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Abstract: Heavy metals are nondegradable in the natural environment and harmful to the ecological
system and human beings, causing an increased environmental pollution problem. It is required to
remove heavy metals from wastewater urgently. Up until now, various methods have been involved
in the heavy metal removals, such as chemical precipitation, chemical reduction, electrochemical,
membrane separation, ion exchange, biological, and adsorption methods. Among them, adsorption
by graphene–based materials has attracted much more attentions for the removal of heavy metals from
wastewater systems in recent years, arising due to their large specific surface area, high adsorption
capacity, high removal efficiency, and good recyclability. Therefore, it is quite important to review
the heavy metal removal with the graphene–based material. In this review, we have summarized
the physicochemical property and preparation methods of graphene and their adsorption property
to heavy metals. The influencing parameters for the removal of heavy metals by graphene–based
materials have been discussed. In addition, the modification of graphene–based materials to enhance
their adsorption capability for heavy metal removal is also reviewed. The heavy metal removal by
modified graphene–based materials in the tobacco industry has been especially described in detail.
Finally, the future trend for graphene–based materials in the field of heavy metal wastewater treatment
is proposed. This knowledge will have great impacts on the field and facilitate the researchers to seek
the new functionalization method for graphene–based materials with high adsorption capacity to
heavy metals in the tobacco industry in the future.

Keywords: graphene; functionalization; heavy metal removal; adsorption; tobacco industry

1. Introduction

Generally, heavy metals are metals with a density higher than 4.5 g/cm3, including
chromium (Cr), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and so on [1]. Heavy
metals are difficult to be degraded in the natural environment [2,3]. Nowadays, a large
amount of heavy metal wastewater in mining, metallurgy, machinery manufacturing,
chemical industry, electronics, and other industries is directly discharged into the natural
environment without treatment, causing severe harm to the ecological environment and
human health [4,5]. Heavy metal pollution is becoming a significant global environmental
problem so far [6]. Therefore, it is urgent to remove heavy metals from wastewater [7].
In the past few decades, many methods have been developed for the treatment of heavy
metals, such as chemical precipitation, chemical reduction, electrochemical, membrane
separation, ion exchange, biological, and adsorption methods [8–11]. These methods are
relatively mature and play an important role in the field of water pollution control [12].
Among these methods, adsorption is one of the most effective methods because of simple
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operation and low cost [13,14], which exhibits a great potential application for heavy metal
removal [15].

Normally, the removal efficiency of the adsorption method mainly depends on the
type of adsorbent. Recently, various low–cost adsorbents developed from agricultural
wastes, industrial by–products, or natural polymer materials have been widely used in
the treatment of heavy metal wastewater [16]. However, it is difficult for these common
adsorbents to reduce the concentration of heavy metals in wastewater to ppb level. In
addition, their subsequent recovery and reuse are also difficult. Therefore, the research and
development of new adsorbents are currently a research hotspot in the field of heavy metal
wastewater treatment [17].

Carbon nanomaterials possess at least one dimension less than 100 nm. They have the
advantages of small size, large pore volume, large specific surface area, high adsorption
efficiency, low operation process, and low production cost [18]. These characteristics make
them have broad prospects in the field of heavy metal wastewater treatment [19]. At
present, common adsorbents, such as lignin, molecular sieve, zeolite, activated carbon,
and mesoporous silica, which are widely used in heavy metal wastewater treatment [20],
have difficulty in reducing the concentration of heavy metal in wastewater to ppb level.
Moreover, the long adsorption time and poor selectivity also limit their applications for
heavy metal removal. By contrast, the use of new carbon nanomaterials as adsorbents can
solve these problems very well. The new carbon nanomaterial adsorbents mainly include
carbon nanotubes, graphene, and other nano–adsorbents with carbon as the main element
and sp2 as the main hybrid form [21]. With the unique structure and pore size distribution
of these materials, the new carbon nanomaterial adsorbents have very large specific surface
areas, high electron transfer rates, outstanding physical properties, and good thermal
conductivity [22]. The new carbon nanomaterial adsorbent has outstanding advantages
to adsorb heavy metals, such as strong adsorption capacity, high removal efficiency, fast
equilibrium speed, low price, no secondary pollution, and good recyclability [23].

Graphene is a two–dimensional carbon material [24,25]. Its crystal lattice has a hexag-
onal lattice structure with a single layer of crystalline carbon atoms inside. It can combine
three adjacent carbon atoms through sp2 hybridization, and the remaining valence elec-
tron can form a delocalized large π bond [26]. The discovery of graphene in 2004 by
Geim et al. [27] overturned the classical theory that “thermodynamic expansion does not
allow two–dimensional crystals to exist freely at a limited temperature” and shocked the
entire physics community, which set off a research boom in the field of graphene. As
depicted in Figure 1, graphene is the mother for building graphitic materials of all dimen-
sionalities. For example, it can be wrapped into zero–dimensional (0D) fullerene, rolled
into the one–dimensional (1D) carbon nanotubes, or stacked into three–dimensional (3D)
graphite as well. Currently, graphene is receiving extensive attention in the field of heavy
metal wastewater treatment due to its large specific surface area and huge adsorption
flux [28,29].

Even though there are some reviews on graphene for heavy metal removal, they
mostly focus on the organo–functionalized magnetic graphene oxide nanocomposites [30],
graphene oxide and its composites [31], hybrid graphene materials [32], and graphene–
based materials for heavy metal removal in the electroplating process [33]. Particularly,
Xu et al. [34] reviewed the modification of graphene–based materials and their adsorption
efficacy on the heavy metals and radionuclides from wastewater. They also discussed
the detailed adsorption mechanism, adsorption dynamics, and isotherms. The work by
Kong et al. [35] mostly focused on the improvement of adsorption capacities to heavy
metals for graphene–based materials. They indicated three strategies, such as surface
functionalization regulation, morphology and structure control, and material composite, to
enhance the heavy metal adsorption capacities of graphene–based materials. Unfortunately,
the details on the physicochemical properties of graphene and fabrications of graphene–
based materials are rarely summarized for heavy metal removal [36]. In addition, the
graphene–based materials for heavy metal removal in the tobacco industry have not been
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summarized yet. Therefore, in this review, we discuss in detail the physicochemical
properties and fabrication methods of graphene as well as the modification of graphene
to improve their heavy metal removal ability. We also discuss the effect parameters on
heavy metal removal, especially in regard to its use in heavy metal removal in the tobacco
industry, as well as proposed future perspectives in this field.
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2. Physicochemical Properties and Fabrications of Graphene
2.1. Physicochemical Property

The special chemical structure of graphene determines its unique chemical proper-
ties. The basic building block of graphene is the extremely stable six–membered benzene
ring, which makes the structure of graphene particularly stable, and the general chemical
methods cannot destroy its structure [38]. Furthermore, graphene also contains boundary
groups and plane defects, which determine that graphene can provide adsorption sites for
chemical reactions. Additionally, owing to its own large π conjugated system, graphene
has a relatively negatively charged system and can react with many oxidants. These unique
physicochemical properties enable graphene to undergo chemical reactions through bound-
ary functional groups while well–maintaining the stability of its main framework [37].
Therefore, nowadays, researchers mostly apply graphene oxide (GO) and functionalize
the oxygen–containing functional groups, such as carboxyl groups and hydroxyl groups,
on the surface of GO to prepare novel GO–based materials [39] with higher adsorption
capacities to heavy metals. The chemical structure of GO is disclosed in Figure 2.

The structure characterizations of graphene and GO, including Fourier–transform
infrared spectroscopy (FTIR), Raman spectroscopy, X–ray diffraction (XRD), X–ray photo-
electron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), scanning electron microscope
(SEM), and transmission electron microscopy (TEM), are depicted in Figure 3 [41].
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Figure 3. Characterizations of graphene (G) and GO: (A) FTIR spectra; (B) Raman spectra; (C) XRD
patterns (the black line is GO, the red line is graphene); high–resolution C 1s XPS spectra of
(D) graphene and (E) GO; (F) nitrogen adsorption–desorption curve of GO obtained from BET
test; (G) and (H) SEM images of GO; and (I) TEM image of GO. Reprinted with permission from [41].
Copyright @Springer–Nature.

As depicted in Figure 3A, there is no obvious absorption peak in the FTIR spectrum
of graphene. By contrast, the absorption peaks at 1735, 1617, 1220, and 1047 cm−1 are
visibly observed in the FTIR spectrum of GO, originating from the stretching vibration
of C=O in the carboxyl group, C=C, C–O, and C–O–C, respectively [42]. In the Raman
spectrum of graphene, Figure 3B, the intensity of the G–band (sp2 C=C bond stretching
vibration) is significantly higher than that of the D–band (structural defects), whereas
in the Raman spectrum of GO, the D–band is clearly increased and G–band is declined,
illustrating the oxidation of graphene [43]. In the XRD pattern of graphene, Figure 3C, there
is a characteristic diffraction peak at 2θ = 26.38◦, while that of GO is at 2θ = 10.13◦. This
arises from the increase of interlayer distance by the introduction of oxygen–containing
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functional groups into graphene sheets because of oxidation [44]. Figure 3D,E shows the
high–resolution C1s XPS spectra of graphene and GO, respectively. It is found that only
two peaks at 284.8 and 285.3 eV, attributed to C=C and C–C, respectively, are deconvoluted
in the high–resolution C 1s XPS spectrum of graphene, while four peaks at 284.6, 286.4,
287.5, and 289.1 eV, corresponding to C=C, C–O, C=O, and O–C=O, respectively, are
noticed in that of GO [45]. Figure 3F provides the nitrogen adsorption–desorption curve
of GO obtained from the BET test. This curve exhibits a typical IV adsorption–desorption
profile, implying mesoporous characteristics of GO. Figure 3G,H is the SEM images of
GO at different magnifications. Many diverse micropores are seen in the SEM image of
GO because of the freeze–drying process, which may be beneficial for the adsorption of
heavy metals. The TEM image of GO is drawn in Figure 3I. It is noted that there are
many folds on the graphene sheets of GO, which are from the covalent bond or physical
interaction between the oxygen–containing functional groups formed during the oxidation
process [41].

2.2. Fabrications of Graphene

Generally, preparation methods for graphene include the mechanical exfoliation
method, chemical redox method, chemical vapor deposition method, epitaxial growth
method, electrochemical method, and organic synthesis method, etc. [46].

2.2.1. Mechanical Exfoliation Method

The mechanical exfoliation method serves as an effective method manufacture
graphene [47]. The basic principle of mechanical exfoliation is to exfoliate graphene
from graphite sheets through physical force and other external forces [48]. It contains
many exfoliation methods, such as micromechanical exfoliation, ball milling, fluid dy-
namics, and ultrasonic exfoliation [49]. The most classic mechanical exfoliation method is
the directional isocationic pyrolysis of graphite material by Novoselov et al. [27], then the
products were transferred with photoresist to the substrate also with photoresist, and the
substrate was repeatedly peeled off with tape. After that, the substrate was immersed in
an acetone solution, and then the graphene was taken out by using a single crystal silicon
wafer, and the acetone was ultrasonicated to obtain the first graphene. Ball milling is
also a more commonly used mechanical exfoliation method. Deng et al. [50] used wet
ball milling to disperse graphite into N–methylpyrrolidone (NMP) solution system with
NMP as the dispersion medium and successfully separated graphene through the interac-
tion with the surface of graphene. The experimental results showed that the graphene
sheets were decreased rapidly with the increase of ball milling time. Figure 4 depicts the
illustration for graphene exfoliation during the ball milling process.
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In this process, two forces, which were named shear force and compression force, were
generated. The graphite could be separated by shear force from their outer surfaces and
made smaller by the compression force. Finally, the graphene exfoliation was achieved
under the action of these two forces. The mechanical exfoliation method is simple and
effective, and the prepared graphene is of high quality, which could be widely used in the
study of graphene. However, this method consumes a lot of time and energy, is difficult to
be controlled accurately, and is not suitable for large–scale production of graphene.

2.2.2. Chemical Redox Method

Currently, the chemical redox method is the most widely used preparation method of
graphene [51]. The mechanism of the chemical redox method is to insert small molecules
of strong acid into the middle of the graphite layer by treating the graphite powder with
strong acid and then adding a strong oxidant into the reaction system for oxidation [52].
This thereby destroys the complete crystal structure of the graphite and introduces oxygen–
containing functional groups on the surface of graphene to gain the GO with good dis-
persibility, and finally reduces GO by different reduction methods according to require-
ments for obtaining the graphene with desired size and thickness [53].

Oxidation is a key step in the preparation of graphene by the chemical redox method.
The preparation methods of GO mainly include the Brodie, Staudenmaier, and Hummer’s
methods [54,55]. Researchers are constantly researching and improving the preparation
method of GO, especially Hummer’s method. For example, Marcano et al. [56] reported
the improved Hummer’s method for the preparation of graphene. They increased the
dosage of concentrated sulfuric acid and potassium permanganate without adding sodium
nitrate and oxidized graphite in a mixture of sulfuric and phosphoric acid. The detailed
procedure is listed in Figure 5. The advantage of this improved Hummer’s method was
that it would not release toxic gases, such as NO2, N2O4, and had relatively higher yields,
but the addition of phosphoric acid would increase the production cost and cause a series
of environmental problems.
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2.2.3. Chemical Vapor Deposition Method

Chemical vapor deposition (CVD) is a controllable method for preparing graphene [57].
The principle is that the reaction occurs under high temperature and gaseous conditions
by using thin metal films and single metal crystals or polycrystals as a plane substrate,
then carbon atoms are deposited on the surface of substrate through high–temperature
annealing, and finally, the plane substrate is removed by corrosion and other methods
to obtain graphene [58]. Nam et al. [59] utilized the different platinum (Pt) substrates,
including sputter–deposited films, e–beam deposited films, and polycrystalline Pt foil, to
serve as the substrate for the low–pressure CVD growth of graphene. The results illustrated
that the Pt thin films deposited by high–temperature sputtering were the best Pt substrate
for the growth of homogeneous, single–layer graphene with a thickness down to 25 nm.
Dato et al. [60] proposed a novel method to synthesize graphene sheets in the gas phase in
a substrate–free pressure microwave plasma reactor. Graphene sheets were synthesized by
passing liquid ethanol droplets into an argon plasma. The results demonstrated that the
graphene could be fabricated without three–dimensional materials or substrates, suggesting
a possible route to large–scale synthesis of graphene. CVD is suitable for the large–scale
preparation of graphene and is the most widely used method in the industry [61]. This
method has the characteristics of easy operation and high controllability and is currently
the main preparation method in the field of graphene growth.

2.2.4. Epitaxial Growth Method

Epitaxial growth is a method for growing new crystal layers based on crystal layers
as the substrate [62]. The volatility and coagulation of the substrate play a decisive role
in the growth of graphene on the substrate. When the matrix leaks and becomes more
volatile than condensable, the graphene could be generated from carbon atoms on the
matrix [63]. Berger et al. [64] found that the silicon atoms on the surface of silicon carbide
were vaporized when heated under high vacuum or normal pressure over 1000 ◦C, and
the remaining carbon atoms would re–aggregate during the cooling process and form the
graphene on the surface of the inner layer of silicon carbide. This is the main mechanism
for the epitaxial growth method. According to the types of selected substrates, the epitaxial
growth method can be divided into the silicon carbide epitaxial growth method and the
metal surface epitaxial growth method, respectively. Both methods have their advantages
and disadvantages. The silicon carbide epitaxial growth method can produce high–quality
single–layer or few–layer graphene, but the energy consumption required is too high,
which is not suitable for large–scale production, and the subsequent process of transferring
graphene is complicated. On the contrary, the metal surface epitaxial growth method can
achieve the purpose of large–scale preparation of graphene by adjusting the parameters.
However, the quality of graphene still needs to be improved.

2.2.5. Electrochemical Method

The electrochemical method is a new method for preparing graphene developed in
recent years [65]. As demonstrated in Figure 6A, the graphite could act as the working
electrode to produce various graphene and graphene–based materials in the presence of
electrolytes [66]. Its principle is to drive the charged anisotropic ions through electrolysis to
expand the graphite electrode inserted into the mixture, thereby exfoliating graphene. As
illustrated in the electrochemical exfoliation of Figure 6B, when the power supply is applied
to the graphite electrode, the positively charged ions (e.g., Li+) or negatively charged
ions (e.g., SO4

2−) would be attracted to the graphite electrode in the cathodic or anodic
exfoliation, respectively [67]. The ions, electrolyte molecules, or co–intercalating species
in electrolytes would be firstly intercalated into the graphene layers of graphite to yield
the graphene and graphene–based materials. The main advantages of this method are that
the voltage and current can be precisely adjusted, the preparation process is reproducible,
the reaction is easy to be controlled, and the cost is low. Nevertheless, the morphology
and structures of graphene fabricated by this method are prone to the formation of defects.
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Therefore, for this method, there are still many technical barriers to be broken through.
Tang et al. [68] prepared a few–layers of water–dispersible graphene with ultrafiltration
of up to 99%, a thickness of less than six atomic layers, and a lateral size of 1~50 µm by
rationally designing the electrolyte (NaOH + p–phthalic acid) and selecting highly oriented
pyrolytic graphite (HOPG) as anode material. Meanwhile, the as–prepared graphene
exhibited a high dispersibility (2.5 mg mL−1) and excellent stability (over six months).
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2.2.6. Organic Synthesis Method

The organic synthesis method is a powerful alternative in fabricating graphene–type
structures [69], which uses the traditional organic synthesis method by starting from small
organic molecules through a gradual reaction to synthesize graphene. Organic synthesis is
a very controllable synthesis method. In this method, graphene with different sizes and
thicknesses can be produced by designing synthesis routes. Dössel et al. [70] synthesized
graphene nanoribbons with perfect structure by designing a synthetic route in the organic
synthesis method. Unfortunately, there are still problems, such as many reaction steps, a
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long reaction time, and more materials required when graphene is synthesized on a large
scale by this method.

3. Graphene–Based Materials for Heavy Metal Removal
3.1. Influencing Factors on Heavy Metal Removal

Some influencing factors on heavy metal removal, including solution pH, adsorbent
dose, heavy metal concentration, treatment time, and temperature, are listed below.

3.1.1. Solution pH

Solution pH is an important parameter to affect the adsorption of heavy metals since
the heavy metals exhibit pH–dependent chemistry. Taking Cr(VI) as an example, there are
several species of Cr(VI) in an aqueous solution with different pH values. In general, as
a strong acid, in the aqueous solution, H2CrO4 could be ionized to the form of HCrO4

−

and CrO4
2−. In the pH < 2 solutions, H2CrO4 and HCrO4

− are present; in the pH range
of 2~4, HCrO4

− is dominating form; when the solution’s pH is higher than 4, CrO4
2−

appears, and its content rises with the increase of the solution’s pH; when the pH is higher
than 9, only CrO4

2− exists in the solution. Thus, Cr(VI) removal performance by the
adsorbents is highly dependent on the existing form of Cr(VI), especially for the adsorbent
with surface functional groups. For instance, the amino group functionalized adsorbents
favour chelating with HCrO4

− rather than H2CrO4 and CrO4
2−. As a result, the amino

group functionalized adsorbents could not provide good Cr(VI) removal performance in a
strong acidic and alkaline solution [71].

3.1.2. Adsorbent Dose

In the adsorption process, the adsorbent dose could affect the active sites of adsorbents
to the adsorption of heavy metals; thus, the heavy metal removal performance normally
increases with coinciding increases in the adsorbent doses [72].

3.1.3. Heavy Metal Concentrations

The heavy metal concentrations have an obvious influence on heavy metal removal.
This is because as the heavy metal concentrations increase, the active sites on adsorbents
may gradually become saturated by the heavy metals, wherein the adsorbents cannot hold
on to the excess heavy metals, leading to the decreased heavy metal removal performance
or adsorption equilibrium [73].

3.1.4. Treatment Time and Kinetics

Treatment time is a key factor for heavy metal removal by adsorbents since it is asso-
ciated with the adsorption kinetics, which is very significant in designing the adsorption
reactors in the industry [74]. The kinetics could determine the heavy metal uptake rate
for controlling the residence time of adsorbate uptake at the solid–liquid interface. Gen-
erally, there are two models to describe the adsorption kinetics: pseudo–first order and
pseudo–second order, as listed in Equations (1) and (2), respectively [75].

ln(Qe −Qt) = ln Qe − k1 × t (1)(
t

Qt

)
=

1
k2Q2

e
+

t
Qe

(2)

where k1 is the adsorption rate constant of the pseudo–first–order model (min−1), k2 is the
adsorption rate constant of the pseudo–second–order model (g mg−1 min−1), Qe stands
for the adsorption capacity at equilibrium time (mg g−1), and Qt is the amount of metal
adsorbed at time t (mg g−1).
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3.1.5. Temperature and Thermodynamics

The temperature could affect the adsorption process of heavy metals. As the ad-
sorption process is exothermic, the subsequent increasing temperature is not beneficial
for adsorption. Conversely, the rising temperature is favorable to the adsorption in the
endothermic adsorption process. The temperature effect on the adsorption is related to the
adsorption isotherm [76]. The adsorption isotherm delineates the adsorption equilibrium of
adsorbate at the surface of an adsorbent. There are two commonly used models, including
Langmuir and Freundlich isotherm models, to explain the solid–liquid adsorption process
for thermodynamics. They can be expressed as Equations (3) and (4), respectively [77].

qe =
abCe

1 + bCe
(3)

qe = kfC
η
e (4)

where Ce is the equilibrium concentration (mg L−1) of heavy metal, qe is the adsorbed
heavy metal amount at equilibrium (mg g−1), a (mg g−1) and b (L mg−1) are Langmuir
isotherm parameters, kf is the Freundlich equilibrium constant, indicating the extent of
adsorption, and η is the power term of the Freundlich isotherm and the heterogeneity factor,
illustrating the intensity of adsorption. The Langmuir model means the adsorption occurs
at the monomolecular layer, whereas the Freundlich model focuses on the adsorption on
an energetically heterogeneous surface.

3.2. Heavy Metal Removal Performance by Graphene–Based Materials

Graphene and GO have attracted much more attention in the field of heavy metal
removal because of their large specific surface area. GO especially has various active
oxygen–containing functional groups on its surface, which can provide many effective
active sites for the adsorption of heavy metals. For instance, Rout et al. [78] used hy-
drazine monohydrate to reduce GO for producing the reduced GO (RGO) with a mean
pore diameter of 3.08 nm and sharp peaks in the pore size distribution between 3.08 and
23.88 nm. They found that the maximum adsorption capacity of phenol by RGO achieved
602.41 mg g−1 with the RGO amount of 0.4 g L−1, solution pH of 8.0, and adsorption
time of 75 min at 30 ◦C. Wang et al. [79] compared the adsorption and co–adsorption of
naphthalene, 1–naphthol, and Cd(II) on GO, chemically reduced graphene (CRG), and
annealing reduced graphene (ARG) to determine the unique adsorption properties of
graphene nanosheets. The results revealed that the order of adsorption capacity to or-
ganic pollutants was CRG > ARG > GO, and the adsorption of 1–naphthol by these three
adsorbents was stronger than that of naphthalene. GO, with more functional groups on
CRG and ARG, exhibited a strong affinity to Cd(II). The adsorption of Cd(II) onto GO and
CRG facilitated the co–adsorption of naphthalene and 1–naphthol via a surface bridging
mechanism. Notably, even though ARG did not display obvious Cd(II) adsorption, the
suppressed co–adsorption of naphthalene on ARG might be from the sieving effect of
hydrated Cd(II) binding to the micropore edges on ARG. This study not only reflected the
good adsorption properties of graphene materials but also supported the conclusion that
graphene materials could simultaneously adsorb heavy metals and organic pollutants
in wastewater. Xue et al. [80] explored GO nanosheets for the adsorption of Cd(II) in
acidic aqueous solutions. The results illustrated that the removal efficiency of Cd(II) was
increased from 6.29 to 96.72% by increasing the adsorbent dosage from 0.02 to 2.00 g L−1.
The adsorption capacity of Cd(II) was greatly enhanced when the solution pH was in-
creased from 2.02 to 4.01. Moreover, the reaction reached adsorption equilibrium within
120 min, and the maximum Cd(II) adsorption capacity was about 44.64 mg g−1 at the
adsorbent dosage of 0.50 g L−1. The experimental results of this work well demonstrated
that graphene materials had good adsorption properties to Cd(II) in suitable conditions.
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4. Modified Graphene Materials for Heavy Metal Removal in the Tobacco Industry
4.1. Modification of Graphene Materials

Even though graphene and GO could be widely applied in heavy metal removal, as
aforementioned above, the abundant oxygen–containing functional groups on the surface
of GO make it well–dispersed in the water. As a result, they are difficult to be separated
from wastewater after treatment. Therefore, it is required to modify the graphene and
GO materials to solve this problem. Commonly, there are two types of modification
methods for graphene and GO materials: covalent bond modification and non–covalent
bond modification [81].

The covalent bond modification mainly utilizes the active groups on its surface to
chemically react with other molecules to achieve the modification of graphene. According
to the different reaction molecules, covalent bond modification can be divided into small
organic molecule modification and polymer modification. The small organic molecule
modification occurs through the reaction of a small organic molecule with functional
groups on the surface of GO. It mainly contains the ring–opening reaction of the hydroxyl
and epoxy groups, the diazotization reaction of a conjugated plane, the isocyanate and
cycloaddition reactions, etc. Stankovich et al. [82] treated GO with organic isocyanates. The
degree of GO modification could be attained by controlling the reactivity of isocyanates or
the reaction time. The polymer modification introduces the long polymer chains to change
the structural properties of GO.

The non–covalent bond modification is generally accomplished by physical adsorption
or polymer wrapping on the surface of GO. This method could maintain the structural
properties of GO without destroying its intrinsic structure and improving its solubility. The
non–covalent bond modification of GO mostly includes a π–π bond and hydrogen bonding
functionalization. Both graphene and GO have highly conjugated systems, which makes it
easy to interact with molecules with a π conjugated structure through π–π interaction to
achieve modification. Yang et al. [83] manufactured a novel GO–doxorubicin hydrochloride
nanohybrid (GO–DXR) by the hydrogen bonding and strong π–π stacking interaction
between DXR and GO. Therefore, the loading and release behaviours of DXR on GO
disclosed a strong pH–dependent property.

The preparation of magnetic GO nanocomposites is also a good way to solve the
separation problem after treatment. By introducing the magnetic nanoparticles onto GO,
the adsorbents could be efficiently separated from the solution by a permeant magnet
after adsorption of heavy metals. This allows the magnetic GO nanocomposites to be
applied in the field of wastewater treatment potentially. The commonly used methods for
the fabrication of magnetic GO nanocomposites include the self–assembly method, sol–
gel method, chemical co–precipitation method, chemical grafting method, hydrothermal
method, high–temperature annealing process, etc.

For example, Adel et al. [84] manufactured the magnetic separable MgFe2O4/crumbled re-
duced GO nanoparticles by self–assembly method via electrostatic interactions. Gabris et al. [85]
synthesized the silica–cyanopropyl functionalized magnetic GO (MGO/SiO2–CN) hybrid nano-
material derived by the sol–gel method. Cai et al. [86] prepared magnetic carbon microfibers
supporting iron/nickel bisalloy (FeNi@CMFs) in a single step by using the electrospinning
method combined with the high–temperature annealing method at an optimal condition of
5 wt% mass fractions of metal salts (ferric nitrate and nickel nitrate) annealed at 800 ◦C for
60 min in 5% (v/v) hydrogen/argon atmosphere.

Wang et al. [41] treated GO with polyacrylic acid (PAA) in order to bring the carboxylic
groups to the surface of GO. After that, the GO functionalized with carboxylic groups
reacted with the magnetite (Fe3O4) nanoparticles modified by amine groups through
chemical grafting to produce the magnetic GO nanocomposites, as shown in Figure 7.

The modification of graphene and GO could solve the dispersion problem of GO in
water and assist the GO to be separated from water more easily, which could make GO be
better exploited in heavy metal removal and wastewater treatment.
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4.2. Modified Graphene Materials for Heavy Metal Removal

In recent years, modified graphene materials have received extensive attention in the
field of heavy metal removal. The treatment of heavy metals in wastewater by modified
graphene materials mainly contributes to physical adsorption and redox reaction. Physical
adsorption directly adsorbs heavy metals by using their physical properties of a large
specific surface area. Redox reaction is to reduce the valence state of heavy metals through
redox reaction after adsorption, which is mostly applied to treat heavy metals with high
chemical valence and high toxicity in wastewater.

Fan et al. [87] used magnetic chitosan (MC) to modify GO for manufacturing a mag-
netic chitosan/graphene oxide (MCGO) material by a facile and fast process to remove
Pb(II) from an aqueous solution. The results illustrated that the MC was assembled on the
surface of GO layer in a high–density form and could obviously increase the specific surface
area of GO. Furthermore, the adsorption of Pb(II) by MCGO was observed to be strongly so-
lution pH–dependent and mainly ascribed to the abundant functional groups on the surface
of MCGO. The maximum adsorption capacity of Pb(II) was estimated to be 76.94 mg g−1,
as gained from the Langmuir model. This newly developed MCGO was a good adsorbent
material for Pb(II) removal. Kumar et al. [88] produced a novel chitosan functionalized
GO material for the efficient adsorption of As(V)/As(III). The results revealed that the
maximum adsorption capacity of As(V) and As(III) by chitosan functionalized GO material
was 64.27 mg g−1 and 71.9 mg g−1, respectively. Abaszadeh et al. [89] adopted Fe3O4
nanoparticles and 5–amino–1,10–phenanthroline (APhen) to functionalize GO in the pres-
ence of N,N′–dicyclohexylcarbodiimide (DCC) to produce magnetic nanocomposites of
MGO@APhen, which exhibited a high Pb(II) removal efficiency up to 97.2% and excellent
reusability during six cycles after being recycled by a supermagnet.

Chi et al. [90] prepared a novel magnetic surface–ion–imprinted polymer (IIP) by
using As(III) as a template and GO/Fe3O4 as support, Figure 8A, which displayed a high
selectivity of As(III) in the presence of other competing components, such as As(III)/Mg(II),
As(III)/Ca(II), As(III)/HCO3

−, As(III)/PO4
3−, As(III)/SO4

2−, and As(III)/HA, have ex-
cellent reusability with an adsorption efficiency of 75% after five cycles of regenera-
tion and reuse (Figure 8B). Xing et al. [91] modified magnetic GO/Fe3O4 (MGO) with
ethylenediaminetetraacetic acid (EDTA) groups by the silanization reaction between N–
(trimethoxysilylpropyl) ethylenediaminetriacetic acid and –OH on the surface of MGO
(MGO–EDTA), as shown in Figure 9, which performed a high Pb(II) adsorption capacity of
up to 211.3 mg g−1 coming from the chelating ability of EDTA.
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In summary, the modified GO materials express excellent heavy metal adsorption
properties relative to GO. Researchers have devoted themselves to the various modified
GO materials for heavy metal wastewater treatment. However, the selectivity of heavy
metals in the treatment by modified GO materials is rarely discussed. Thus, an extensive
investigation on enhancing the selectivity of heavy metals for modified GO materials is
still required.

4.3. Modified Graphene Materials for Heavy Metal Removal in the Tobacco Industry

There are more than 8000 kinds of chemical substances that can be detected in the
smoke produced by cigarettes during the combustion process [92]. In 1990, Hoffman from
the United States proposed 43 kinds of substances, such as As, Cd, Cr, Pb, Ni, Hg, and
others, that were most harmful to the human body and were called the Hoffmann list.
Among them, these heavy metals could be accumulated in the organs of the human body,
causing serious harm to human health [93]. The heavy metals in cigarette smoke mainly
come from two aspects. On the one hand, soil and air pollution, improper use of pesticides
and fertilizers, irrigation water pollution, and other factors during the planting process of
tobacco plants exceed the standard of heavy metals in tobacco leaves. On the other hand,
the heavy metals may be from the auxiliary materials used in cigarettes, such as cigarette
paper, filter rods, additives, etc. When the cigarette is burned, the heavy metals are released
and mixed into the smoke, further entering the human body. Although New Tobacco
Products such as Electronic Nicotine Delivery Systems (ENDS), i.e., e–cigarettes, are now
emerging, those products still have risks due to the limitations of product technology, form,
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and appearance. The smoke also contains a large number of heavy metal particles, which
will also result in harm to the human body [94]. Lerner et al. [95] found that copper was
6.1 times higher than previously reported for conventional cigarette smoke in e–cigarettes
per puff. They believed that the detection and removal of heavy metals from e–cigarettes
and their components should raise concerns about the safety of their usage and the disposal
of e–cigarette waste.

Graphene and its composite materials as adsorbents or additives have important
application prospects in the fields of smoke composition detection, removal of heavy met-
als in cigarette materials, and New Tobacco Products. For example, Palisoc et al. [96]
used graphene to fabricate an effective gold nanoparticle/graphene/Nafion–modified
glassy carbon electrode, which had more merits for the detection of Pb(II), Cd(II) and
Cu(II) in cigarettes. Guo et al. [97] established an electrochemical sensor consisting of
rGO/MoS2/chitosan (CS) nanocomposite–modified glassy carbon electrode, which exhib-
ited wide detection sensitivity for Pb(II) in tobacco leaves in the range of 0.005–0.05–2.0 µM,
with excellent performance in reproducibility, stability and anti–interference ability. The
limit of detection (LOD) was 0.0016 µM. It provided a new approach to the determination
of Pb(II) in tobacco leaves with low content.

Taking the removal of heavy metals from smoke as an example, Yu et al. [98] coated
the lyophilized oxidized multiwalled carbon nanotubes/GO composite on the surface of
cellulose acetate in the cigarette filter. When the weight ratio of the oxidized multiwalled
carbon nanotubes: GO: filter was 1:1:62, the modified filter demonstrated an excellent
adsorption performance with the removal efficiency of 83 and 78% to Cd(II) and Cr(VI),
respectively, Figure 10.
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At present, the research on graphene and its composite materials in the field of the
tobacco industry for the detection and removal of heavy metals has been relatively extensive.
It is believed that graphene and its composite materials will also have huge application
space and development prospects in the tobacco industry in the future.

In order to better understand the removal efficiency of GO and GO–based materials
to heavy metals, the synthesis methods and removal efficiency, as well as adsorption
conditions, are laid out in Table 1.
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Table 1. Heavy metal adsorption capacity/removal efficiency, as reported in the literature.

Materials Synthesis Method Heavy Metal Treatment Conditions
Maximum

Adsorption
Capacity (mg g−1)

Ref.

GO Modified
Hummer’s method Cd(II)

Room temperature, pH = 5,
10 mg L−1 Cd(II), 24 h

equilibration time
35.7 [79]

GO Hummer’s method Cd(II)

T = 303.15 K, pH = 4.00,
0.50 g L−1 adsorbents,

0.02~5 g L−1 Cd(II), 12 h
equilibration time

44.64 [80]

Magnetic
chitosan/GO

Modified
Hummer’s method Pb(II)

T = 30 ± 0.2 ◦C, pH = 5,
0.8 g L−1 adsorbents,

0.02~14 mg L−1 Cd(II), 12 h
equilibration time

76.94 [87]

Chitosan–
functionalized

GO

Improved
Hummer’s method As(V)/As(III)

T = 30 ◦C, pH = 5.5, 8 g L−1

adsorbents, 30~500 ppm
As(V)/As(III)

71.9/64.2,
respectively [88]

MGO@APhen Pb(II)
Room temperature,
pH = 6.5, 0.5 g L−1

adsorbents, 10 ppm Pb(II)

The removal
efficiency of 97.2% [89]

MGO
ion–imprinted

polymer

Modified
Hummer’s method As(III)

T = 25 ◦C, pH = 5, 5 g L−1

adsorbents, 0.5~20 mg L−1

As(III), 24 h
equilibration time

49.42 [90]

MGO–EDTA
Hummer’s and

Offeman’s
methods

Pb(II)

T = 20 ◦C, pH = 1~10,
0.5 g L−1 adsorbents,

10~150 mg L−1 As(III), 3 h
equilibration time

211.3 [91]

5. Conclusions, Challenges, and Perspectives

With the rapid development of society and industry, heavy metal wastewater pol-
lution has become more and more serious, resulting in a tighter supply and demand for
water resources. Consequently, it is urgent to solve the heavy metal wastewater pollution
problem. The graphene–based materials with unique physicochemical properties have
received intensive attention in the field of heavy metal wastewater treatment, especially,
in the tobacco industry. Recently, the application of graphene–based materials for heavy
metal treatment has made a great progress, but there is still a long way to go to face the
heavy metal wastewater treatment problem. In view of the current research status of
graphene–based materials in the field of heavy metal wastewater treatment, the main
work in future research is to design and synthesize novel functionalized graphene–based
composite materials with high heavy metal adsorption capacities. It will be basically devel-
oped in three directions. First, the more modified graphene–based materials with different
functions should be manufactured to attain relatively stronger adsorption properties. Sec-
ondly, the research on the effect of competing for heavy metal ions in wastewater on the
adsorption of graphene–based materials should be deepened. At present, researchers have
mostly studied the effect of functionalized graphene materials on a certain heavy metal.
However, there are often multiple heavy metal ions in real wastewater. In this situation,
the functionalized graphene materials for treating a single heavy metal are difficult to
be applied in a real wastewater system. It is more practical to develop functionalized
graphene–based materials to remove the multi–component heavy metal ions. Thirdly, the
cost for the current modification method of graphene–based materials is relatively high,
which severely limits the applications of graphene–based materials in practical application.
To seek a new method for the preparation of graphene–based materials at a low cost is the
future pursuit for heavy metal treatment in the tobacco industry on a large scale.
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Abbreviations
Cr Chromium
Cd cadmium
As arsenic
Hg mercury
Pb lead
Pt platinum
GO graphene oxide
CVD chemical vapor deposition
HOPG highly oriented pyrolytic graphite
RGO reduced GO
CRG chemically reduced graphene
ARG annealing reduced graphene
GO–DXR GO–doxorubicin hydrochloride nanohybrid
MCGO magnetic chitosan/graphene oxide
APhen 5–amino–1,10–phenanthroline
DCC N,N′–dicyclohexylcarbodiimide
MGO magnetic graphene oxide
EDTA ethylenediaminetetraacetic acid
ENDS Electronic Nicotine Delivery Systems
LOD limit of detection
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