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Abstract: This paper introduces organic phases with aligned carbonyl groups derived from
L-aspartic acid, L-glutamic acid, and L-α-aminoadipic acid; their stationary phases are denoted
as Sil-Asp-2Cn, Sil-Glu-2Cn, and Sil-Adi-2Cn, respectively. The stationary phases were used in
high-performance liquid chromatography to investigate the alignment effect of carbonyl groups,
which act as π-interaction sites, on molecular shape selectivity. The selectivities of the synthesized
organic phases were evaluated using polyaromatic hydrocarbons (PAHs), including geometric
isomers (e.g., cis- and trans-stilbenes). The PAH selectivities of the prepared stationary phases
were higher than that of conventional octadecyl silica. Among the stationary phases prepared in this
study, Sil-Glu-2Cn (n = 18) showed the highest selectivity toward terphenyl isomers with different
twist configurations and the lowest selectivity toward planar PAHs with different aspect ratios.
The results show that the molecular shape selectivity of the phases was affected by the alignment
of interaction sites. As a practical application of the octadecylated amino acid derivative-bonded
stationary phases, we evaluated their selectivity for tocopherol isomers and achieved good separation.
Furthermore, Sil-Asp-2Cn (n = 1) showed hydrophilic interaction chromatography mode retention
behavior for the separation of polar molecules like nucleosides.

Keywords: aspartic acid; glutamic acid; aminoadipic acid; carbonyl-π interaction; molecular
shape selectivity; polyaromatic hydrocarbon; tocopherol; reversed–phase; hydrophilic
interaction chromatography

1. Introduction

The development of highly selective high-performance liquid chromatography (HPLC) stationary
phases is important for progress in academic and industrial fields. Surface modification of inorganic
carrier materials, such as porous silica particles, with new organic phases can provide useful tools
for separations. Recently, organic phases including ionic liquids [1,2], alkyl chains with embedded
polar groups (EPG) [3,4], and bio-inspired phases such as organogels [5–7] and peptides [8,9] have
been developed for use in HPLC. These organic phases show unique selectivities in HPLC because of
their introduced specific interaction sites. Molecular ordering of the organic phase is also important
for achieving a highly selective stationary phase. Although the selectivity of octadecyl silica (ODS) is
mainly based on its hydrophobic distribution, dense octadecyl groups on silica increase the molecular
shape selectivity of polyaromatic hydrocarbons (PAHs) and their isomers [10,11]. This selectivity
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improvement is explained by highly ordered alkyl chain conformation. In addition, in the case of the
polar group embedded alkyl phase, the polar group that is arranged close to the surface of silica reduces
the silanol activity and improves separation of basic compound [12,13]. Furthermore, various organic
phases, such as macrocyclic molecules [14,15] and helical oligoamides and -peptides [16,17], achieve
specific selectivity by aligning functional groups based on their steric structure. We also found that
highly ordered integration of weak interaction sites such as carbonyl groups can enhance the molecular
shape selectivity of a stationary phase [18,19]. This was demonstrated by polymerization of carbonyl
group-containing monomers and their crystallization on silica. The ordering of interaction sites in an
organic phase with a simple chemical structure is an important approach to enhance molecular shape
selectivity. In this work, we focus on the effect of the alignment of interaction sites in organic phases.
We synthesize three types of carbonyl-containing molecular units derived from L-aspartic acid (Asp),
L-glutamic acid (Glu), and L-α-aminoadipic acid (Adi) bonded to silica (Figure 1). The selected amino
acids contain two carbonyl groups and have different numbers of methylene groups (x = 1, 2, and 3)
between carbonyl groups. The amino acids are hydrophobized by introduction of two octadecyl alkyl
chains (Cn). The number of methylene groups affects the alignment of interaction sites. The purpose of
this work is to investigate the effect of interaction site alignment on the molecular shape selectivity in
reversed-phase HPLC. We also examine the applicability of an amino acid derivative as an organic
phase in hydrophilic interaction chromatography (HILIC) by changing the length of the alkyl chains
introduced on Asp.
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2. Materials and Methods

2.1. Preparation of Amino Acid Derivatives-Bonded Stationary Phases

A typical synthetic procedure is as follows. Glu (3.00 g), stearyl alcohol (11.58 g), and
p-toluenesulfonic acid monohydrate (12.02 g) as a catalyst were dispersed in toluene (100 mL).
The mixture was stirred under reflux for 12 h in a flask with an attached Dean-Stark apparatus
(FLAT Inc., Chiba, Japan). The solution was concentrated using an evaporator, and the residue was
recrystallized from ethanol to give the p-toluenesulfonic acid salt of L-glutamic acid dioctadecylate:
yield: 12.88 g (78.0%); melting point (mp): 70.6–71.4 ◦C. Similar procedures gave the corresponding
derivatives from Asp (yield: 72.3%; mp: 88.0–90.1 ◦C) and Adi (yield: 75.6%; mp: 79.5–80.8 ◦C).
Dimethyl esterification of Asp with thionyl chloride in methanol was also performed using a previously
reported method [20]. The obtained diester derivatives of the amino acids were dissolved in chloroform,
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neutralized with sodium hydrogen carbonate, reacted with 3-isocyanatopropyltriethoxysilane (TES)
as a silane-coupling agent, and recrystallized from methanol to yield TES-Asp-2C18, TES-Asp-2C1,
TES-Glu-2C18, and TES-Adi-2C18, where 2C18 and 2C1 correspond to dioctadecylated and dimethylated
derivatives, respectively. The chemical structures of the obtained compounds were determined using
1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopies, and
elemental analysis (EA) (See Figures S1–S11). The obtained amino acid derivatives were mixed
with porous silica particles (YMC GEL SL-12S-05 silica gel, diameter 5 µm, pore size 120 Å, specific
surface area 330 m2·g−1) in toluene solution under reflux for 72 h to bond on the surface of the silica
particles, giving Sil-Asp-2C18, Sil-Asp-2C1, Sil-Glu-2C18, and Sil-Adi-2C18. The amounts of amino acid
derivatives that bonded to silica were determined using EA and thermogravimetric analysis (TGA).

2.2. Instrumentations

EA was performed using a Micro Corder JM10 analyzer (J-Science Lab Co., Ltd., Kyoto, Japan).
FT-IR spectroscopy was performed using an FT/IR-4100 instrument (JASCO, Tokyo, Japan); a DR
PRO410-M accessory (JASCO, Tokyo, Japan) was used for diffuse-reflectance infrared Fourier transform
(DRIFT) spectroscopy. 1H-NMR spectra were recorded using a Unity Inova AS400 spectrometer (Varian,
Palo Alto, CA, USA) operating at 400 MHz. Chemical shifts are expressed in parts per million (ppm),
and tetramethylsilane was used as an internal standard. Transmission electron microscopy (TEM)
was performed using a JEM-2000× microscope (JEOL, Tokyo, Japan). TGA was performed using a
SII Exstar 6000 TG/DTA 6300 thermobalance (SII, Chiba, Japan) in static air from 100 to 900 ◦C at a
heating rate of 10 ◦C·min−1.

2.3. Liquid Chromatography

The synthesized stationary phases were packed into stainless-steel columns that were 150 mm
long with an internal diameter of 4.6 mm. A JASCO 980 pump (JASCO Corporation, Tokyo, Japan) with
a Rheodyne 7725 injector (JASCO Corporation, Tokyo, Japan) (10-µL loop) and JASCO MD-2010 plus
multiwavelength detector (JASCO Corporation, Tokyo, Japan) were used for liquid chromatography.
The column temperature was maintained using a column jacket with a heating and cooling system.
ChromNAV (version 1.14) software (JASCO Corporation, Tokyo, Japan) was used for system control
and data analysis. Chromatographic-grade solvents purchased from Nacalai Tesque, Inc. (Kyoto,
Japan) were used to prepare the mobile phases and samples. A commercial ODS column (GL-Science
ODS-3, C: 15%, column length: 150 mm, internal diameter: 4.6 mm) (GL Science Inc., Tokyo, Japan)
was used as the reference column. The retention time of methanol was used as the void volume (t0)
marker. The absorption of methanol was measured at 220 nm. The retention factor (k) was calculated
from the retention time and t0. The separation factor (α) was determined as the ratio of k values.

3. Results and Discussions

3.1. Evaluation of the Molecular Orientation of Organic Phases

Figure 2 shows TEM images of TES-Asp-2C18, TES-Glu-2C18, and TES-Adi-2C18 dissolved in
methanol at a concentration of 0.6 mM and then cast on a carbon-coated copper grid. The amino acid
derivatives formed fibrous aggregates with diameters of around 9.5 nm in methanol. This is probably
because of the biphasic structure of the 2C18 derivatives based on their non-polar properties derived
from the long-chain alkyl groups, and the polar urea and ester groups. It is expected that the hydrogen
bonding between the carbonyl and urea groups of the amino acid derivatives support the formation of
fibrous aggregates. These results suggest that the 2C18 derivatives can form ordered structures on the
silica particle surfaces in a HPLC mobile phase such as methanol.
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Figure 2. Transmission electron microscopy (TEM) images of nanofibrillar aggregates from
(a) TES-Asp-2C18: dioctadecyl ((3-(triethoxysilyl)propyl)carbamoyl)-L-aspartate; (b) TES-Glu-2C18:
dioctadecyl ((3-(triethoxysilyl)propyl)carbamoyl)-L-glutamate; and (c) TES-Adi-2C18 : dioctadecyl
((3-(triethoxysilyl)propyl)carbamoyl)-L-2-amino adipic acid in MeOH (0.6 mM). These samples were
stained by 1.0 wt % uranyl acetate.

3.2. Bonding Density of Amino Acid Derivatives on Silica Surface

Bonding of the amino acid derivatives on the surface of silica was confirmed by DRIFT
spectroscopy, EA and TGA. As illustrated in Figure 3, the DRIFT spectra of Sil-Asp-2C1, Sil-Asp-2C18,
Sil-Glu-2C18 and Sil-Adi-2C18 contained peaks around 2850 and 2900 cm−1, which are attributed to
the C–H stretching of the long alkyl chains, and at 1650 and 1715 cm−1 with a shoulder at 1745 cm−1,
which are characterized as C=O vibrations of urea and ester bonds, respectively. The EA results
indicate that the loading amounts of carbon in the C18-amino acid derivative-bonded silica samples
were almost same as that of the reference ODS (C: 15%). This suggests that the density of alkyl chains
on the silica surface was similar to that on the reference ODS. The C/N values of the samples were
close to the theoretical values. No marked weight loss of the samples was observed after successive
washing with good solvents such as chloroform. These results indicate that the amino acid derivatives
were covalently bonded to the silica surface. The weight percentage (Pw) and surface coverage (N)
of the bonded phases summarized in Table 1 were calculated from Pw (wt %) = PcM/12nC and N
(µmol·m−2) = 106 Pc/[1200nc − PcM]S, where Pc is the percentage of carbon based on the EA results,
S is the specific surface area of the porous silica particles used for bonding (330 m2·g−1), nc is the
number of carbon atoms in a bonded molecule, and M is the molecular weight of the molecules used
for bonding [21]. The thermal weight loss of the stationary phases between 100 and 900 ◦C (Figure S12)
agrees with the EA results.
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Table 1. Bonded amount of amino acid derivatives. calcd.: Calculated value.

%C %N %H
C/N Bonded Amount

Found calcd. µmol·m−2 wt % TG %

Sil-Asp-2C18 17.05 0.9 2.86 18.94 18.86 0.98 23.32 23.00
Sil-Glu-2C18 13.71 0.7 2.37 19.59 19.29 0.77 18.69 18.20
Sil-Adi-2C18 15.36 0.8 2.66 19.20 19.71 0.84 20.88 22.06
Sil-Asp-2C1 14.59 3.5 2.28 4.17 4.29 3.68 33.23 26.19

Theoretical C/N values and immobilized amount were calculated from C44H85N2O5 for Sil-Asp-2C18,
C45H87N2O5 for Sil-Glu-2C18, C46H89N2O5 for Sil-Adi-2C18, C10H17N2O5 for Sil-Asp-2C1.

3.3. Reversed Phase Liquid Chromatography

Chromatographic separations were performed with the Sil-Asp-2C18, Sil-Glu-2C18 and
Sil-Adi-2C18 columns (C18-amino acid derivative columns) using long-chain alkylated benzene
derivatives and PAHs as solutes and methanol/water (9:1) as the mobile phase. With this
sample set, the elution order of C18-amino acid derivative columns followed log P values of
analytes (see Figure S13). In contrast, unique separation behaviors were observed when the
analytes were PAHs with characteristic structures. The molecular shape selectivity of ODS is
affected by the density of alkyl chains [22]. The elution order of phenanthro[3,4-c]phenanthrene
(PhPh), 1,2:3,4:5,6:7,8-tetrabenzonaphthalene (TBN), and benzo[a]pyrene (BaP) with monomeric
ODS (C: 15%) is BaP ≤ PhPh < TBN, and with highly carbon loaded polymeric ODS (C: 30%) is
PhPh ≤ TBN < BaP [22]. The elution orders of prepared stationary phases were different from both
ODS (PhPh < BaP < TBN, see Figure 4). Because the C18 amino acid derivatives were self-assemble
molecules, there were possibilities that C18 amino acid derivatives were bonded on the surface of silica
particles locally and densely. It was supposed that the assembled structure affect for the molecular
recognition. To investigate this in further detail, we clarified the molecular shape selectivities of the
C18-amino acid derivative columns using geometric isomers (cis-/trans-stilbenes), positional isomers
with different twist angles (o-, m-, and p-terphenyls), and a planar compound (triphenylene), as analytes.
The data in Table 2 reveal that the C18-amino acid derivative columns showed higher selectivity toward
planar molecules than ODS did. Sil-Glu-2C18 showed the highest selectivity for p- and o-terphenyls
(α = 2.46, 2.39 and 2.03 for Sil-Glu-2C18, Sil-Asp-2C18 and Sil-Adi-2C18, respectively), but its selectivity
for triphenylene and o-terphenyls was lower than those of Sil-Asp-2C18 and Sil-Adi-2C18 (α = 2.72,
3.81 and 2.99 for Sil-Glu-2C18, Sil-Asp-2C18 and Sil-Adi-2C18, respectively). The length-to-breadth
ratio (L/B) [23,24] is a useful indicator for evaluating molecular shape. In this work, four planar PAHs,
triphenylene (L/B = 1.12), benz[a]anthracene (L/B = 1.58), chrysene (L/B = 1.72), and naphthacene
(L/B = 1.89), were selected to investigate the molecular shape selectivity of the C18-amino acid
derivative columns. Determination of the selectivities of the columns for these molecules showed that
the stationary phases with bonded C18-amino acid derivatives selectively recognized molecules with
higher L/B values. The naphthacene/triphenylene separation factors were the highest and lowest for
Sil-Asp-2C18 and Sil-Glu-2C18, respectively. We also evaluated the selectivity of Sil-Asp-2C1 using
PAHs, as summarized in Table 2.
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Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06

o-Terphenyl
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Table 2. Retention and separation factors (k and α) with C18-amino acid derivative columns. 

Analyte 
Sil-Asp-2C18 Sil-Glu-2C18 Sil-Adi-2C18 ODS 

k α k α k α k α 

cis-Stilbene 
 

1.01 - 0.99 - 1.03 - 1.74 - 

trans-Stilbene 
 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06 

o-Terphenyl 

 

1.32 - 0.88 - 1.23 - 2.27 - 

m-Terphenyl 
 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42 

p-Terphenyl 
 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43 

Triphenylene 

 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54 

Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

1.32 - 0.88 - 1.23 - 2.27 -

m-Terphenyl
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Table 2. Retention and separation factors (k and α) with C18-amino acid derivative columns. 

Analyte 
Sil-Asp-2C18 Sil-Glu-2C18 Sil-Adi-2C18 ODS 

k α k α k α k α 

cis-Stilbene 
 

1.01 - 0.99 - 1.03 - 1.74 - 

trans-Stilbene 
 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06 

o-Terphenyl 

 

1.32 - 0.88 - 1.23 - 2.27 - 

m-Terphenyl 
 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42 

p-Terphenyl 
 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43 

Triphenylene 

 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54 

Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42

p-Terphenyl
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Table 2. Retention and separation factors (k and α) with C18-amino acid derivative columns. 

Analyte 
Sil-Asp-2C18 Sil-Glu-2C18 Sil-Adi-2C18 ODS 

k α k α k α k α 

cis-Stilbene 
 

1.01 - 0.99 - 1.03 - 1.74 - 

trans-Stilbene 
 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06 

o-Terphenyl 

 

1.32 - 0.88 - 1.23 - 2.27 - 

m-Terphenyl 
 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42 

p-Terphenyl 
 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43 

Triphenylene 

 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54 

Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43

Triphenylene
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Table 2. Retention and separation factors (k and α) with C18-amino acid derivative columns. 

Analyte 
Sil-Asp-2C18 Sil-Glu-2C18 Sil-Adi-2C18 ODS 

k α k α k α k α 

cis-Stilbene 
 

1.01 - 0.99 - 1.03 - 1.74 - 

trans-Stilbene 
 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06 

o-Terphenyl 

 

1.32 - 0.88 - 1.23 - 2.27 - 

m-Terphenyl 
 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42 

p-Terphenyl 
 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43 

Triphenylene 

 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54 

Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54

Triphenylene
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Table 2. Retention and separation factors (k and α) with C18-amino acid derivative columns. 

Analyte 
Sil-Asp-2C18 Sil-Glu-2C18 Sil-Adi-2C18 ODS 

k α k α k α k α 

cis-Stilbene 
 

1.01 - 0.99 - 1.03 - 1.74 - 

trans-Stilbene 
 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06 

o-Terphenyl 

 

1.32 - 0.88 - 1.23 - 2.27 - 

m-Terphenyl 
 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42 

p-Terphenyl 
 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43 

Triphenylene 

 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54 

Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

5.02 - 2.38 - 3.67 - 3.51 -

Benz[a]anthracene
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Table 2. Retention and separation factors (k and α) with C18-amino acid derivative columns. 

Analyte 
Sil-Asp-2C18 Sil-Glu-2C18 Sil-Adi-2C18 ODS 

k α k α k α k α 

cis-Stilbene 
 

1.01 - 0.99 - 1.03 - 1.74 - 

trans-Stilbene 
 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06 

o-Terphenyl 

 

1.32 - 0.88 - 1.23 - 2.27 - 

m-Terphenyl 
 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42 

p-Terphenyl 
 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43 

Triphenylene 

 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54 

Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06

Chrysene
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Table 2. Retention and separation factors (k and α) with C18-amino acid derivative columns. 

Analyte 
Sil-Asp-2C18 Sil-Glu-2C18 Sil-Adi-2C18 ODS 

k α k α k α k α 

cis-Stilbene 
 

1.01 - 0.99 - 1.03 - 1.74 - 

trans-Stilbene 
 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06 

o-Terphenyl 

 

1.32 - 0.88 - 1.23 - 2.27 - 

m-Terphenyl 
 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42 

p-Terphenyl 
 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43 

Triphenylene 

 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54 

Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05

Naphthacene
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Table 2. Retention and separation factors (k and α) with C18-amino acid derivative columns. 

Analyte 
Sil-Asp-2C18 Sil-Glu-2C18 Sil-Adi-2C18 ODS 

k α k α k α k α 

cis-Stilbene 
 

1.01 - 0.99 - 1.03 - 1.74 - 

trans-Stilbene 
 

1.50 1.48 1.39 1.40 1.43 1.38 1.84 1.06 

o-Terphenyl 

 

1.32 - 0.88 - 1.23 - 2.27 - 

m-Terphenyl 
 

2.45 1.86 1.88 2.14 2.12 1.72 3.22 1.42 

p-Terphenyl 
 

3.14 2.39 2.16 2.46 2.50 2.03 3.26 1.43 

Triphenylene 

 

5.02 3.81 2.38 2.72 3.67 2.99 3.51 1.54 

Triphenylene 

 

5.02 - 2.38 - 3.67 - 3.51 - 

Benz[a]anthracene 

 

5.66 1.13 2.56 1.07 4.05 1.10 3.73 1.06 

Chrysene 
 

5.84 1.16 2.58 1.08 4.11 1.12 3.69 1.05 

Naphthacene 
 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21 

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 °C. The α values 

were calculated using the k of the first analyte and others respectively, in each group. 

To further investigate the C18-amino acid derivative columns, temperature dependencies of the 

selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph) were 

evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points were 

observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure 

change related to the molecular interaction occurred on the stationary phase. Moreover, the higher 

selectivities of the C18-amino acid derivative columns at temperatures below 25 °C are related to 

temperature-dependent molecular ordering. The ordering of the molecules on the surface of the 

stationary phase indicates that the organic phases are locally densely bonded. This is one of the 

reasons for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl 

groups may also contribute to the molecular shape selectivity of the C18-amino acid derivative 

columns. The number of methylene groups between the carbonyl groups of the C18-amino acid 

derivatives is odd except for in the Glu derivative. Because of this, it is presumed that the 

configuration of carbonyl groups in the Glu derivative is obviously different from that of the other 

amino acid derivatives. The alignment of the interaction sites on Sil-Glu-2C18 therefore must differs 

from those of the other amino acid derivatives, when it orientates on the surface of silica, and 

promotes recognition of the twisted structures of terphenyl isomers. For the same reason, the 

alignments of the interaction sites in Sil-Asp-2C18 and Sil-Adi-2C18 are better for recognition of planar 

and linear molecules than that in Sil-Glu-2C18. 

7.90 1.57 3.11 1.31 5.08 1.38 4.26 1.21

Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min−1, column temperature: 20 ◦C. The α values were
calculated using the k of the first analyte and others respectively, in each group.
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To further investigate the C18-amino acid derivative columns, temperature dependencies of the
selectivities for triphenylene/o-terphenyl (αtriph/o-terp) and naphthacene/triphenylene (αnaph/triph)
were evaluated. Figure 5 reveals that a linear plot was observed for ODS. In contrast, bending points
were observed in the plots of C18-amino acid derivative columns. This suggests that a steric structure
change related to the molecular interaction occurred on the stationary phase. Moreover, the higher
selectivities of the C18-amino acid derivative columns at temperatures below 25 ◦C are related to
temperature-dependent molecular ordering. The ordering of the molecules on the surface of the
stationary phase indicates that the organic phases are locally densely bonded. This is one of the reasons
for the unique selectivity of the C18-amino acid derivative columns. The aligned carbonyl groups
may also contribute to the molecular shape selectivity of the C18-amino acid derivative columns.
The number of methylene groups between the carbonyl groups of the C18-amino acid derivatives is
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Figure 5. Van’t Hoff plots for separation factor of (a) αnaph/triph and (b) αtriph/o-ter with amino acid
derivatives bonded silica. Mobile phase: methanol-water (9:1), flow rate: 1.0 mL·min-1. Black circle:
Sil-Asp-2C18, hollow circle: Sil-Glu-2C18, black triangle: Sil-Adi-2C18, and hollow triangle: octadecyl
silica (ODS).

3.4. Hydrophilic Interaction Chromatography

The applicability of an amino acid derivative-bonded stationary phase to HILIC mode was
evaluated using Sil-Asp-2C1. The typical HILIC mode retention order was observed for phenol,
resorcinol, and phloroglucinol with Sil-Asp-2C1: higher k value was achieved by increasing the
number of hydroxyl groups of the analyte (Table S1) [25]. Usually, a mixture of water and a polar
organic solvent such as acetonitrile is used for the mobile phase in HILIC. The retention mechanism of
HILIC involves liquid-liquid partitioning between the mobile phase and absorbed water on the surface
of the stationary phase [26]. Thus, by increasing the content of water in the mobile phase, the retention
in HILIC will decrease. Figure 6 shows the relationship between k and the proportion of acetonitrile in
the mobile phase. Decreasing the content of acetonitrile in the mobile phase decreased the k values of
all selected polar molecules, which is consistent with the usual retention behavior in HILIC. This is the
typical HILIC mode retention behavior [25,27]. In addition, larger k values were obtained by molecules
that show lower pKa values (e.g., pKa = 4.2 and 4.2 for adenine and cytosine [28]) among a sample set
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(e.g., pKa = 10.5 for thymine [28]). In the HILIC, in addition to the partitioning, ion exchange between
positively charged molecules and negative charged silanol also affected the retentivity. This effect may
be revealed in this study.
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Mobile phase: acetonitrile and 10 mM ammonium acetate mixture, flow rate: 1.0 mL·min−1, column
temperature: 10 ◦C.

These results suggest that weak interaction site accumulation based on amino acids has the
potential for application in molecular design for HILIC.

3.5. Separation of Tocopherol Isomers

Practical applications of the C18-amino acid derivative columns were evaluated using the
tocopherol isomers (α, β, γ, and δ isomers). Tocopherols are hydrophobic vitamins that have many
beneficial bioeffects such as antioxidant and anti-inflammatory properties. For example, the importance
of the role of tocopherols in retinal precursor cell differentiation is being increasingly studied [29].
Figure 7 depicts chromatograms of tocopherols obtained using the C18-amino acid derivative columns
and ODS. Separation of the β and γ isomers was not achieved using ODS, but was realized using
the stationary phases with bonded octadecylated amino acid derivatives. In particular, Sil-Asp-2C18

successfully separated all the isomers in the reversed-phase mode.
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4. Conclusions

Organic stationary phases based on Asp, Glu, and Adi with aligned carbonyl groups
were synthesized and bonded on silica particles. These stationary phases showed higher
molecular shape selectivities for PAHs than ODS. The highest selectivity for p-/o-terphenyl and
naphthacene/o-terphenyl were obtained by Sil-Glu-2C18 and Sil-Asp-2C18, respectively. Sil-Asp-2C18,
Sil-Glu-2C18, and Sil-Adi-2C18 differ in the number of methylene groups between carbonyl groups in
the original amino acids; therefore, these results indicate that the alignment of the carbonyl groups
as interaction sites affects the molecular shape selectivity of these organic phases. We also evaluated
the use of Sil-Asp-2C1 as a HILIC-mode stationary phase. Like common HILIC stationary phases,
Sil-Asp-2C1 achieved higher k values with increasing polarity. Effective separation of tocopherol
isomers was realized with the C18-amino acid derivative columns in reversed-phase mode, including
the separation of β and γ isomers, which could not be obtained by ODS.

Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8739/3/3/25/s1.
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