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Abstract: Neurotransmitters (NT) are widely distributed in the central nervous system. These
molecules are important for many physiological processes and the function of the immune system.
Imbalance of NT are linked to numerous neurological disorders and diseases, including tauopathies.
Here, a targeted approach based on on-line combination of ultra-high performance liquid chromatog-
raphy with tandem mass spectrometry was validated and applied to the quantitative analysis of nine
NT (acetylcholine, choline, aspartic acid, asparagine, glutamic acid, glutamine, pyroglutamate, γ-
aminobutyric acid, N-acetyl-L-aspartic acid), tryptophan and its metabolite kynurenine in brain tissue
samples of a rat model for tauopathy. The applied analytical method was characterized by excellent
validation parameters for all analytes, such as limits of detection in the range of 0.01–1.70 µg/mL,
regression coefficients of the calibration curves ≥ 0.9946, intra-day and inter-day precision expressed
as coefficient of variation in the range of 0.6–11.9% and 0.6–14.4%, and accuracy in the range of
87.6–107.1% and 87.2–119.6%. Our analytical approach led to the identification of increased levels
of choline and γ-aminobutyric acid in pons, and elevated concentration levels of pyroglutamate in
medulla oblongata. These findings indicate that NT could play a valuable role in the study and
clarification of neuroinflammation and neurodegenerative diseases.

Keywords: NT; transgenic rats; brain tissue; ultra-high performance liquid chromatography; tandem
mass spectrometry; tauopathy

1. Introduction

Tau represents a microtubule-associated protein responsible for stabilizing neuronal
microtubules and promoting axonal outgrowth [1]. Tau undergoes several post-translational
modifications such as phosphorylation, oxidation, glycation, glycosylation, ubiquitination,
nitration, and truncation that promote its transition from soluble into insoluble form. The
transition of tau protein from its highly soluble form into insoluble aggregates is common
in several neurodegenerative disorders known as tauopathies [2]. Tau-positive deposits in
the brain were identified in progressive neurodegenerative disorders such as Alzheimer’s
disease (AD), progressive supranuclear palsy, corticobasal syndrome, some frontotemporal
dementias, or chronic traumatic encephalopathy [3,4]. Alzheimer’s disease is the most
prevalent tauopathy and the most common cause of dementia. Its frequency of incidence is
rapidly increasing due to the aging population [5]. It is expected that more than 130 million
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people will be affected by dementia in 2050 [6]. Therefore, there is an urgent need to dispose
of effective therapeutic modalities and effective diagnostic strategies capable of capturing
the disease at an early stage. Systems biology and its associated disciplines (especially
metabolomics and proteomics) represent rapidly growing scientific areas effectively im-
plemented into the clinical environment [7,8]. The findings obtained using such strategies
may help reveal the mechanism of disease development and contribute to the design of
new therapeutics.

A number of major breakthroughs in basic science and medical research have been
possible because of observations and testing on animal models [9]. Therefore, using an
appropriate animal model is essential for obtaining reliable data. Numerous genetically
modified rodent models of tauopathies have been created to explore pathological mecha-
nisms involved in neurodegeneration and to search for tau-associated disease pathways [10].
One of them is our rat model (transgenic spontaneously hypertensive rat 24–SHR24) ex-
pressing a human truncated tau that encompasses three microtubule-binding domains
(3R) and a proline-rich region (3R tau151-391) [11]. This model is characterized by the
development of progressive age-dependent neurofibrillary degeneration in the cortical
brain areas, which fulfills several histopathological criteria used for the identification of
neurofibrillary degeneration in Alzheimer’s disease [12].

Neurotransmitters (NT) are endogenous chemical messengers responsible for the
transmission of the signal across the synapse and neuromuscular junctions [13]. They
are stored in the synaptic vesicles and are released into the synapse after the appropriate
stimulus. The released NT bind to their receptors situated on the postsynaptic membrane
and modulate their activity. From the chemical point of view, the majority of NT belongs to
biogenic amines or amino acids [13,14]. NT and tryptophan (Trp) metabolites are widely
distributed in the central neural system (CNS) and represent important molecules for many
physiological processes and the immune system.

Moreover, imbalances of these signaling molecules are linked to numerous neurologi-
cal disorders and diseases, including tauopathies [15–17]. The research is typically focused
on, but not limited to, acetylcholine [18], glutamate and glutamine [19], dopamine and
serotonin [20], γ-aminobutyric acid, aspartic acid, or N-acetyl-L-aspartic acid [21]. It is
expected that these molecules directly play a crucial role in Alzheimer’s disease pathogene-
sis or have a role in causing oxidative stress [22]. Therefore, the therapeutic strategies of
Alzheimer’s disease and other neurodegenerative diseases, such as acetylcholinesterase
inhibitors, antidepressants or antipsychotics, are mainly focused on the modulation of the
NT levels in the brain [23–26].

Monitoring quantitative changes of such substances is also essential to better under-
stand the pathophysiological mechanism of neurodegeneration and neuroinflammation.
Reliable, highly efficient, fast, selective, and sensitive analytical methods characterized
by high sample throughput are therefore demanded. The combination of liquid chro-
matography (LC) with highly selective and sensitive mass spectrometry (MS) detection
represents a valuable tool for the simultaneous determination of a wide variety of en-
dogenous substances in biological samples, including NT [27–29]. Several papers deal
with the quantitation of NT by LC-MS methods in the human brain [16,30,31] and rat
or mice brain [32–40] samples. The variability of the chemical structures of the analytes
makes their analysis challenging. Therefore, some of the described methods deal with
derivatization or the addition of an ion pair agent to obtain appropriate chromatographic
separation [34,39,40]. However, fast and straightforward LC-MS approaches that analyze
structurally heterogeneous substances simultaneously without molecule modification and
intervention into the separation environment are still highly in demand. These methods
could be an excellent alternative to the convenient immunoassay or positron emission
tomography (PET) imaging strategies that typically suffer from insufficient selectivity or
increased costs.

The present study aimed to validate an ultra-high performance liquid chromatography-
tandem mass spectrometry (UHPLC-MS/MS) method and applied it for simultaneous



Separations 2022, 9, 16 3 of 14

determination of nine NT–aspartic acid (Asp), asparagine (Asn), glutamic acid (Glu), glu-
tamine (Gln), γ-aminobutyric acid (GABA), N-acetyl-L-aspartic acid (NAA), pyroglutamic
acid (PyroGlu), acetylcholine (ACh), choline (Cho); tryptophan (Trp) and its metabolite
kynurenine (Kyn), in rat brain tissue samples.

Here, we for the first-time quantified NT in four different brain regions of the tau
transgenic rat model—SHR 24. We found altered levels of several NTs in the tau model,
suggesting that tau pathology directly contributes to NT imbalance in the brain. It is
expected that the presented LC-MS approach could effectively explain the pathophysio-
logical mechanisms of neurodegenerative disorders and the discovery of a corresponding
therapeutic intervention.

2. Materials and Methods
2.1. Chemicals and Solutions

Analytical grade standards of acetylcholine, choline, aspartic acid, asparagine, glu-
tamic acid, glutamine, γ-aminobutyric acid, N-acetyl-L-aspartic acid, pyroglutamic acid,
tryptophan and kynurenine were obtained from Sigma Aldrich (Steinheim, Germany).
D6-4-aminobutyric acid, D3-aspartic acid, D5-N-acetyl-L-aspartic acid, D3-glutamic acid,
D5-glutamine, D9-acetylcholine, D5-pyroglutamic acid, D5-tryptophan, and D4-kynurenine
were purchased from CDN isotopes (Pointe-Claire, QC, Canada), D5-asparagine was from
Cambridge Isotope Laboratories (Tewksbury, MA, USA). A LC-MS quality ammonium
formate, formic acid (HFo), acetonitrile, and water were obtained from Merck (Darm-
stadt, Germany). Hydrochloric acid (HCl) p.a. grade was purchased from Sigma Aldrich
(Steinheim, Germany).

2.2. Calibration Solutions

Individual stock standard solutions of acetylcholine, choline, aspartic acid, asparagine,
glutamic acid, glutamine, γ-aminobutyric acid, N-acetyl-L-aspartic acid, pyroglutamic
acid, and tryptophan were prepared in 0.1 M HCl at the concentration of 1 mg/mL.
Stock standard solution of kynurenine was prepared in 0.5 M HCl at the concentration of
1 mg/mL. Individual stock solutions of deuterated standards–D6-4-aminobutyric acid, D3-
aspartic acid, D5-asparagine, D5-N-acetyl-L-aspartic acid, D3-glutamic acid, D5-glutamine,
D9-acetylcholine, D5-pyroglutamic acid, and D5-tryptophan were prepared in 0.1 M HCl at
the concentration of 10 mg/mL. Stock standard solution of D4-kynurenine was prepared in
0.5 M HCl at the concentration of 10 mg/mL. All standards were stored at −20ºC until use.
Stock solutions of the analytes were combined and serially diluted with 80% acetonitrile
to provide working standard solutions of the demanded concentrations. Concentration
ranges of the analytes varied from 0.025 to 250 µg/mL. Calibration standards for GABA,
Chol, Asp, Gln and Glu were in the range 2.5–250 µg/mL (individual concentrations were
2.5, 5, 10, 25, 50, 100, and 250 µg/mL) for PyroGlu, Asn, NAA in the range 0.25–25 µg/mL
(individual concentrations were 0.25, 0.5, 1, 2.5, 5, 10, and 25 µg/mL), for Ach in the
range 0.025–2.5 µg/mL (individual concentrations were 0.025, 0.05, 0.1, 0.25, 0.5, 1, and
2.5 µg/mL) and for Trp and Kyn in the range 0.1–25 µg/mL (individual concentrations
were 0.1, 0.5, 1, 2.5, 5, 10, and 25 µg/mL).

2.3. Animals and Sample Collection

Heterozygous SHR-24 transgenic rats (15 month old, male/female) and non-transgenic
SHR age matched controls were used in the present work. All animals were housed under
standard laboratory conditions with free access to water and food and were kept under
diurnal lighting conditions (12 h light/dark cycles with light starting at 7:00 a.m.). All ex-
periments on animals were carried out according to the institutional animal care guidelines
conforming to international standards and were approved by the State Veterinary and Food
Committee of Slovak Republic and by Ethics Committee of Institute of Neuroimmunology.
Efforts were made to minimize the number of animals utilized and to limit discomfort,
pain or any other suffering of the experimental animals used in this study.
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2.4. Sample Preparation

All rats (17 transgenic SHR 24 rats and 8 age matched non-transgenic SHR–control)
were sacrificed by rapid decapitation. The brains were rapidly removed, frozen in liquid
nitrogen, and stored at −80 ◦C until analysis. The frozen brain was dissected on ice to obtain
tissue from following regions: frontal cortex, parietal cortex, pons, and medulla oblongata.
The weight of the brain tissue regions used for further sample preparation was in the range
20–40 mg. Extraction of the different brain region tissues was performed according to the
procedure described in our previous work [30]. Briefly, 600 µL of cold 80% acetonitrile
with 0.1% HFo and 10 µL of internal standard solution were added to the brain tissue. The
samples were homogenized using a FastPrep-24 homogenizer (MP Biomedicals, Santa Ana,
CA, USA) on dry ice 3-times for 20 s. The homogenized mixture was centrifuged (30,000× g,
10 min), diluted with 600 µL of 80% acetonitrile and centrifuged again (30,000× g, 10 min).
No filters were used during the centrifugation. Then, the supernatant was transferred into
vials and analyzed directly.

2.5. Quality Control (QC) Samples Preparation

The QC samples were prepared from pooled brain tissues which were spiked with the
selected analytes at three concentration levels—low, medium and high. The weight of the
pooled brain tissue samples was in the range 20–40 mg. QC concentration levels were as
follows: for Chol, GABA, Gln, Glu, and Asp 2.5 µg/mL (QC low), 10 µg/mL (QC medium),
250 µg/mL (QC high); for PyroGlu, NAA, and Asn 0.25 µg/mL (QC low), 2.5 µg/mL
(QC medium), 25 µg/mL (QC high); for Trp and Kyn 0.1 µg/mL (QC low), 5 µg/mL (QC
medium), 25 µg/mL (QC high); and for Ach 0.025 µg/mL (QC low), 0.25 µg/mL (QC
medium) and 2.5 µg/mL (QC high). The samples were further processed according to the
same extraction steps as described in the Section 2.4. Sample preparation.

2.6. Instrumentation

The LC-MS/MS experiments were performed using a Waters Acquity UPLC system
(Waters, Milford, MA, USA) coupled to the Xevo TQD (Waters, Milford, MA, USA) triple
quadrupole mass spectrometer. Chromatographic separation was performed on an Acquity
UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 µm particle size) with VanGuard precol-
umn. The analytes were separated with a mobile phase consisting of 50 mM ammonium
formate and 0.25% HFo in water (eluent A) and 0.05% HFo in acetonitrile (eluent B). A
gradient profile was used, starting at 90% of B (0–0.5 min), decreasing to 85% B in 1.5 min,
to 80% B (2–4 min), to 60% in 2 min, returning to 90% B and followed by a re-equilibration
(7–9 min). The total analysis time was 9 min. The flow rate was 0.7 mL/min, column
temperature was set at 50 ◦C, and the injection volume of the sample was 5 µL.

Mass spectrometric detection was performed using a Waters triple quadrupole Xevo
TQD (Waters, Milford, MA, USA) equipped with electrospray ionization source operating
in positive mode (ESI +). ESI parameters were set at follows: capillary voltage 3.0 kV,
source temperature 150 ◦C, desolvation temperature 350 ◦C, cone gas flow 50 L/h, and
desolvation gas flow 600 L/h. The source cone voltage and collision energies were manually
optimized for each selected reaction monitoring (SRM) transition. Instrument control and
data acquisition was performed using MassLynx 4.1 software (Waters, Milford, MA, USA).

2.7. Statistical Data Analysis

The statistical analyses were performed using GraphPad Prism 8.0.2 (GraphPad Soft-
ware, San Diego, CA, USA). Differences between means were analyzed using two-way
ANOVA with Bonferroni’s multiple comparisons test. Differences at p < 0.05 were accepted
as statistically significant.
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3. Results and Discussion
3.1. UHPLC-ESI-MS/MS Conditions

It was demonstrated that the use of the Acquity UPLC BEH Amide column represents
a suitable stationary phase for the separation of a mixture of 11 substances and their
internal standards with highly heterogeneous physical-chemical properties. No further
extensive method optimization was necessary. However, the developed method was not
able to separate Kyn and Trp from each other. The use of MS detection and isotopically
labelled internal standards of the analytes provided their unequivocal identification and
quantification. Maximum sensitivity of the tandem mass spectrometry detection was
achieved using the selected reaction monitoring (SRM) mode. The complete overview of
used mass transitions and operation conditions for each analyte and its responsible internal
standard is summarized in Table 1.

Table 1. Selected MS/MS conditions for analysis of NT, Trp, Kyn and their internal standards.

Precursor Ion
(m/z)

Product Ion
(m/z)

Cone Voltage
(V)

Collision
Energy (eV)

Ach 146.1 60.0 16 14
D9–Ach 155.1 87.0 16 14

Chol 104.1 44.9 41 30
D9–Chol 113.1 69.0 41 30

Trp 204.9 146.0 21 20
D5–Trp 209.9 150.0 21 20

Kyn 209.6 94.1 26 12
D5–Kyn 213.1 98.1 26 12
PyroGlu 130.1 84.0 20 13

D5–PyroGlu 135.1 89.0 20 13
NAA 176.2 134.1 16 10

D3–NAA 179.1 137.1 16 10
GABA 104.0 86.9 20 11

D6–GABA 110.1 92.1 20 11
Gln 147.1 84.0 20 18

D5–Gln 152.1 89.1 20 18
Asn 133.1 87.0 16 12

D5–Asn 137.9 97.0 16 12
Glu 148.2 84.0 20 18

D3–Glu 151.1 86.1 20 18
Asp 134.1 74.0 16 12

D3–Asp 137.0 91.0 16 12

3.2. Method Validation

The validation of the UHPLC-MS/MS method was carried out in compliance with
the US Food and Drug Administration (FDA) [41] guideline. The validation procedure
included investigation of linearity, limit of detection (LOD), lower limit of quantification
(LLOQ), accuracy, precision, and stability. A complex overview of investigated operation
and validation parameters is summarized in Tables 2–4.

The linearity of the method was performed with the use of calibration standards of
each analyte in the selected ranges (i.e., 2.5–250 µg/mL for GABA, Chol, Asp, Gln, Glu,
0.25–25 µg/mL for PyroGlu, Asn, NAA, 0.025–2.5 µg/mL for Ach and 0.1–25 µg/mL for
Trp and Kyn) by the internal standard procedure. The selected ranges of calibration curves
were sufficient to cover the expected concentration values of the analytes in real brain tissue.
Linear calibration curves were obtained for all analytes–correlation coefficients were in the
interval of 0.9946–0.9999 (Table 2). Moreover, linear regression analysis was performed on
the calibration curves and relative standard deviation of the slope (RSDb) and intercept
(RSDa) were calculated (see Table 2).
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Table 2. Selected operation and validation parameters of the LC-MS/MS method.

Ach Chol Trp Kyn PyroGlu NAA GABA Gln Asn Glu Asp

tR (min) 0.87 1.49 2.60 2.61 3.16 3.33 3.73 4.74 4.91 5.18 5.38
a (counts) −0.0001 0.0115 −0.0829 −0.0752 −0.0001 −0.0017 −0.0167 −0.0145 −0.0015 −0.0062 −0.0137

RSDa (%), n = 6 6.9 2.0 8.5 7.4 3.8 6.8 2.6 7.0 4.7 7.8 1.3
b (counts × µg−1 × mL) 0.0548 0.0617 0.0948 0.0826 0.0073 0.0081 0.0363 0.1962 0.0067 0.2074 0.1314

RSDb (%), n = 6 0.3 0.3 0.5 0.7 0.8 0.8 0.3 0.4 0.4 0.9 0.8
r2 0.9998 0.9999 0.9952 0.9946 0.9992 0.9994 0.9993 0.9998 0.9997 0.9980 0.9985

Linear range
(µg/mL) 0.025–2.5 2.5–250 0.1–25 0.1–25 0.25–25 0.25–25 2.5–250 2.5–250 0.25–25 2.5–250 2.5–250

LOD (µg/mL) 0.01 0.91 0.07 0.07 0.05 0.24 0.97 1.22 0.12 1.68 1.70
LLOQ (µg/mL) 0.025 2.5 0.1 0.1 0.25 0.25 2.5 2.5 0.25 2.5 2.5

tR—retention time, RSDa—relative standard deviation of the intercept, RSDb—relative standard deviation of the
slope. The calibration curve is expressed by the equation y = bx + a, where b is slope and a is intercept.

Table 3. Accuracy, precision and recovery of the UHPLC-MS/MS method for analysis of selected NT,
tryptophan and kynurenine.

Intra-Day, n = 6 Inter-Day, n = 12

Analyte QC Level Nominal
(µg/mL)

Found
(µg/mL) CV (%) Accuracy

(%)
Found

(µg/mL) CV (%) Accuracy
(%)

Recovery
(%)

Ach Low 0.025 0.025 11.3 101.6 0.02 14.3 99.3 91.8
Medium 0.25 0.25 4.2 100.2 0.26 3.9 102.2 88.2

High 2.5 2.51 0.7 100.2 2.53 1.4 101.1 90.1
Chol Low 2.5 2.64 7.2 105.6 2.48 9.3 99.3 87.0

Medium 10 10.15 0.7 101.5 10.16 0.5 101.6 94.3
High 250 250.80 0.9 100.3 250.56 1.6 100.2 94.6

Trp Low 0.1 0.10 11.9 101.3 0.11 14.5 111.4 87.3
Medium 5 4.95 5.5 99.0 4.61 5.4 92.1 90.2

High 25 26.03 3.1 104.1 24.83 3.9 99.3 90.0
Kyn Low 0.1 0.11 9.5 107.1 0.12 12.4 119.6 90.5

Medium 5 4.38 4.8 87.6 4.52 7.4 90.4 81.6
High 25 24.31 2.7 97.3 23.45 4.7 93.8 92.6

PyroGlu Low 0.25 0.23 10.7 92.2 0.22 14.4 88.9 74.8
Medium 2.5 2.54 2.0 101.6 2.55 3.6 102.0 75.2

High 25 25.33 2.8 101.3 25.04 3.6 100.2 87.8
NAA Low 0.25 2.61 10.1 104.5 2.18 14.4 87.2 85.0

Medium 2.5 23.98 6.3 95.9 10.05 4.5 100.5 88.8
High 25 249.79 3.2 99.9 257.72 5.0 103.1 88.1

GABA Low 2.5 2.36 4.9 94.3 2.55 3.5 101.9 79.4
Medium 10 10.24 1.1 102.4 10.27 1.1 102.7 99.3

High 250 250.56 0.8 100.2 252.09 1.1 100.8 103.3
Gln Low 2.5 2.27 6.6 90.6 2.50 8.7 100.1 87.4

Medium 10 10.16 0.7 101.6 10.15 0.6 101.5 94.3
High 250 250.40 0.6 100.2 249.70 0.8 99.9 93.3

Asn Low 0.25 0.25 7.2 98.7 0.24 9.2 97.1 73.4
Medium 2.5 2.55 2.3 102.0 2.51 3.2 100.5 97.5

High 25 24.91 1.1 99.7 24.87 1.1 99.5 103.7
Glu Low 2.5 2.40 5.8 96.1 2.41 6.3 96.3 92.5

Medium 10 10.33 4.6 103.3 10.16 5.0 101.6 91.1
High 250 250.74 2.7 100.3 249.64 3.1 99.9 89.9

Asp Low 2.5 2.36 6.4 94.4 2.38 6.1 95.3 85.3
Medium 10 9.70 2.3 97.0 9.61 3.9 96.1 89.7

High 250 250.57 2.8 100.2 252.04 2.2 100.8 94.1
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Table 4. Stability testing of the NT, tryptophan and kynurenine.

Autosampler Stability (24 h), n = 6 Freeze-to-Thaw Stability, n = 6

Analyte QC Level Nominal (µg/mL) Found (µg/mL) Accuracy (%) Found (µg/mL) Accuracy (%)

Ach Low 0.025 0.03 101.9 0.02 96.3
Medium 0.25 0.24 95.5 0.24 97.4

High 2.5 2.64 105.7 2.62 104.6
Chol Low 2.5 2.50 100.1 2.47 98.8

Medium 10 10.25 102.5 10.25 102.5
High 250 244.11 97.6 243.64 97.5

Trp Low 0.1 0.09 86.6 0.09 86.1
Medium 10 9.39 93.9 9.29 92.9

High 25 25.33 101.3 23.30 93.2
Kyn Low 0.1 0.08 80.0 0.08 83.9

Medium 10 9.43 94.3 9.33 93.3
High 25 22.93 90.7 23.25 93.0

PyroGlu Low 0.25 0.25 98.8 0.21 83.0
Medium 2.5 2.46 98.4 2.58 103.0

High 25 23.79 95.2 253.04 101.2
NAA Low 0.25 0.25 100.2 0.29 116.0

Medium 2.5 2.71 108.2 2.80 111.9
High 25 24.34 97.3 26.08 104.3

GABA Low 2.5 2.41 96.4 2.52 100.7
Medium 10 10.23 102.3 9.72 97.2

High 250 243.18 97.3 248.50 99.4
Gln Low 2.5 2.50 99.9 2.54 101.5

Medium 10 9.72 97.2 9.55 95.5
High 250 246.51 98.6 246.60 98.6

Asn Low 0.25 0.21 85.0 0.26 104.2
Medium 2.5 2.51 100.3 2.53 101.2

High 25 25.17 100.7 24.44 97.7
Glu Low 2.5 2.47 98.8 2.69 107.7

Medium 10 8.78 87.8 9.78 97.8
High 250 241.51 96.6 252.23 100.9

Asp Low 2.5 2.37 94.7 2.30 92.1
Medium 10 9.35 93.5 10.24 102.4

High 250 242.74 97.1 252.4 101.0

The LOD (signal-to-noise ratio 3:1) and LLOQ (signal-to-noise ratio 5:1) were calcu-
lated from calibration curves, based on standard deviation of response and slope. The
predicted LOD values of the analytes ranged in the interval 0.01–1.70 µg/mL (Table 2).

Quality control (QC) samples at three concentration levels–low, medium, high (see
Table 3), were prepared from pooled rat brain tissue and analyzed on the same day and
over three consecutive days to evaluate precision (expressed as coefficient of variation–CV)
and accuracy of the UHPLC-MS/MS method. The results are summarized in Table 3. The
values of intra-and inter-day precision were within the ranges of 0.6–11.9% and 0.6–14.4%,
respectively. The intraday accuracy ranged in the interval of 87.6–107.1% and the inter-
day accuracy was in the range of 87.2–119.6%. The investigated values were within the
acceptance criteria of the FDA guideline (≤15%, and ≤20% for QC samples at LLOQ con-
centration level). An illustrative record obtained from the analysis of pooled brain tissue
QC sample spiked at medium concentration level is presented in Figure 1.

The carryover effect was also investigated during the validation procedure of the
UHPLC-MS/MS method. The experiment was performed by injection of blank sample
(mobile phase) into the separation system after the analysis of each QC sample. No
significant carryover effect was observed–no residual peaks of the analytes were present in
the SRM records of the blank sample, or the investigated peak areas of the analytes in the
blank sample were significantly lower than those ones recorded for QC samples at LLOQ
levels (the investigated value did not exceed 1.1%).
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Figure 1. Overlapped SRM chromatograms of nine NT, tryptophan and kynurenine (A) and their
internal standards (B) obtained from the analysis of quality control (QC) sample at the medium
concentration level. 1—Ach, 2—Chol, 3—Trp, 4—Kyn, 5—PyroGlu, 6—NAA, 7—GABA, 8—Gln,
9—Asn, 10—Glu, 11—Asp, 1*—D9-Ach, 2*—D9-Chol, 3*—D5-Trp, 4*—D4-Kyn, 5*—D5-PyroGlu,
6*—D3-NAA, 7*—D6-GABA, 8*—D5-Gln, 9*—D5-Asn, 10*—D93-Glu, 11*—D3-Asp.

Stability of the analytes in pooled brain tissue QC samples was examined by measuring
them after storage in the autosampler for 24 h (Table 4). The obtained relative errors were
less or equal to 15% compared to the initial concentration of the analytes. The freeze-
to-thaw stability was assessed after performing three complete freeze-thaw cycles of the
pooled brain tissue QC samples. Then, the measured data were compared with those ones
obtained from the analysis of freshly prepared QC samples. The investigated concentrations
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of the analytes were in the range of 86.1–119.6% compared to the initial concentrations (see
Table 4). The stability data were within the acceptance criteria of the FDA guideline (≤15%,
and ≤20% for QC samples at LLOQ concentration level).

Moreover, the developed LC-MS/MS method was evaluated in terms of analytical
performance, safety and eco-friendliness, and practical effectiveness. The approach based
on RGB Additive Color Model [42] was used and the results are summarized in Supplemen-
tary Material—Figure S1. According to the obtained data, the developed method represents
an effective high performance method with suitable level of greenness.

3.3. Method Application–Analysis of Brain Tissue Samples from Transgenic Rats

The validated UHPLC-ESI-MS/MS method was applied for the analysis of rat brain
tissue samples from transgenic rat model for tauopathies. Concentration levels of the
selected analytes were investigated in brain tissue samples obtained from four different
brain regions—frontal cortex, parietal cortex, pons and medulla oblongata. The obtained
results are summarized in Table 5. A representative chromatogram from the determination
of selected analytes in SHR 24 brain tissue sample from medulla oblongata is presented
in Figure 2. The results clearly demonstrate the ability of the method to quantify the
analytes in all samples. Statistical evaluation of the changes in selected NT, tryptophan
and kynurenine in the investigated brain regions from tau transgenic rats and age-matched
controls is illustrated in Figure 3.

Table 5. Brain tissue concentrations of NT, tryptophan and kynurenine in different parts of brain.
Data are presented as mean ± standard deviation (SD).

Medulla Oblongata Pons Frontal Cortex Parietal Cortex

SHR 24
(µg/mg)

Control
(µg/mg)

SHR 24
(µg/mg)

Control
(µg/mg)

SHR 24
(µg/mg)

Control
(µg/mg)

SHR 24
(µg/mg)

Control
(µg/mg)

Ach 16.120 ± 4.671 14.154 ± 3.729 12.559 ± 3.694 12.942 ± 4.529 0.024 ± 0.013 0.018 ± 0.005 0.014 ± 0.007 0.012 ± 0.006
Chol 0.075 ± 0.029 0.043 ± 0.017 0.203 ± 0.063 0.119 ± 0.031 0.229 ± 0.035 0.107 ± 0.031 0.087 ± 0.053 0.077 ± 0.047
Trp 0.012 ± 0.002 0.011 ± 0.002 0.003 ± 0.001 0.002 ± 0.001 0.007 ± 0.011 0.005 ± 0.001 0.005 ± 0.001 0.005 ± 0.001
Kyn 0.014 ± 0.003 0.015 ± 0.003 0.025 ± 0.037 0.044 ± 0.044 0.114 ± 0.011 0.121 ± 0.045 0.142 ± 0.024 0.123 ± 0.025

PyroGlu 0.527 ± 0.466 1.010 ± 0.412 0.175 ± 0.039 0.166 ± 0.033 0.458 ± 0.247 0.441 ± 0.327 0.436 ± 0.208 0.482 ± 0.190
NAA 3.062 ± 0.264 3.002 ± 0.196 1.770 ± 0.119 1.986 ± 0.099 2.672 ± 0.628 2.647 ± 0.344 2.621 ± 0.509 2.200 ± 0.507

GABA 0.247 ± 0.044 0.215 ± 0.032 0.301 ± 0.031 0.216 ± 0.023 0.378 ± 0.137 0.319 ± 0.077 0.380 ± 0.120 0.300 ± 0.089
Gln 0.980 ± 0.067 1.117 ± 0.487 0.859 ± 0.051 1.018 ± 0.495 1.928 ± 0.509 2.105 ± 0.957 1.818 ± 0.336 1.774 ± 0.520
Asn 0.021 ± 0.003 0.022 ± 0.005 0.020 ± 0.002 0.020 ± 0.003 0.032 ± 0.008 0.031 ± 0.007 0.025 ± 0.007 0.023 ± 0.006
Glu 1.227 ± 0.109 1.276 ± 0.059 1.285 ± 0.098 1.365 ± 0.074 2.634 ± 0.650 2.516 ± 0.297 2.774 ± 0.555 2.429 ± 0.599
Asp 0.632 ± 0.081 0.582 ± 0.064 0.746 ± 0.084 0.615 ± 0.075 0.885 ± 0.264 0.815 ± 0.137 0.739 ± 0.116 0.592 ± 0.118

NTs are endogenous signaling compounds that allow neurons to communicate. De-
termining whether there are any differences in response to tau pathology is essential
for understanding the brain changes in tauopathies. The results from our study show
significant alterations of brain tissue NT levels in response to tau pathology.

No differences were observed in the levels of major excitatory NT such as glutamic
acid, aspartic acid, their precursors’ glutamine and asparagine, and aspartic acid derivate
N-acetylaspartic acid. Studies in living patients demonstrated a significant decrease of
glutamate and N-acetylaspartate that correlates with the progression of dementia and
neuronal loss [43,44]. However, our previous data showed that the expression of truncated
tau did not cause an extensive neuronal loss in the brain stem [45]. We conclude that
pathological processes other than the loss of the neurons drive the NT changes in our
transgenic model.

While we found a significant increase of GABA in the pons, there was no difference in
the medulla oblongata, and frontal and parietal cortex. The tau transgenic rats SHR24 used
in our study have extensive pathology in the pons [12]. Moreover, we previously noticed
that the transition of tau from soluble protein into insoluble neurofibrillary pathology
is closely associated with activation of microglia and astrocytes [46]. It is well known
that neurotransmitter receptors that are expressed by microglia regulate the microglia
phenotype [47]. Microglia expressed both GABAA and GABAB receptors [48]. Stimulation
of GABAB receptors attenuates the interleukin release, and in response to injury, microglia
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increase their expression [49]. The stimulation of GABAA receptors triggers the production
of reactive oxygen species and enhances the neuroprotective phenotype [50]. Thus, it will
be important to identify the exact neuroinflammatory pathways activated in our transgenic
animals in response to neurofibrillary pathology.
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Figure 2. Overlapped representative SRM chromatograms obtained from the analysis of SHR 24 brain
tissue sample from medulla oblongata. 1—Ach, 2—Chol, 3—Trp, 4—Kyn, 5—PyroGlu, 6—NAA,
7—GABA, 8—Gln, 9—Asn, 10–Glu, 11—Asp.

The increased choline levels are typically found in neuroinflammatory diseases such
as tauopathies [51–53]. Neuroinflammation triggered by tau pathology is likely responsible
for the elevated choline levels we detected in the pons. Interestingly, in contrast to human
studies [16,30] we noticed no change in acetylcholine in any analyzed brain area.

Pyroglutamic acid as a metabolite of glutathione degradation can induce oxidative
stress connected with the AD process [54,55]. Therefore, the elevated levels of pyroglutamic
acid in the medulla oblongata could be considered a sign of AD pathology changes.

The kynurenine pathway is the major route for the metabolism of the amino acid
tryptophan. Alterations in kynurenine and the kynurenine pathway has been identified
in several neurological and neurodegenerative diseases, including AD [56]. Increased
levels of kynurenine were also identified in pathological processes accompanied with
inflammation [57–59]. In contrast to these studies, we found no difference in tryptophan or
kynurenine levels in any of the analyzed brain areas.
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4. Conclusions

In conclusion, we successfully developed and validated a simple, fast, and effective
UHPLC-MS/MS method for the quantification of nine NTs, tryptophan and its metabolite
kynurenine in rat brain tissue. Favorable performance parameters of the UHPLC-MS/MS
approach, such as high sample throughput, simple sample preparation, or robustness, are
attributes demanded in routine clinical analysis. In this work, they were reflected in the
successful profiling of brain tissue samples of the rat model for tauopathy.

Statistical evaluation revealed some significant changes in the GABA, choline and
pyroglutamate levels in the samples obtained from tau transgenic animals. The results
of this study are encouraging, as our findings (i.e., concentration differences) are in good
agreement with the previously published data. However, further investigation is necessary
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to confirm the result of our pivotal study, especially experiments based on age dependent
disease progression.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390
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