvilli on the cell surface appeared to be fused and enlarged.
In the COR group, large mitochondria appeared, the cristae structure was disordered,
the cristae broke, the endoplasmic reticulum cisternae widened and swelled, the lamellar
bodies were normal and the cell surface microvilli developed, but partial fusion occurred.
Mitochondria in the MIX group were significantly swollen, the overall electron density
decreased and multiple mitochondria wrapped in a double-layer membrane structure
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formed autophagosomes. The endoplasmic reticulum was similar to NS, the lamellar
bodies were normal and the cell surface microvilli became shorter.
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Figure 3. Transmission electron microscopy (TEM) lung sections (n = 10) were obtained from a sample
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4.4. Extraction and Identification Metabolite Ion Peak (UPLC-MS/MS)

A standard base peak chromatogram (BPC) was generated for each set of samples in
both positive and negative ion modes, offering a visual representation of metabolite detec-
tion within the blood serum samples. The prepared blood serum sample was injected into
the UPLC-MS system for chromatographic separation and mass spectrometric detection.
The chromatographic conditions such as column type, mobile phase composition, flow
rate and gradient program were optimized to achieve efficient separation of analytes. The
appropriate ionization mode (positive or negative), mass analyzer and detector settings
were selected based on the analyte properties and the desired sensitivity and selectivity of
detection. A higher number of ion peaks observed in the BPC chart typically signifies a
greater diversity of identified metabolites. As illustrated in Figure 4, the total ion flow chro-
matogram reflects the ion intensity of the highest peak at 100%. The separation between the
spectral peaks in the chart is satisfactory. Through ULC-MS/MS analysis, 1607 compounds
were successfully identified. These compounds encompass a wide range of categories
including phytochemical compounds, biologically significant molecules, lipids and other
organic compounds. Notable among the identified compounds are those derived from
plants such as terpenoids, flavonoids and alkaloids. Furthermore, compounds with signifi-
cant biological roles, including amino acids, peptides, analogs, benzene and its derivatives,
organic acids, steroids, and their derivatives, were identified.



Separations 2024, 11, 74 9 of 20Separations 2024, 11, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 4. Analysis of the overlap in total ion current (TIC) among different quality control (QC) 
samples, both negative and positive. The horizontal axis represents the retention time (in minutes) 
used for metabolite detection, whereas the vertical axis represents the relative abundance (cps: 
counts per minute). 

4.5. Coefficient of Variation Analysis (CV) 
CV revealed that the samples within each group exhibited strong clustering and con-

centration in both positive and negative ion modes. These findings demonstrated the high 
precision, reproducibility and stability of the assay system. Moreover, the serum samples 
displayed distinct clustering patterns with discernible separation trends observed among 
the serum samples within each group (Figure 5). These results implied significant altera-
tions in the serum metabolic profiles of the samples following consumption. After select-
ing all QC samples from the dataset, the repeatability of the QC samples was assessed by 
calculating the coefficient of variation (CV) for each metabolite’s intensity. A higher pro-
portion of metabolites with low CV values in the QC samples indicated greater stability 
of the experimental data. In this case, over 60% of the compounds in the QC samples had 
CV values of less than 0.30, indicating that the quantity of experimental data met the qual-
ification criteria. 

 
Figure 5. Coefficient of variation (CV) distribution of compounds in each sample group. 

Figure 4. Analysis of the overlap in total ion current (TIC) among different quality control (QC)
samples, both negative and positive. The horizontal axis represents the retention time (in minutes)
used for metabolite detection, whereas the vertical axis represents the relative abundance (cps: counts
per minute).

4.5. Coefficient of Variation Analysis (CV)

CV revealed that the samples within each group exhibited strong clustering and
concentration in both positive and negative ion modes. These findings demonstrated the
high precision, reproducibility and stability of the assay system. Moreover, the serum
samples displayed distinct clustering patterns with discernible separation trends observed
among the serum samples within each group (Figure 5). These results implied significant
alterations in the serum metabolic profiles of the samples following consumption. After
selecting all QC samples from the dataset, the repeatability of the QC samples was assessed
by calculating the coefficient of variation (CV) for each metabolite’s intensity. A higher
proportion of metabolites with low CV values in the QC samples indicated greater stability
of the experimental data. In this case, over 60% of the compounds in the QC samples
had CV values of less than 0.30, indicating that the quantity of experimental data met the
qualification criteria.
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4.6. Partial Least Squares Discriminant Analysis (PLS-DA) Analysis

PLS-DA was conducted on two distinct sets of biological samples to establish a cor-
relation between metabolite expression and sample categorization, thereby facilitating
anticipation of sample classes. The model produced the following outcomes: R2Y = 1 and
Q2 = 0.92 for the LPS and NS control groups and R2Y = 0.99 and Q2 = 0.52 for the LPS and
MIX groups (Figure 6). These findings were deemed valid and reliable. The x-axis denotes
PC1, which represents the first principal component, and the values in parentheses indicate
the proportion of the variance explained by PC1. The y-axis represents PC2, the second
principal component, with values in parentheses signifying the explained variance in PC2.
Each data point corresponds to an individual sample and the diverse colors represent
different sample groupings. Additionally, the ellipses encircling the data points delineate
95% confidence intervals.
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4.7. Metabolic Pathway Enrichment Analysis

The most effective factor in LPS_MIX was equal to 9.419_523.26 with the highest
correlation (9 correlations). Therefore, any type of change to improve the studied traits
and changes in their expression process should be performed within this limit. In addition,
the present results are confirmed by the heatmap. However, the LPS_NS was equal to
8.057_391.27 with the highest correlation (9 correlations). Therefore, any type of change to
improve the studied traits and changes in their expression process should be performed
within this limit. In addition, the present results are confirmed by the heatmap in Figure S3,
where red represents positive correlation, blue represents negative correlation and the
darker the color, the greater the absolute value of the correlation coefficient between
LPS_MIX and LPS_NS. “*” represents a p-value of <0.05. When the number of differential
metabolites is greater than or equal to 20, the first 20 are differential metabolites.

4.8. Principal Component Analysis

In inferential statistical analysis, a concept called principal component analysis (PCA)
is used. This analysis is a multivariate technique used to reduce the dimensions of a dataset
while preserving as much information as possible. In simpler terms, we use the PCA
analytical method to reduce the number of variables as much as possible and summarize
them into a few main and effective components. In the current study, the PCA results
showed that the LPS and MIX groups were consistent with the original data based on
the first few components (Figure 2A); therefore, the variables can be reduced to a smaller
number that controls the most phenotypic changes. Based on PCA1 (approximately 37.81)
and PCA2 (21.48%) of the phenotypic changes, the first few components were controlled.
Figure 2B shows that, according to PCA1 and PCA2, approximately 47.48% and about
22.77%, respectively, of the phenotypic changes were controlled by the first few components.
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In general, NS compared to MIX based on LPS had a greater standard deviation in its results
(Figure 2C). In the presence of LPS, MIX content increased (Figure 2D).

4.9. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) Analysis

OPLS-DA was conducted on two distinct sets of biological samples to establish a
relationship between metabolite expression and sample classification, enabling the accurate
prediction of sample classes. The model exhibited the following parameters: R2Y = 0.995,
Q2 = 0.926, R2 = (0.0, 0.88) and Q2 = (0.0, −0.32) for the LPS and NS control groups (Figure 7),
R2Y = 0.999 and Q2 = 0.360, R2 = (0.0, 1.00) and Q2 = (0.0, 0.16) for the LPS and MIX, thus
demonstrating their validity and reliability. R2Y represents the interpretation rate of the
classification matrix Y, while Q2 indicates the prediction ability of the model. A higher value
for both R2Y and Q2 indicates greater stability and reliability of the model. Specifically,
a Q2 value > 0.5 suggests that the model’s predictive performance is satisfactory. Model
verification involves examining the intercepts of the y-axis in the regression lines R2 and
Q2. In general, Q2 < 0.
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4.10. Identification of Metabolites Classes and Sub-Classes

LPS, MIX and NS were the sample groups and 30 different classes and subclasses of
differential metabolites were identified. Metabolites were counted based on the identified
results. The count was performed according to the final class and the results were displayed
together if the final class belonged to a large class of lipids, excluding compounds with
biological roles. Phytochemical compounds and lipids in the three major classes were
represented separately. It is important to note that not every metabolite contained final
class information. If a metabolite was a lipid, the number of metabolites was counted
by subclass. The results, as verified in Figure 8a,b, show 30 different classes and sub-
classes of metabolites with corresponding numbers and percentages (%). Lipids accounted
for 195 metabolites (30.37% of the total). Amino acids, peptides and analogs comprised
74 metabolites (11.53%). Other categories included 64 metabolites (9.97%); benzene and
derivatives with 46 metabolites (7.17%); organic acids with 39 metabolites (6.07%); carbohy-
drates with 35 metabolites (5.45%); steroids and derivatives with 26 metabolites (4.05%);
amino acids with 17 metabolites (2.85%); purines and derivatives with 15 metabolites
(2.34%); indole and derivatives with 14 metabolites (2.18%); and bile acids, alcohols and
derivatives as well as 14 metabolites (2.18%). Phenols and derivatives made up 2.02%,
amines had 9 metabolites (1.4%), amines and derivatives accounted for 1.09%, nucleic acids
and analogs had 6 metabolites (0.93%), indoles had 6 metabolites (0.93%), pyridine and
derivatives had 5 metabolites (0.78%), alcohols had 5 metabolites (0.78%), imidazoles had
4 metabolites (0.62%), vitamins and derivatives had 2 metabolites (0.31%), pteridines and
derivatives had 2 metabolites (0.31%), antibiotics had 1 metabolite (0.16%), flavonoids had
13 metabolites (2.02%), terpenoids had 12 metabolites (1.87%), phenylpropanoic acids had
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10 metabolites (1.56%), alkaloids and derivatives had 3 metabolites (0.47%), coumarins
and derivatives had 2 metabolites (0.31%), quinone has 1 metabolite (0.16%), lignans have
1 metabolite (0.16%) and lignans had 1 metabolite (0.16%). However, the results indicated
that the maximum number of metabolites and the lowest percentage of metabolites (%)
were reported in lipids, with 195 metabolite numbers and 30.37%, respectively. Similarly,
the minimum number of phytochemical compounds among metabolites was determined.
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4.11. Metabolic Pathway Analysis

Metabolic pathway enrichment analysis of differential metabolites, using the KEGG
database, can unveil significantly altered metabolic pathways. This contributes to our
understanding of biological phenotypes. Target pathways with a p-value of <0.05, or an im-
pact of <0.1, were identified, as depicted. Three potential target pathways related to serum
metabolites were identified using impact values and metabolite enrichment analysis. The
first pathway is the pathway enrichment analysis bar chart in LPS vs. MIX (Figure S1a), ten
metabolic pathways were identified, including D-glutamine and D−glutamate metabolism,
pyrimidine metabolism, arginine and proline metabolism, African trypanosomiasis, glu-
tamatergic synapse, GABAergic synapse, prostate cancer, ABC transporters, proximal
tubule bicarbonate reclamation and nitrogen metabolism and the analysis of LPS vs. NS
(Figure S1b), central carbon metabolism in cancer, protein digestion and absorption, min-
eral absorption, tryptophan metabolism, biosynthesis of amino acids, aminoacyl−tRNA
biosynthesis, phenylalanine metabolism, bile secretion, ABC transporters, vitamin diges-
tion and absorption. In LPS vs. MIX, four metabolites, D-glutamine and D-glutamate
metabolism, pyrimidine metabolism, arginine and proline metabolism and ABC trans-
porters, were significant at <5. In contrast, in the LPS vs. NS group, the levels of all
metabolites were significantly higher than five.

The RichFactor on the x-axis signifies the proportion of differential metabolites anno-
tated within the pathway (Figure S2a,b) relative to the total number of identified metabolites
annotated within the same pathway. A larger RichFactor value corresponds to a higher
ratio of differential metabolites within the pathway. The size of the data points was cor-
related with the number of annotated differential metabolites. In terms of a metabolic
pathway enrichment analysis of the bubble chart, the x-axis rich factor was calculated as the
number of annotated differential metabolites in the pathway divided by the total number
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of identified metabolites. A higher value indicated a greater ratio of annotated differential
metabolites in the LPS vs. MIX and LPS vs. NS pathways.

The (Figure S2a,b) y-axis represents the name of the metabolic pathway, while the
x-axis coordinate signifies the differential abundance score (DA score). The differential
abundance score reflects the overall change in the metabolite abundance within a given
metabolic pathway. A DA score of 1 indicated that all annotated differential metabolites in
the pathway exhibited an upregulated expression trend, whereas a score of −1 suggested a
downregulated expression trend for all annotated differential metabolites. The length of
each line segment in the figure corresponds to the absolute value of the DA score and the
size of the dot at the end of the line segment indicates the number of metabolites within the
pathway. The larger dots represent a higher number of metabolites. The differential abun-
dance score represents a pathway-centric approach to examining alterations in metabolic
processes. It quantifies collective variations in metabolite levels within a given pathway.
To gain insight into the broader modifications occurring within metabolic pathways, we
conducted a differential abundance score analysis of the top 10 metabolic pathways, in-
cluding pyrimidine metabolism, proximal tubule bicarbonate reclamation, prostate cancer,
nitrogen metabolism, glutamatergic synapse, GABAergic synapse, D-glutamine and D-
glutamate metabolism, arginine and proline metabolism, African trypanosomiasis and
ABC transporters in LPS vs. MIX and LPS vs. NS samples. In LPS vs. MIX, all pathways
were downregulated, except prostate cancer, as shown in Figure 9a. In LPS vs. NS, all
pathways were downregulated, except vitamin digestion, and absorption was upregulated,
as shown in Figure 9b, which exhibited significant enrichment in each comparison group.
This allowed us to understand the global shifts in metabolism.
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4.12. Identification of Differentially Accumulated Metabolites (DAMs)

Differential metabolites were acquired for each comparison group and compared
and visualized for overlap, enabling consistency analysis. Additionally, the fold-change
rule was applied to assess differences within each comparison group for all identified
metabolites. Deferentially accumulated metabolites (DAMs) were defined as those exhibit-
ing a fold change ≥2 or a fold change ≤0.5 and variable importance in the project (VIP)
≥1 between logscale_LPS vs. logscale_MIX and logscale_LPS vs. logscale_NS (p < 0.05).
logscale_LPS vs. logscale_MIX and logscale_LPS vs. logscale_NS 617 were identified
(Table 1). For logscale_LPS vs. logscale_MIX, a number of differential metabolites were up-
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regulated at 350 (56.72%) vs. 389 (63.04) and downregulated at 267 (43.27%) vs. 228 (36.95).
Of the 617 metabolites differentially accumulated in LPS vs. NS, 350 (56.72%) vs. 263
(42.62) and 267 (43.27%) vs. 354 (57.37) metabolites were upregulated and downregulated,
respectively (Figure 10).
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The results presented in Figure 11 were verified using Venn analysis to compare all the
groups: LPS vs. MIX and LPS vs. NS. A total of 617 metabolites were examined, with 493
(79.90%) metabolites found in the LPS vs. MIX group and 75 (12.31%) metabolites found in
the LPS vs. NS comparison. This analysis allowed for a visual comparison of 49 (7.94%)
metabolites that were common and unique to the differential comparisons between the LPS
vs. MIX and LPS vs. NS groups.
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Table 1. Summary of deferentially accumulated metabolites (DAMs) among LPS vs. MIX and LPS
vs. NS.

Groups Total Metabolites Number Upregulated (%) Number Downregulated (%)

LPS vs. MIX 617 350 (56.72) vs. 389 (63.04) 267 (43.27) vs. 228 (36.95)
LPS vs. NS 617 350 (56.72) vs. 263 (42.62) 267 (43.27) vs. 354 (57.37)

5. Discussion

In this study, we investigated the impact of (C. fumosorosea mycelia, cockroaches), their
combination (MIX) on lung health and serum metabolites in a mice model of (LPS) acute
lung injury (ALI). Inflammation can be described as the body’s reaction, whether localized
or systemic, to tissue damage or various stimuli, including biological, chemical, physical
and thermal factors [35]. When the inflammatory response intensifies, there is an increase
in the levels of proinflammatory markers such as cytokines and inflammatory chemokines,
which leads to a state of hyperinflammation [36]. Hyperinflammation, in conjunction
with the presence of reactive oxygen species (ROS) generated by oxidative stress, plays a
significant role in the development of a range of diseases including arthritis, cardiovascular
disease, cancer and diabetes [37,38]. Globally, ALI has emerged as a significant public
health concern, marked by elevated levels of proinflammatory signaling molecules, infiltra-
tion of inflammatory cells and apoptosis of alveolar epithelial cells [39]. Thus, managing
irregular inflammation significantly enhances prognosis [40]. Our results revealed signifi-
cant differences in lung wet/dry weight ratios among the experimental groups. Mice in
the lip-polysaccharide (LPS) group exhibited significantly higher lung coefficients than
those in the NS group, suggesting a severe lung injury. Lip-polysaccharide (LPS) is the
primary bioactive constituent found in the cell wall of gram-negative bacteria. It has been
extensively used to induce lung inflammation (ILI) in mice with acute lung injury. This
usage is attributed to their compact size, rapid proliferation and straightforward accessibil-
ity [41]. LPS also demonstrated a fluidizing effect on films in vitro, inhibiting lipid packing
during compression [42] and preventing cholesterol packing in vitro [43]. However, the
MIX group showed a reduction in lung coefficients, similar to the effects observed in the
dexamethasone (DXM), cockroach (COC) and C. fumosorosea (COR) groups, indicating a
potential protective role of MIX in reducing lung injury. The histopathological examination
further supported these findings. Consistently, elevated ROS production overwhelms the
antioxidant defense system in mice, resulting in harm to DNA, lipids and proteins [44].
Lung tissues from the NS group displayed a typical structure, whereas those from the
LPS group exhibited signs of lung injury, including alveolar collapse, thickened alveolar
walls, alveolar edema and inflammatory cell infiltration (ICI). In contrast, the MIX group
showed fewer signs of lung injury, with a therapeutic effect comparable to those of DXM,
COC and COR. A significant and sustained increase in ROS production within the lungs
disrupts the structural integrity of lung epithelial and endothelial barriers. This disruption
results in a substantial increase in cell membrane permeability, exacerbating pulmonary
edema and amplifying the extent of damage to the lung tissue [45]. Transmission electron
microscopy (TEM) observations of type II alveolar cells supported the protective effect
of MIX. The LPS group displayed cellular edema, mitochondrial damage and decreased
microvilli, indicating cellular injury. In contrast, the MIX group exhibited cellular structures
resembling those of the NS group, with minor differences in microvilli. These findings
suggested that MIX mitigates LPS-induced inflammation at the cellular level. The results,
as verified in Figure 9a,b, show 30 different classes and subclasses of metabolites with
corresponding numbers and percentages (%). Lipids accounted for 30.37% of total lipid
content. For amino acids, peptides, and analogs (11.53%), the yield of peptide synthesis was
highly dependent on the sequence. As the complexity of the synthesis process increases,
analytical characterization becomes crucial, leading to a significant increase in both the
associated costs and the time required. Additionally, unless chemically modified, peptides
often exhibit poor metabolic stability and oral bioavailability, typically requiring injection
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as the route of administration [46]. Recent advances in chemical modification techniques,
new formulations, drug delivery systems and innovative administration methods have
effectively addressed these issues. These developments have revitalized the use of peptides
as promising candidates for novel anti-inflammatory drugs. As a result, peptides have re-
gained competitiveness in the pharmaceutical market [47]. Other categories included 9.97%
benzene and derivatives (7.17%); organic acids (6.07%); carbohydrates (5.45%); steroids
and derivatives (4.05%); amino acids (2.85%); purines and derivatives (2.34%); indole and
derivatives (2.18%); and bile acids, alcohols and derivatives, also 2.18%, phenols and deriva-
tives 2.02%, amines 1.4%, amines and derivatives 1.09%, nucleic acids and analogs 0.93%,
indoles 0.93%, pyridine and derivatives 0.78%, alcohols 0.78%, imidazoles 0.62%, vitamins
and derivatives 0.31%, pteridines and derivatives 0.31%, antibiotics 0.16%, flavonoids
2.02%, terpenoids 1.87%, phenylpropanoic acids 1.56%, alkaloids and derivatives 0.47%,
coumarins and derivatives 0.31%, quinone 0.16%, lignans 0.16% and amino acids 0.16%.
However, the results indicated that the maximum number of metabolites and the lowest
percentage of metabolites (%) were reported in lipids with 195 metabolite numbers and
30.37%, respectively. Lipoid pneumonia typically manifests as an abrupt onset of non-
specific respiratory symptoms. Diagnosis can be confirmed by detecting lipid-engorged
macrophages in the bronchoalveolar lavage (BAL), sputum or lung tissue. Although treat-
ment approaches for this uncommon condition are not well established, some potential
interventions for advanced or recurring cases of lipoid pneumonia have been mentioned,
including whole-lung lavage and corticosteroid administration [48]. Metabolomic analysis
revealed significant modifications in serum metabolite profiles upon consumption of a
mixture (referred to as MIX). Coefficient of variation (CV) and orthogonal partial least
squares discriminant analysis (OPLS-DA) revealed distinctive clustering patterns among
the three groups, normal saline (NS), lipopolysaccharide (LPS) and MIX, signifying notable
alterations in serum metabolism due to MIX administration. Additionally, examination
of metabolic pathways identified various pathways affected by MIX consumption. In the
comparison of LPS versus MIX, significant changes were observed in D-glutamine and
D-glutamate metabolism, pyrimidine metabolism, arginine and proline metabolism and
ABC transporters. When comparing LPS to NS, the affected pathways included the central
carbon metabolism in cancer, protein digestion and absorption, mineral absorption and
vitamin digestion and absorption. These findings indicated that MIX may influence diverse
metabolic pathways, potentially contributing to its protective effects. Cortisol, a steroid hor-
mone crucial for human metabolism and the stress response, is produced by adrenocortical
fasciculus cells. Along with tetrahydrocortisone, a key component of the steroid hormone
biosynthesis pathway, cortisol exerts biological effects and acts as a negative regulator of
adrenocorticotropic hormone synthesis and secretion. Cortisol also plays a significant role
in the treatment of acute lung injury [49]. It functions by suppressing the production of
oxygen-free radicals in normal human peripheral blood poly-morpho-nuclear leukocytes
(PMN) over an extended period by regulating NF-κB activation. Moreover, cortisol reduces
lung injury by inhibiting the output of the syndrome intermediator and overactivation of
PMN [50,51]. To continue, 7-keto deoxycholic acid, derived from cholesterol catabolism, is
a steroidal amphiphilic molecule that plays a crucial role in regulating bile flow and lipid
secretion and is essential for the absorption of dietary fats and vitamins. Additionally, it
regulates the key enzymes involved in cholesterol homeostasis. Bile acid receptor agonists
have been investigated as potential treatments for pulmonary inflammatory diseases [52].
The bile-acid receptor TGR5 controls pulmonary inflammation by blocking the activation of
the nuclear factor-κB (NF-κB) signaling pathway. Similarly, the bile-acid receptor farnesol
X-receptor (FXR) controls lip-polysaccharide-induced pulmonary proinflammatory cy-
tokines by suppressing cytokine secretion and inflammation [53,54]. Apocynin inhibited
NADPH oxidase activation, elevated super-oxide dismutase levels, reduced total pro-
tein levels and decreased TNF-α levels, thereby demonstrating a significant protective
effect against lip-polysaccharide-induced acute respiratory distress syndrome in mouse
models [55]. Differential accumulation analysis identified 617 differentially accumulated
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metabolites (DAMs) between the LPS and MIX groups, as shown in Table 1, with 350 upreg-
ulated and 267 downregulated metabolites. In the LPS vs. NS comparison, 389 metabolites
were upregulated, and 228 were downregulated. Venn analysis revealed 49 common and
unique DAMs between the two comparison groups, shedding light on the specific metabolic
changes associated with MIX treatment. In conclusion, this study provides evidence that
the combination of C. fumosorosea mycelia and cockroaches (MIX) has potential therapeutic
effects in a mice model of LPS-induced acute lung injury. MIX appears to reduce lung
injury and inflammation, protect type II alveolar cells and induce significant changes in
the serum metabolite profiles. In addition to surfactant lipids, various lipid components in
bronchoalveolar lavage (BAL) undergo alterations in response to pneumonia. One such
lipid is cardiolipin, which is predominantly found in mitochondria. Research indicates
that during pneumonia, there is a substantial increase in cardiolipin levels in the BAL fluid
of both infected humans and mice. This elevation in cardiolipin levels is associated with
a significant increase in alveolar surface tension, leading to decreased lung compliance
and an increase in the concentrations of interleukin-10 (IL-10) and proteins in the BAL
fluid [56]. Phosphatidylglycerol levels in BAL are reduced in ARDS, accompanied by an
increase in surface tension [57]. In an experimental neonatal piglet ARDS model, phos-
phatidylglycerol supplementation decreased IL-6 levels, reduced alveolar apoptosis and
preserved the alveolar–capillary barrier. This intervention ultimately leads to a reduction in
pulmonary edema [58]. These findings warrant further investigation into the mechanisms
underlying the protective effects of MIX and its potential applications in the treatment of
lung-related disorders.

6. Conclusions

In conclusion, this study investigated the impact of C. fumosorosea mycelia on lung
coefficients in mice and compared its effects on established drugs, such as LPS, NS, MIX,
DXM, COR and COC. The results revealed the potential of C. fumosorosea mycelia to reduce
lung coefficients, mirroring the effects of reference drugs. Histopathological examination
and transmission electron microscopy revealed an improved lung tissue structure, allevia-
tion of inflammatory responses and preservation of cellular integrity. Metabolite analysis
identified 1607 compounds, demonstrating the precision of the assay system. PLS-DA
and OPLS-DA analyses revealed distinct metabolite profiles, highlighting the significant
alterations in serum metabolism. Pathway analysis revealed changes in D-glutamine and
D-glutamate metabolism, pyrimidine metabolism, arginine and proline metabolism and
ABC transporters. Notably, 617 differentially accumulated metabolites were identified,
with 493 metabolites common to the LPS vs. MIX group and 75 unique to the LPS vs. NS
group. In summary, this comprehensive investigation suggests that C. fumosorosea mycelia
treatment holds promise as a therapeutic intervention for lung injury, influencing both the
histopathological (lung) features and serum metabolic profiles.
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mdpi.com/article/10.3390/separations11030074/s1, Figure S1: (a,b). Pathway enrichment analysis bar
chart; Figure S2: (a,b). Metabolic pathway enrichment analysis bubble chart; Figure S3: Correlation
heatmap of differential metabolites LPS_MIX. (D) Correlation heatmap of differential metabolites
LPS_NS. Red represents positive correlation, blue represents negative correlation, and the darker the
color, the greater the absolute value of the correlation coefficient between LPS_MIX and LPS_NS. “*”
represent p-value < 0.05. When the number of differential metabolites is greater than or equal to 20,
the first 20 differential metabolites.
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