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Abstract: The present study aimed to evaluate the chemopreventive potential of Pinus roxburghii
branch (P. roxburghii) and Nauplius graveolens (N. graveolens) extracts against human colorectal cancer
(CRC) induced by C26 murine cells in a BALB/c mouse model. Real-time qRT-PCR was used to
evaluate the apoptotic pathway by measuring the relative mRNA expression levels of the Bcl-2,
Bax, Cas3, NF-κB, and PI3k genes. At the termination of the 30-day period, blood samples were
collected to assay the biomarkers. The results showed a significant increase (p < 0.05) in the levels of
TGF-β, CEA, CA19-9, malondialdehyde, ALT, AST, ALP, urea, and creatinine in the positive control
compared to the negative control group. In addition, the glutathione reductase activity and total
antioxidant activity were reduced in the positive control compared to the negative control. The
biomarkers mentioned above were restored to almost normal levels after administering a safe dose
(1/10) of a lethal dose of P. roxburghii and N. graveolens extracts. Administration of one-tenth of the
LD50 of P. roxburghii and N. graveolens extracts caused a significant upregulation of the expression
of Bax and Cas-3 and downregulation of the Bcl-2, NF-kB, and PI3k genes vs. the GAPDH gene as
a housekeeping gene compared to the control group. Furthermore, the Bax/Bcl-2 ratio increased
upon treatment. After administration of P. roxburghii and N. graveolens at a safe dose (1/10) of a
lethal dose, the results showed improvement in both body weight gain and a significant decrease
(p < 0.05) in tumor volume. Histopathological changes supported these improvements. Conclusively,
the research outputs show that P. roxburghii and N. graveolens extracts can be utilized as potential
chemopreventive agents for CRC treatment by stimulating cancer cell apoptosis and suppressing
CRC survival and proliferation.

Keywords: P. roxburghii branch; N. graveolens; LD50; Bax and Cas-3; Bcl-2; NF-kB; PI3k; TGF-β;
CEA; CA19-9

1. Introduction

Cancer disease is a significant public health concern, as it is considered the second
leading cause of mortality annually after cardiovascular death incidences around the
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world [1,2]. In 2020, colorectal cancer (CRC) accounted for approximately 10% and 9.4%
of cancer incidences and cancer causative deaths worldwide, respectively [3]. Based
on global future perspectives, CRC incidences are predicted to exceed 3.2 million by
2040. CRC cases increase due to continuous exposure to hazardous environmental factors
attributed to lifestyle shifts and diet-related habits [4]. Currently, the most applied cancer
treatments include chemotherapy, radiotherapy, immunotherapy, and surgery. Almost
all these treatments involve many deleterious side effects for normal cells together with
cancer cells. Consequently, novel treatments with minimal side effects are necessary
for cancer control and prevention [5]. More efforts need to be made to explore new
alternative anticancer agents that would ultimately slow, reverse, or even prevent cancer
cell progression without affecting normal cell function and integrity [6,7].

For ancient decades, herbal remedies derived from naturally grown plants were
proven to be highly effective in treating many diseases [8–10]. Despite the continuous
increase in herbal therapy popularity around the globe, very little is known about the
composition of these remedies’ active compounds, and hence, minimal information is
known about their mode of action either on a cellular or molecular basis [10,11]. As one
of the major categories of herbal remedies, edible plants are considered a rich source of
phytochemicals; however, their efficacy in cancer treatment and prevention has not yet been
deciphered [12]. Inevitably, investigating plant-based therapeutic agents’ chemical and
cytotoxic characteristics could shed light on applying some of these plant therapies as novel
natural anticancer drugs [13]. Recently, phytochemicals were proven to directly influence
cancer cell cycle arrest, proliferation enhancement, and apoptosis initiation [7]. Further
studies suggested that the role of phytochemicals is primarily initiated by delaying or even
halting the transformation of a healthy cell into undifferentiated, malignant cells [14,15].

Pinus roxburghii (P. roxburghii) belongs to the Pinaceae family and is famously known
as chir pine and cultivated in El-Orman Botanical Garden, Egypt. P. roxburghii is an
ancient medicinal plant with multi pharmaceutical and medicinal properties, includ-
ing anti-inflammatory, analgesic, antidyslipidemic, antioxidant, antibacterial, antifungal,
and anticancer activities, respectively [16–19]. Previous studies have demonstrated that
P. roxburghii has various bioactive constituents such as phenolics, flavonoids, tannins, beta-
carotene, and lycopene [20]. Moreover, different polyphenolic compounds isolated from
the branch of P. roxburghii include catechin, kaempferol, protocatechuic acid, caffeic acid,
and gallocatechin [21]. Nauplius graveolens (Forssk.) Wiklund (N. graveolens) (synonyms.
Asteriscus graveolens, Bubonium graveolens, Odontospermum graveolens) is one of the species
of the Asteraceae family. It is known as Tafss [22], and naturally grows in the inland
desert of Wadi Feiran, South Sinai, Egypt. The N. graveolens plant displays medicinal and
pharmacological characteristics, including antioxidant, anti-inflammatory, antimicrobial,
and antitumor activities [23–25]. Phytochemical investigations of the N. graveolens extract
revealed the diverse distribution of phytoconstituents including polyphenolics, flavonoids,
tannins, coumaric, and chlorogenic acid as the major phenolic compounds [23]. Moreover,
N. graveolens contained a high content of flavonoids and sesquiterpene lactone asteriscuno-
lide isomers; naturally occurring Asteriscunolide A enhances apoptosis in a tumor cell
line [26].

Targeting apoptosis could be the main approach in cancer treatment and a strong,
active area of research. Apoptosis, one of the main mechanisms controlling cancer cell
progression, is mainly triggered by the activation, or silencing of caspases, Bcl2, Bax, NF-κB,
and PI3k genes in response to cell injury, which in turn are responsible for the activation or
inactivation of certain cellular substrates, eventually leading to either cell death or survival
according to the degree of cell injury [27–29]. Several murine models have been developed
to study CRC pathogenesis, preferably reflecting CRC chemoprevention or the most critical
chemo-treatment aspects. Selecting the most appropriate murine models will maximize the
upscaling of therapies from in vitro laboratory trials to in vivo clinical practice. Over the
last three decades, colon-26 and adenocarcinoma mouse models (C26 model) have been
used for research on the natural history of carcinomas and antitumor therapy to study the
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effects of several antitumor agents [30–32]. Although previous studies have classified the
major phytoconstituents which may responsible for the anticancer activity of the two plant
extracts, the actual assessment of those compounds was not evaluated in vivo in any of
these studies. Therefore, the aim of the present study was to assess the in vivo anticancer
activities of P. roxburghii and N. graveolens extracts in a BALB/c mouse model.

2. Material and Methods
2.1. Chemicals

Methanol, ethanol, dimethyl sulfoxide (DMSO), and paraformaldehyde (PFA) were
obtained from Sigma Chemical Company (St. Louis, MO, USA). RPMI 1640 medium, fetal
bovine serum, and trypsin-EDTA were procured from Gibco, Life Technologies Limited
(Paisley, UK).

2.2. Extract Preparation

The extraction of P. roxburghii and N. graveolens plants was carried out by maceration
method with 90% aqueous methanol. P. roxburghii was grown and obtained from the
Ministry of Agriculture, Orman botanical garden, Giza (Authentication number: 2151).
After removing the foliar leaves, the branch was cut with scissors into small pieces, which
were allowed to dry at 40 ◦C. Aliquots of 75 g of finely ground flour were extracted
with 450 mL of absolute methanol. The methanolic extract was filtered, and the filtrate
was concentrated on a Büchi rotary evaporator R-114 (Büchi Labortechnik AG, Flawil,
Switzerland). The residue was freeze-dried using a Snijders Freeze Dryer (Tilburg, Holland)
and saved in sterile vials at −20 ◦C. N. graveolens was collected from the inland desert of
Wadi Feiran, South Sinai, Egypt (Authentication number: 3187). Both plants were identified
by the pharmacognosy department, National Research Centre, Giza, Egypt according to
taxonomic classification by Boulos (2002) [33]. The whole N. graveolens plant was treated
similarly to P. roxburghii [34]. The extraction yields of P. roxburghii and N. graveolens plants
were 5.2 and 5.5 g/75 g of dry material, respectively.

2.3. Composition of Basal Diet

The basal diet consists of corn starch (46.5%), casein (14%), soybean oil (4%), fiber (5%),
mineral mixture (3.5%), and vitamin mixture (1%) as described in AIN-93 M [35].

2.4. Determination of the Median Lethal Dose (LD50)

The median lethal dose (LD50) of P. roxburghii and N. graveolens extracts was evaluated
according to Wilbrandt [36]. Briefly, different P. roxburghii and N. graveolens extract doses of
up to 2000 mg/kg body weight in DMSO were orally administered to male albino mice
(six mice per group), and a group of six mice was given the respective amount of DMSO
orally and left as a control. The median lethal dose (LD50) of the methanolic extracts of
P. roxburghii accounted for 1708.3 mg/kg body weight, while that of N. graveolens was
1562.5 mg/kg body weight. The 1/10 LD50 of P. roxburghii and N. graveolens extracts
accounted for 170.83 and 156.25 mg/kg body weight, respectively [34].

2.5. Animals

Twenty-four male BALB/c mice weighing 20–25 g were purchased from Schistosome
Biological Supply Centre (SBSC) at Theodore Bilharz Research Institute (TBRI), Imbaba,
Giza, Egypt. All the animals were acclimatized for a week under standard husbandry
conditions. The animals had been fed a standard pellet diet and water ad libitum. An-
imal handling and experimental procedures were conducted by the Guidelines of Care
Laboratory Animals, National Research Centre, and approved by the Research Ethical
Committee and the national legislation on lab Animal Rescue and Usage (Ethical Code:
15/097; 4 February 2021).
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2.6. Induction of C26 Murine Cells in BALB/c Mice

Murine colon-26 cells were cultured in RPMI 1640 medium supplemented with fetal
bovine serum (10%) (Gibco, Life Technologies Limited, Paisley, UK) in a humidified at-
mosphere (5% CO2) at 37 ◦C. Cells were collected using trypsin-EDTA (0.25%) to obtain
a single-cell suspension. Cells were counted using a hemocytometer and pelleted via
centrifugation at 25 ◦C (500× g for 5 min). Mice were injected subcutaneously on the dorsal
side with 1 × 106 cells (Figure 1), as described by [37,38].

2.7. Measurement of Body Wasting

Body mass was monitored weekly after inoculation. Tumor size was measured using a
Verniercaliper, and tumor volume was measured using the formula V = (length×width2)/2
in mm3 [39,40].
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Figure 1. Tumor growth in BALB/c mice.

2.8. Experimental Design

Twenty-four male BALB/c mice were divided into four groups as follows:
Group (1): Negative control received a basal diet.
Group (2): Positive control received a basal diet and was injected intraperitoneally

with a respective amount of DMSO.
Group (3): Tumor mice received a basal diet and were injected intraperitoneally with

a dose equivalent to 1/10 LD50 of extract of P. roxburghii branch day after day.
Group (4): Tumor mice received a basal diet and were injected intraperitoneally with

a dose equivalent to 1/10 LD50 of N. graveolens extract day after day.
Tumor volumes were measured weekly for four consecutive weeks (one month).
The diet was withdrawn at the end of the one-month feeding trial, and all animals

were fasted overnight (12 h). The mice were anesthetized by intramuscular injection with
ketamine chloride (24 mg/kg body weight). Blood was sampled from the orbital sinus of
the eye and collected in clean, dry test tubes. The serum was separated by centrifugation
(1500× g, 10 min, 4 ◦C). The serum obtained was used for various biochemical estimations.

2.9. Changes in Body Weight (BW) and Feed Efficiency Ratio (FER)

Body weight and food consumption were recorded by Hsu et al. [41] by the follow-
ing formula:

Changes in body weight = final body weight − initial body weight

Feed efficiency ratio (FER) = Body weight gain, g/Food intake, g
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2.10. Biochemical Analyses

Liver function was assessed by measuring liver enzyme activities, such as alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP),
using a kit (Biodiagnostic, Egypt). Serum concentrations of urea and creatinine, the two in-
dicators of kidney function, were determined using kits (Biodiagnostic, Egypt). The assays
followed the manufacturer’s protocol based on published techniques [42–45]. Glutathione
reductase, total antioxidant capacity, and malondialdehyde (MDA) were determined col-
orimetrically using a kit (Biodiagnostics, Egypt) described by [46–48]. The TGF-β level
was assayed using an ELISA kit purchased from Sunlong Biotech Co., Ltd., China. Serum
CA 19-9 was assessed using the Cancer Antigen CA 19-9 ELISA Kit (Abcam, Cambridge,
UK). Serum carcinoembryonic antigen (CEA) was determined using an ELISA kit (enzyme-
linked immunosorbent assay) (Abcam, Cambridge, UK). These assays were carried out
based on the manufacturer’s instructions.

2.11. RNA Extraction and cDNA Synthesis

RNA was extracted from tissues using the RNeasy mini kit (Qiagen, Hilden, Germany)
as designed by the manufacturer. Total RNA purity and concentration were detected by
a Nanodrop UV spectrophotometer. cDNA was synthesized using a cDNA synthesis kit
(Intron Biotechnology, Seongnam-si, Korea) as stated in the manufacturer’s protocol.

2.12. Quantitative Real-Time PCR

Gene expression was tested on the genes Bax, Bcl-2, Cas3, PI3K, and NF-κB, and
GAPDH was used as a housekeeping gene. The specific primers used for quantitative
PCR were designed through NCBI BLAST before purchasing from Thermo Fisher Scientific
(Waltham, MA, USA) (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 1 May 2021),
and their sequences are presented in Table 1. A real-time PCR cycler (QIAGEN, Rotor-Gene
Q, Valencia, CA) was used to detect the synthesized cDNA copy number. PCR mixtures
were set up in a 25 µL final volume, containing 12.5 µL SYBR Premix Ex Taq TM (Thermo
Fisher Scientific, Waltham, Massachusetts, USA), 6.5 µL distilled water, 0.5 µL sense primer
(0.2 mM), 0.5 µL antisense primer (0.2 mM), and 5 µL of cDNA template. The reaction
program was designed with three steps. The first denaturation step was performed at
95.0 ◦C for 3 min. The second step consisted of 40 cycles, each cycle divided into (a) 95.0 ◦C
for 15 s; (b) 55.0–60.0 ◦C for 30 s; and (c) 72.0 ◦C for 30 s. The third step consisted of several
cycles, which started at 60.0 ◦C and increased approximately 0.5 ◦C every 10 s up to 95.0 ◦C.
At the end of each qRT-PCR cycle, a melting curve analysis was designed at 95.0 ◦C, then
55.0–60.0 ◦C, followed by 95.0 ◦C to check the primer quality. Each sample was prepared
in triplicate, and the variability of the samples was evaluated using geometric standard
deviations. The geometric mean of the triplicate run for each gene was normalized to the
GAPDH geometric mean.

Table 1. Primer sequences used for qRT-PCR.

Primers Sequences

Bcl-2 F: 5′TGGGATGCCTTTGTGGAAC 3′

R: 5′CATATTTGTTTGGGGCAGGTC3′

Bax F: 5′TGCTACAGGGTTTCATCCAG3′

R: 5′ATCCACATCAGCAATCATCC3′

Cas-3 F: 5′GCTGGACTGCGGTATTGAGA3′

R: 5′CCATGACCCGTCCCTTGA3′

NF-kB F: 5′GCAAAGGGAACATTCCGATAT3′

R: 5′GCGACATCACATGGAAATCTA3′

PI3k F: 5′GTGTCAGCGCTCTCCGCC3′

R: 5′CTGATAATTGATGTAGG3′

GAPDH F: 5′CATTCAAGACCGGACAGAGG3′

R: 5′ACATACTCAGCACCAGCATCACC3′

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.13. Histopathological Examination

Tumors were separated and fixed in 4% paraformaldehyde (PFA) for 24 h. The
tissues were washed with tap water, followed by sequential soaking in diluted methanol,
ethanol, and absolute ethyl alcohol for dehydration. The specimens were cleared in xylene,
embedded in paraffin, and left in a hot air oven at 56 ◦C for 24 h. Paraffin bee wax tissue
blocks were prepared for sectioning at 4 microns at room temperature by a sledge microtome
(SLEE medical, Nieder-Olm, Germany). The final tissue sections were embedded on glass
slides, deparaffinized, and stained with hematoxylin and eosin for examination by a light
microscope [49].

2.14. Statistical Analyses

Statistical analysis was implemented using GraphPad Prism software 8.0 (San Diego,
CA, USA). The results are expressed as the mean ± standard error of the mean (SEM) of
three independent experiments. Data are presented as the means ± SDs and estimated
by one-way analysis of variance (ANOVA) performed using SPSS 19.0 (SPSS Ltd., Surrey,
UK). Duncan’s multiple range test (DMRT) was used to detect individual comparisons.
Differences were considered significant at p < 0.05.

3. Results and Discussion

The data in Figure 2 illustrate the effect of P. roxburghii and N. graveolens extracts on the
tumor growth of mice. The colon tumor volume increased in the positive control during
the baseline scan and the first week. In the positive control, tumor volume increased signif-
icantly in the second, third, and fourth weeks. Tumor volume can be considered a critical
prognostic factor for assessing several types of cancers [50]. Tullie et al. [51] reported a
significant correlation between tumor volume and survival rate. Huang et al. [52] explained
that large-volume tumors were proportionally correlated with increased cancer risk at both
the cellular and molecular levels. Furthermore, data reporting that tumor volume was
a potent independent factor revealed the prognosis of several types of cancers, such as
lung, nasopharyngeal, neck, head, and other malignant tumors [53,54]. Administration
of one-tenth of the LD50 of P. roxburghii and N. graveolens extracts showed a significant
decrease in tumor volume every subsequent week.

The data in Table 2 represent the effect of P. roxburghii and N. graveolens extracts on
the nutritional status of mice. During the development of cancer in the BALB/C mouse
model, there was a significant decrease in body weight gain, food intake, and the food
efficiency ratio in the positive control (19.36, 177.54, and 0.10, respectively) compared to the
negative control (27.11, 189.21, and 0.14, respectively). Generally, body weight decrease is
a common side effect in CRC patients. Consequently, research studies have reported that
weight control is an essential criterion in CRC survival [55]. Weight loss was significantly
linked to increasing colorectal cancer and mortality [56]. However, Diculescu et al. [57],
stated that the weight loss index is an independent prediagnostic factor for colorectal cancer
progression. Barber et al. [58] also found that body weight loss caused by cancer may be
due to anorexia, substrate metabolism deficiencies, and hypermetabolism. Administration
of 1/10 LD50 of P. roxburghii and N. graveolens extracts showed improvement in body
weight gain, food intake, and feed efficiency ratio by 24.52, 25.23, 184.37, 186.29, 0.13, and
0.13, respectively.

Table 2. Nutritional parameters of different groups.

Parameters
Groups

Body Weight Gain
(BWG) (g) Food Intake (FI) (g) Feed Efficiency Ratio

(FER)

Negative control 27.11 ± 0.37 a 189.21 ± 0.53 a 0.14
Positive control 19.36 ± 0.64 c 177.54 ± 0.66 c 0.10

P. roxburghii 24.52 ± 0.58 b 184.37 ± 0.71 b 0.13
N. graveolens 25.23 ± 0.45 b 186.29 ± 0.49 b 0.13

All values are represented as the mean ± S.E. Means with different letters are significantly different (p < 0.05).
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Figure 2. Average tumor volume per week in different groups.

The data presented in Figure 3 show the results of serum alanine aminotransferase
(ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities in
the studied groups. The data exhibited a significant increase in serum ALT, AST, and
ALP activities in the positive control compared to the negative control. The activities
of ALT, AST, and ALP were significantly decreased after administration of 1/10 LD50 of
P. roxburghii and N. graveolens extracts. The conversion of normal cells to cancer cells and
cancer cell proliferation lead to abnormal serum enzyme synthesis [59]. ALT, AST, and ALP
are major indicator enzymes for liver diagnosis and management [60]. ALT and AST are
found inside hepatocytes and are released when the liver is damaged. Liver infection is
usually associated with mitochondrial damage, which leads to the immediate release of
ALT and AST into the blood circulation and eventually a dramatic increase in these enzyme
levels [61]. ALT and AST have a vital role in the prognosis of some cancer types [62,63].
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Figure 3. Serum ALT, AST, and ALP activities in different groups.

Serum ALT, AST, and ALP activities were significantly increased in the positive control,
representing the degree of severity of hepatic tissue injury reported by Ahn et al. [64]. The
alteration of hepatocyte plasma membrane permeability in hepatocyte cancer cells leads
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to leakage of cellular enzymes. This ultimately increases the concentrations of these
markers in the serum and decreases them in hepatocytes. The activities of ALT and
AST were significantly lowered after administration of 1/10 LD50 of P. roxburghii and
N. graveolens extracts. Alkaline phosphatase (ALP) is an enzyme that has been proven
to be involved in the transport of metabolites across cellular membranes, proteins and
certain enzyme synthesis, glycogen metabolism, and other secretary activities [65]. ALP
activity measurement is used as a tumor marker in the early detection and diagnosis of
cancer [66]. Lakshmi and Subramanian [67] observed that an elevated level of ALP activity
was detected in cancer-bearing animals because of a disturbance in the secretory activity or
transport of metabolites of cancer cells. The activity of ALP was significantly decreased
after administration of 1/10 LD50 of P. roxburghii and N. graveolens extracts.

The data in Figure 4 show the serum urea and creatinine levels in the different groups.
Serum urea and creatinine levels increased significantly in the positive control group
compared to the negative control group. Meanwhile, the administration of 1/10 LD50 of
P. roxburghii and N. graveolens extracts significantly decreased serum urea and creatinine
levels. Impaired kidney function is one of the most detectable characteristics in cancer
patients. Elevated urea and creatinine levels in the bloodstream of cancer patients, which
eventually occur due to renal cell degeneration, are vital in cancer disease diagnosis and
management [68–70]. The results showed that blood serum creatinine and urea levels were
significantly increased in colon cancer-induced mouse models. The results corresponded
with those of Raj et al. [71], who reported a detectable increase in serum creatinine levels in
breast cancer-induced rats. Increased creatinine levels were also detected in the plasma
of cervical cancer patients, as reported by Koji et al. [72], and were considered the major
risk factor for cervical cancer. In contrast, a significant reduction in serum creatinine and
urea levels was detected after administration of 1/10 LD50 of P. roxburghii and N. grave-
olens extracts. These findings corresponded with the results of Falconer et al. [73]. They
observed a significant increase in the creatinine level in all cancer types compared to the
normal subjects.
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Figure 4. Levels of serum urea and creatinine in different groups.

The data presented in Figures 5–7 illustrate the activity of glutathione reductase, total
antioxidant capacity, and malondialdehyde levels. The data showed a significant decrease
in glutathione reductase activity in the positive control compared to the negative control.
Administration of 1/10 LD50 of P. roxburghii and N. graveolens extracts significantly in-
creases serum GR activity. Moreover, the total antioxidant level decreased significantly
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in the positive control compared to the negative control. Administration of 1/10LD50 of
P. roxburghii and N. graveolens extracts showed a significant increase in serum TAC levels.
In contrast, a significant increase was observed in serum malondialdehyde levels in the
positive control compared to the negative control. Administration of 1/10 LD50 of P. rox-
burghii and N. graveolens extracts significantly decreased serum MDA levels. Antioxidant
activity can be estimated in humans, which reflects the disturbance in redox equilibrium
in body fluids, tissues, or organs under different pathological conditions, including tu-
mor development [74]. Generally, oxidative stress and inflammation are associated with
substrate metabolic disturbances because of an environmental effect that eventually leads
to the development of CRC [75]. The results showed lower TAC levels in the positive
control group than in the negative control group, indicating a weakened antioxidant barrier
resulting from overproduction of free radicals. Administration of 1/10 LD50 of P. roxburghii
and N. graveolens extracts showed a significant increase in the TAC level.
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Figure 7. Level of serum malondialdehyde in different groups.

The process of colorectal cancer initiation and progression involves the interaction of
various physiological factors, including the overproduction of reactive oxygen species (ROS)
and malondialdehyde (MDA) formation. ROS are excessively produced in gastrointestinal
tract chronic infection because of lipid peroxidation that eventually leads to cellular protein
damage and carcinogenesis induction [76,77]. Malondialdehyde (MDA) (final product
of the lipoperoxidation process) is a strong electrophilic compound that interacts with
cell nucleophiles to form MDA oligomers that can be used for cancer detection and as
a prediagnostic index for CRC patients [78]. MDA is a major molecule responsible for
the highest mutagenicity and carcinogenicity [79]. In the present study, the MDA level
was significantly increased in the positive control compared to the negative control group.
Administration of 1/10 LD50 of P. roxburghii and N. graveolens extracts showed a significant
decrease in the MDA level. Glutathione reductase (GR) is the most important cellular
antioxidant enzyme. In its reduced form, GR can capture reactive oxygen and nitrogen
species and then participate in the control of redox homeostasis. GR usually accumulates
in cellular regions of high electron flux, where reactive species are generated. Mayo
et al. [80] reported that ordinary free radicals, such as hydroxyl, alkoxyl, superoxide anion,
and peroxyl radicals, may alter the GR structures, resulting in the inactivation of the
enzyme and eventually lowering its activity. In CRC cases, GR content might be exhausted,
which subjects the patients to redox imbalance and oxidative damage [81]. The level of
GR activity was significantly decreased in the positive control compared to the control
group. Administration of 1/10 LD50 of P. roxburghii and N. graveolens extracts significantly
increased GR activity.

The data presented in Figures 8–10 illustrate the effect of P. roxburghii and N. graveolens
extracts on transforming growth factor-beta (TGF-β) and serum carcinoembryonic antigen
(CEA) and cancer antigen (CA19-9) levels in different groups. The results revealed a
significant elevation in serum TGF-β levels in the positive control compared to the negative
control. Administration of 1/10 LD50 of P. roxburghii and N. graveolens extracts showed
a significant decrease in serum TGF-ß levels. Furthermore, a significant increase was
observed in serum CEA levels in the positive control compared to the negative control.
Administration of one-tenth of the LD50 of P. roxburghii and N. graveolens extracts showed
a significant decrease in serum CEA levels. The data showed a significant increase in the
level of CA19-9 in the positive control compared to the negative control. Administration of
one-tenth of the LD50 of P. roxburghii and N. graveolens extracts significantly lowered serum
CA19-9 levels.
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Figure 8. Level of serum TGF-β in different groups.
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Figure 9. Level of serum CEA in different groups.

According to Jung et al. [82], transforming growth factor-beta (TGF-β) is a signaling
pathway for controlling cell growth, differentiation, multiplication, homeostasis, and
apoptosis. Although TGF-β is responsible for signaling the arrest of epithelial cell growth in
normal tissues, it enhances tumor cell development in tissues with cancer progression [83].
Carcinoembryonic antigen (CEA) is a membrane-bound glycoprotein expressed by cancer
and, to some level, by normal epithelial cells of the gastrointestinal tract. CEA is currently
recognized as a tumor biomarker for the analytical detection and diagnosis of colon cancer
(CC) [84]. An increased blood level of CEA indicates metastasis and cancer prognosis [85].
CEA is implicated in various biological processes of neoplasia, such as cell adhesion,
metastasis, suppression of cellular immune mechanisms, and inhibition of apoptosis [86].
Cancer antigen 19-9 (CA19-9) is used as a tumor marker and plays a vital role in the process
of tumor progression [87]. It has also been detected as a prognostic biomarker for colorectal
cancer [88,89]. Combining three tumor markers, TGF-β, CEA, and CA19-9, provides a more
sensitive method for colorectal cancer detection and prognosis. The results of the current
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study revealed that there was a significant increase in serum TGF-β, CEA, and CA19.9
levels in the positive control compared to the negative control group. Administration of
1/10 LD50 of P. roxburghii and N. graveolens extracts decreased serum TGF-β, CEA, and
CA19-9 levels.
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The results of the expression of the Bcl-2, Bax, Cas3, NF-kB, and PI3k genes in the
different groups are shown in Figure 11. Real-time qRT–PCR was used to evaluate the
expression of several apoptotic genes, including Bcl-2, Bax, cleaved Cas3, NF-κB, and PI3k.
Administration of one-tenth of the LD50 of P. roxburghii and N. graveolens extracts caused a
significant upregulation of the expression of the Bax gene and downregulation of the Bcl-2
gene. The Bax/Bcl-2 ratio was increased upon treatment after administration of one-tenth
of the LD50 of P. roxburghii and N. graveolens, with ratios of 2.01 and 1.91, respectively.
In addition, the Cas-3 gene was upregulated after administration of one-tenth of the LD50
of P. roxburghii and N. graveolens extracts. Meanwhile, administration of one-tenth of the
LD50 of P. roxburghii and N. graveolens extracts activated apoptosis by downregulating the
expression of the NF-kB and PI3K genes.
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Figure 11. Effect of P. roxburghii and N. graveolens extracts on Bcl-2, Bax, Cas3, NF-kB, and PI3k genes
relative to the GAPDH gene in BALB/c mice.
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Previous studies demonstrated that these apoptotic proteins are crucial in tumor
suppression, arrest, and finally, execution of cancer cells [90,91]. Phenolic compounds may
play a vital role in the down- and upregulation of the selected genes under study.

Phytochemical analysis of both P. roxburghii and N. graveolens extracts showed that they
are highly rich in catechin, chlorogenic acid, and gallic acid. Other polyphenol compounds,
such as p-coumaric, syringic, caffeic, and p-hydroxybenzoic acids, were detected in both
extracts. Cinnamic acid, rosmarinic acid, and apigenin-7-glucoside were undetected in the
P. roxburghii extract, which was rich in other compounds, such as ferulic and protocatechuic
acids [20,21,23]. Similarly, Granado-Serrano et al. [92], found that epicatechin induced
NF-κB, PI3K/AKT, and ERK signaling in HepG2 cells. Moradzadeh et al. [93] reported
that epicatechin increased the Bax/Bcl-2 ratio, downregulated PI3K, Akt, and Bcl-2, and
upregulated p53, p21, caspase-3, and caspase-9 in a human breast cancer cell line (T47D).
Gallic acid suppresses cancer cell proliferation and triggers apoptosis in a dual process
through the downregulation of Bcl-2 and upregulation of Bax [94]. Sajid et al. [95], ob-
served that the essential oil of P. roxburghii inhibited the expression of NF-κB-regulated gene
products implicated in cell survival (Bcl-2, Bcl-xL, c-Myc) and MMP-9. Intriguingly, in the
current study, the chlorogenic acid and rutin found in the N. graveolens extract may exhibit
antitumor properties similar to the results obtained by [96,97]. Moreover, N. graveolens has
a good source of apigenin-7-glucoside; apigenin intake blocks the phosphorylation and fur-
ther degradation of nuclear factor of kappa light polypeptide gene stimulator in the B-cell
inhibitor alpha (IκBα) by the inhibitor of NF-κB kinase (IKK) activation, which in turn leads
to the inhibition of NF-κB activation. Apigenin intake downregulated Bcl-2 and Bcl-xL and
suppressed NF-κB activation [98]. Rosmarinic acid intake downregulated the expression
of Bcl-2 and elevated Bax in human colon adenocarcinoma (HT-29) [99]. Li et al. [100]
found that rosmarinic acid downregulated the expression of Bcl-2 and upregulated the
expression of Bax in breast cancer stem-like cancer (BCSCs). The other chemical compounds
were detected in P. roxburghii and N. graveolens extracts, including p-hydroxybenzoic acid,
caffeic, syringic, vanillic, p-coumaric, and kaempferol. Caffeic acid supplementation led
to cell cycle modulation, suppression of colony formation, alterations in the expression of
caspases, and induction of apoptosis [101]. Abaza et al. [102] found that syringic acid has
antimitogenic and chemosensitizing activities against human colorectal cancer, thus halting
the cell cycle and inducing apoptosis. Vanillic acid suppressed angiogenesis and prolif-
eration which led to cell cycle arrest in HCT-116 cells [103]. Moreover, supplementation
with p-coumaric acid induced apoptosis through modulation of the Bax/Bcl-2 ratio and
improvement in detoxification [104].

Histopathological Observations of Tissues

The histopathological examination of muscle fiber sections from the control group
revealed normal muscle fiber (black arrow) and entangling fibrous tissue (red arrow) (HE,
×400) (Figure 12). Positive control sections showed malignant growth formed of sheets of
malignant epithelial cells with large nuclei and an increased the nucleocytoplasmic ratio
(black arrow), showing moderate anaplasia (Figure 13). Sections of mice administered
one-tenth the LD50 of P. roxburghii extract are illustrated in Figure 14 and showed a scattered
sheet of dysplastic epithelial cells with rounded nuclei with an increased nucleocytoplasmic
ratio (black arrow), with many apoptotic cells and necrosis (red arrows).

Sections of mice administered one-tenth the LD50 of N. graveolens extract are illustrated
in Figure 15 and showed a scattered sheet of epithelial cells with rounded nuclei with an
increased nucleocytoplasmic ratio (black arrow), with many degenerated/necrotic and/or
apoptotic cells (red arrows).
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4. Conclusions
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