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Abstract: Copper ions bind to biomolecules (e.g., peptides and proteins) playing an essential role
in many biological and physiological pathways in the human body. The resulting complexes may
contribute to the initiation of neurodegenerative diseases, cancer, and bacterial and viral diseases,
or act as therapeutics. Some compounds can chemically damage biological macromolecules and
initiate the development of pathogenic states. Conversely, a number of these compounds may have
antibacterial, antiviral, and even anticancer properties. One of the most significant current discussions
in Cu biochemistry relates to the mechanisms of the positive and negative actions of Cu ions based on
the generation of reactive oxygen species, including radicals that can interact with DNA molecules.
This review aims to analyze various peptide–copper complexes and the mechanism of their action.
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1. Introduction

Metal ions play a significant role in many physiological processes in the human body.
Biologically active metal ions are considered as trace metals; however, their amounts are
higher than those suggested in the literature. Copper (Cu), in particular, participates in a
wide variety of molecular interactions and also in many catalytic reactions [1]. Disruption
of Cu homeostasis is a pathological feature and a potential cause or contributor too many
disease states [2]. Then again, copper ions coordinated with the appropriate ligands may
show a therapeutic effect [3]. The mechanism of action of copper compounds seems to
be still not completely explained [4,5]. However, there is a consensus among researchers
that the labile Cu fractions exert their toxicity by generating reactive oxygen species (ROS)
via the Haber–Weiss reaction, which is related to the presence of the Cu(II)/Cu(I) redox
couple [3,6,7]. Therefore, the Cu(II)/Cu(I) interaction with DNA and oxidative stress
induction due to reactive oxygen species (ROS) production are the two most considered
modes of copper compounds’ actions [5,8].

ROS are chemical species derived from the partial reduction of O2 that can be ei-
ther free radicals (superoxide (O2

•–), hydroxyl (•OH), and hydroperoxyl (HOO•) radicals)
having an unpaired electron, or non-radical species with a high oxidation potential, such
as hydrogen peroxide (H2O2) and singlet oxygen (1O2) [9–15]. Reactive oxygen species
(ROS) are involved in many biological and medical processes, ranging from neurodegen-
erative disorders and cancer to bacterial and viral diseases, and sometimes are of major
commercial interest. They are important regulators of and secondary messengers in several
cell-signaling pathways, including the reactive oxygen species-mediated death of different
cells [16–21].

Due to their extremely reactive character, ROS react unselectively with the surrounding
molecules [12–34].

Interestingly, reactive oxygen species can have both negative (dark side) and positive
(bright side) effects on the human body. On the one hand, they can damage or destroy
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healthy cells leading to the initiation of many pathogenic processes; on the other hand, they
play a crucial role as agents causing pathogen and cancer cell death [35].

Maintaining the balance between the overproduction of ROS and their elimination
has a huge impact on the proper functioning of cells and redox processes [36]. However, if
the balance is disturbed, e.g., in the case of inflammation, hyperoxia, or when the antioxi-
dant defense fails, the excess of ROS contributes to the initiation of various pathological
conditions. The most common of these include neurodegenerative diseases, cancer, and
respiratory system diseases [37,38]. Various mechanisms of ROS action, leading to healthy
cell destruction have been proposed. ROS can directly interact with lipids, nucleic acids,
and proteins and cause their oxidation. During lipid peroxidation, malondialdehyde
(MDA) and 4-hydroxynonenal (4-HNE) are formed [39,40]. Additionally, the interaction of
MDA with DNA and/or proteins can lead to mutagenesis [37,41]. In turn, the contact of
ROS with nucleic acid leads to DNA degradation by single and/or double DNA strand
breakage, damage to deoxyribose, and modification of DNA bases. This action results in
dysfunctional or maladaptive apoptosis and/or necrosis of healthy cells [37,42,43].

The above mentioned typical biochemical changes in the disease sites were inspiration
to exploit unbalanced ROS levels for new drug development [6,7]. In general, low or
moderate levels of ROS induce the non-specific damage of proteins, lipids and DNA and
destroy bacteria, viruses, cancer, and fungus cells [44]. Sometimes, photosensitizes can be
used simultaneously for synergistic therapeutic efficacy, which are one of the representative
exogenous ROS sources and have the ability to excite oxygen to its singlet state by using
exogenous light energy [45,46]. Other beneficial effects of ROS involve their physiological
roles in the functioning of a number of cellular signaling systems [47]. Their production by
non-phagocytic NADPH oxidase isoforms plays a key role in the regulation of intracellular
signaling cascades in various types of non-phagocytic cells including fibroblasts, endothelial
cells, vascular smooth muscle cells, cardiac myocytes, and thyroid tissue [48,49].

This review is related to medicine, where ROS produced by copper complexes can
have both deleterious and beneficial effects.

2. Dark Side of Copper–Peptide Complexes
2.1. Neurodegenerative Disorders
2.1.1. Tau (T) Protein

Tau protein is found in the brain and consists of 441 amino acid residues (Figure 1).
Among them, there are 12 histidyl residues with high affinity to metal ions. The main
function of the T protein is the stabilization of neuronal microtubules, as well as the
enhancement of axon transport [50,51]. This shows how important the role that the Tau
protein plays is in transmitting messages inside the brain. Research suggests that the T
protein may be involved in the development of neurodegenerative disorders, especially
Alzheimer’s disease (AD). Various metal ions have been shown to contribute to protein
hyperphosphorylation. In the case of the Tau protein, this process results in the formation
of neurofibrillary tangles and thus the deposition of the Tau protein in the brain. The
concentration of transition metal ions, their oxidation state, and the redox reactions they
catalyze have a decisive influence on the degree of T protein aggregation [52,53].
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Moreover, it has been confirmed that oxidative stress is strongly associated with
the pathology of the T protein as it can generate reactive oxygen species (ROS) in the
mitochondria. Studies have shown that Tau phosphorylation in mice causes mitochon-
drial dysfunction leading to H2O2 formation, lipid peroxidation, and ultimately loss of
neurons [54,55]. The aggregation and misfolding of the T protein cause tauopathies (under-
stood to include all neurodegenerative disorders) [56,57]. The most common tauopathy is
Alzheimer’s disease, which mainly affects the elderly.

Therefore, many scientists have studied the effect of metal ion chelation (mainly
copper(II) ions) on Tau protein fragments and the impact of the resulting complexes
on the initiation of neurodegenerative diseases. The ability of two selected fragments
(275VQIINKKLDLSNVQSKCGSKDNIKHVPGGGS305 (L1; Figure S1A) and 306VQIVYKPV
DLSKVTSKCGSLGNIHHKPGGGQ336 (L2; Figure S1B)) of the T protein to bind Cu(II) ions
was determined. The following were selected as potential donor atoms of both ligands
to participate in Cu(II) ion binding: the imidazole nitrogen atom of the histidyl residue,
the amide nitrogen atom of the peptide bond, and oxygen-based donor atoms [58]. It was
also investigated whether the binding of the Cu(II) ion to the L1 and L2 peptides, being
fragments of the Tau protein, stimulates the generation of reactive oxygen species (ROS).

Both peptides, after the coordination of a Cu(II) ion can produce a hydroxyl radical
(•OH) and hydrogen peroxide (H2O2). It was also confirmed that during the reaction,
Cu(II) ions are reduced to Cu(I) ions and both peptides (L1 and L2) tend to aggregate [58].
Moreover, the L2 ligand is responsible for filament formation after the addition of the
metal ion and ascorbic acid (reducing agent) [59]. The obtained results show that metal
ion chelation by peptides derived from the Tau protein may influence the initiation of
Alzheimer’s disease.

2.1.2. α-Synuclein (αSyn) Protein

The 140 amino acid alpha-synuclein (αSyn) protein is located at the presynaptic termi-
nals in the brain (Figure 2). This protein is responsible for dopamine metabolism, binding
to membranes, and the recycling of synaptic vesicles [60,61]. The presence of Lewy bodies
(intracellular inclusions) consisting of protein aggregates suggests αSyn neurotoxicity [62].
The formation of prefibrillary oligomers of this protein causes Parkinson’s disease [63].
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Most importantly, the αSyn protein shows a high affinity for Cu(II) ions, binding these
metal ions in micromolar concentration solutions [64]. It is well known that the presence of
metal ions such as Cu(II) increases the aggregation of αSyn. This mechanism is related to
copper redox chemistry and ROS production. Structural protein changes are a common
phenomenon seen in the brain of Parkinson’s patients after their death. Therefore, many
recent studies have focused on the redox chemistry of Cu(II) complexes with peptides that
are fragments of the αSyn protein [65].

Coordination studies of Cu(II) ions with αSyn protein fragments: MDVFMKGLSKAKE
GVVA-NH2 (L3, αSyn 1–17) and MDVFMKGLSKAKEGVVAAAEKTKQGVAE-N7H2 (L4,
αSyn 1–28) were carried out (Figure 3).
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1–28) peptide.

In both cases, the CuH2L complex with the N2O2 (NH2, N−, COO−, H2O) donor set
dominates in the solution at pH 7.4 (Figure 4) [66].
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To confirm that the L3 and L4 ligands after binding the metal ion are capable of gener-
ating ROS (in particular the production of hydroxyl radicals) that immediately oxidize the
amino acid residues in the peptide, a metal-ion-catalyzed oxidation (MCO) experiment was
performed [67]. Oxidative modifications of peptides are closely related to neurodegenera-
tive disease. Abnormal protein aggregation caused by ROS production contributes to the
death of nerve cells. Both methionine residues in the L3 and L4 peptides were oxidized to
methionine sulfoxides in the presence of hydrogen peroxide [67]. This step of oxidation was
reversible under physiological conditions, but further oxidation (two methionine residues
for the L3 ligand and one methionine residue for the L4 peptide) yields the sulfone(s) and
its products can then accumulate in the tissues and cause Parkinson’s disease [68].

2.1.3. Presenilin 1 (Prs1) Protein

Presenilin 1 (Prs1) is a protein composed of 467 amino acid residues (Figure 5). This
protein is found in the brain in the cell membrane, Golgi apparatus, and endoplasmic
reticulum [69]. Mutations in the Prs1 protein have been suggested to cause Familial
Alzheimer’s disease (FAD). Mitochondrial dysfunction leading to oxidative stress often
occurs in the early stages of Alzheimer’s disease [70,71].
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The role of the Prs1 protein is to transport Cu(II) ions and maintain its homeostasis [72].
As is well known, the human brain is a source of large amounts of Cu(II) ions. Thus, there is
a hypothesis that Cu(II) ions can coordinate to the Prs1 protein and participate in the Fenton
reaction causing the formation of hydroxyl radicals [73], which can have implications for
the development of Alzheimer’s disease.

The ability of the Ac-HWKGPLR-NH2 (L5, Prs1 214–220) peptide (Figure 6), being a 214–
220 fragment of the Prs1 protein, to produce ROS after binding Cu(II) ions was investigated.
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In the first step, the structure of the complexes present at the intracellular pH of the
brain (pH 7.2) was determined. It has been proved that at pH 7.2 there are CuH-1L and
CuH-2L species for the Cu(II)–L5 system. In the case of the CuH-1L species, the metal ion is
coordinated by three donor atoms (N3 (Nim, 2N−)) (Figure 7), while in the CuH-2L complex,
four nitrogen atoms (N4 (Nim, 3N−)) fill the equatorial plane around the Cu(II) ion [73].
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Figure 7. Schematic representation of the structure of mononuclear CuH-1L species of Cu(II)–L5
complex (Ac—acetyl group).

Interestingly, the Ac-HWKGPLR-NH2 ligand, after binding the metal ion at pH 7.2,
produces a hydroxyl radical and singlet oxygen. These two types of ROS are formed during
the reaction in the presence of either hydrogen peroxide or ascorbic acid (also present in the
brain). Moreover, the Cu(II)–L5 complex participates in the DNA degradation process [73].
The obtained results prove that the binding of the Cu(II) ion by a Prs1 protein fragment
activates the generation of ROS and biological macromolecule damage which may be
related to the onset of neurodegenerative disease.

2.1.4. β-Amyloid (Aβ) Protein

The β-amyloid peptide is an amyloid precursor protein (APP protein) fragment that
consists of 40–43 amino acid residues. Aβ40 is most common in the brain, while Aβ42
is responsible for the formation of senile plaques (a hallmark of AD) in all Alzheimer’s
patients (Figure 8) [74,75]. The additional two hydrophobic amino acid residues, isoleucine
and alanine, increase fibril formation for Aβ42 and make this peptide more toxic than
Aβ40 [75].
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Insoluble amyloid plaques were found in the brain tissues of AD patients. It was
confirmed that they consisted mainly of the Aβ protein. β-Amyloid deposition is a key pro-
cess in nerve death and the triggering of Alzheimer’s disease [76]. Since amyloid plaques
contain a high concentration of Cu(II) ions (about a twofold increase in the copper con-
centration in the cerebrospinal fluid), a mechanism based on the initiation of Alzheimer’s
disease after the coordination of Cu(II) ions to Aβ peptide has been postulated [76,77]. It
has been suggested that the neurotoxicity of the Cu(II)–Aβ complex in Alzheimer’s disease
is due to the production of ROS. The formation of hydrogen peroxide participating in the
Fenton reaction is associated with the conversion of Cu(II) ions to Cu(I) ions [77].

Coordination studies of the DAEFRHDSGYEVHHQK (L6, Aβ 1–16) and DAEFRHDS-
GYEVHHQKLVFFAEDVGSNK (L7, Aβ 1–28) (Figure S2) peptides with Cu(II) ions were
conducted. At pH 7.4, the complex with N3O1 (NH2, COO−, 2Nim) donor set is present in
the aqueous solution for both tested ligands [76].
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In the next step, the ability of Cu(II)–L6 and Cu(II)–L7 complexes to participate in
the Fenton reaction was tested. Research has shown that the binding of Cu(II) ions to the
peptide and the presence of hydrogen peroxide leads to the formation of free radicals,
which by attacking amino acid residues near the bonding center cause their oxidation [74].
Other studies have shown that both Cu(II)–L6 and Cu(II)–L7 complexes can be reduced to
Cu(I) complexes. The latter participate in the formation of hydrogen peroxide by catalyzing
the reduction of oxygen [78].

2.1.5. Cellular Prion (PrPC) Protein

The unprocessed cellular prion protein (PrPC) in humans comprises 253 amino acid
residues (Figure 9) [79]. This protein occurs in many parts of our body, but its highest
expression is found in the peripheral and central nervous system [80]. The misfolded
PrPC conformer known as PrPSC (SC-scrapie) is responsible for prion diseases known as
transmissible spongiform encephalopathies (TSEs). These constitute a family of progressive
neurodegenerative disorders in both humans and animals [79]. The pathogenicity of PrPSC

is related to its aggregation [81].
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Investigations have indicated that metal ions such as copper(II) can not only affect the
proper functioning, but also the conformational changes of the prion protein [82]. Therefore,
Cu(II) complexes with prion protein fragments have witnessed growing academic interest.

The structure of Cu(II) complexes with Ac-HGGG-NH2 (L8, PrPC 61–64) and Ac-
PHGGGWGQ-NH2 (L9, PrPC 60–67; having the –HGGG- sequence) peptides was deter-
mined (Figure S3). At physiological pH, both peptides bind Cu(II) ions and form CuH-2L
species. In these complexes, three nitrogen atoms (Nim, 2N−) complete the equatorial
plane around the metal ion [83].

Moreover, a metal-catalyzed oxidation (MCO) experiment established that reactive
oxygen species generated at the metal center oxidize the histidine and tryptophan residues
in the L9 peptide [84].

2.2. Cancer
2.2.1. Major Outer Membrane (FomA) Protein

The major outer membrane (FomA) protein of the Fusobacterium nucleatum (Fn) bac-
terium consists of 370 amino acid residues (Figure 10) [85]. The FomA protein plays an
important role in biofilm formation and mediates the co-aggregation of Fn with Gram-
negative bacteria, especially Porphyromonasgingivalis, and is directly involved in binding to
Streptococussanguis on the tooth surface [86,87].
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When the gums are injured, the Fn migrates from the oral cavity to the colon. This
bacterium is strongly associated with colorectal cancer [88]. Evidence suggests that the
bacterial FomA protein binds Cu(II) ions (the concentration of which increases significantly
during inflammation [89]) and in the presence of hydrogen peroxide (present in intestinal
areas) is involved in the initiation of colorectal cancer [90].

The structure of the formed Cu(II) complexes with various protein fragments (e.g., Ac-
KGHGNGEEGTPTVHNE-NH2 (L10, FomA 203–218) and cyclo(KGHGNGEEGTPTVHNE)
(cycloL10, FomA 203–218)) was determined. For both studied ligands, the CuHL and
CuH−1L complexes are formed at the pH value of the intestinal environment. For the
CuHL species, the following N2 (2Nim) donor set occurs in aqueous solution. The equatorial
plane around the Cu(II) ion for the CuH−1L species is built of N4 (2Nim, 2N−) donor set [91].

The L10 and cycloL10 ligands after chelation of Cu(II) ions can produce •OH and
singlet oxygen (1O2), which damage DNA. Both stimulate extra- and intracellular ROS for-
mation. The ROS identified inside the mouse colon carcinoma cell (CT26) was the hydroxyl
radical [92]. This radical can induce lipid peroxidation (increasing the concentration of
malondialdehyde (MDA)) inside the cell. The obtained results therefore suggested that the
effect of the binding of the metal ion to the peptide ligand may have negative effects in the
form of ROS formation, which may lead to the initiation of the carcinogenesis process at a
later stage.

2.2.2. Adhesion (FadA) Protein

The FadA protein is one of the adhesion proteins of the above-mentioned Fusobacterium
nucleatum bacterium responsible for interaction with human cells. It comes in two forms:
(i) 129 amino acid non-secreted pre-FadA (Figure 11) and (ii) 111 amino acid secreted
mature FadA (mFadA) [93,94].
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Recent studies have proven that the FadA protein interacts with E-cadherins and
activates β-catenins, triggering the proliferation of cancer cells [95].

There is evidence that ATDAAS-NH2 (L11, FadA 19-24) (Figure S4A) and MKKFL-
NH2 (L12, FadA 1–5) (Figure S4B), being fragments of the FadA protein, can produce ROS
after chelation of the Cu(II) ion [96].

At the physiological pH of the colon (pH 6.8), the Cu(II) ion is bound by N3O1 (COO−,
NH2, 2N−) donor set in CuH-1L species for the ATDAAS-NH2 ligand. In the case of the
MKKFL-NH2 peptide, the CuL complex with the N3 (NH2, 2N−) donor set is present in the
solution [96]. Both complexes generate singlet oxygen, hydroxyl radical and superoxide
anion radical in the system and thus possibly have the potential to induce the process of
colorectal carcinogenesis. Interestingly, the Cu(II)–MKKFL-NH2 complex is more effective
in facilitating DNA degradation than the Cu(II)–ATDAAS-NH2 compound [96].

2.3. Respiratory System Diseases
Spike (S) Protein

The spike protein, which consists of 1273 amino acid residues, is present on the protein-
lipid envelope of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 virus)
(Figure 12) [97]. The S protein interacts with the angiotensin-converting enzyme 2 (ACE2)
present on the host cell surface and allows the virus to enter the cell [98]. There has been
the suggestion that the pathology of the coronavirus disease 2019 (COVID-19) caused by
SARS-CoV-2 is related to the S protein [99].
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Of particular concern is that metal ions that bind to viral proteins play a key role in
the pathogenesis of the virus [100]. In particular, trace metal ions such as copper influence
the course of a viral infection and its consequences. The spike protein of SARS-CoV-2
triggers inflammation [101] and during inflammation, the concentration of Cu(II) ions rises
significantly. The possibility of metal ions binding to the spike protein and resulting in
Cu(II) complexes might be involved in cell damage [102].

It is well established that the lungs are strongly affected by SARS-CoV-2 [103]. K18-
hACE2 transgenic mice injected with the S1 subunit of the spike protein showed histological
evidence of lung injury [104]. A high concentration of Cu(II) is observed in lungs when
they are infected with a pathogen [102,105]. Studies in mice have shown that these easily
accessible Cu(II) ions can bind to the spike protein and initiate ROS formation in lungs.
This leads to oxidative stress, cell death (through apoptosis), and subsequent inflammatory
reactions. The latter causes pulmonary lesions [102].

An increased ROS level is the major cause of viral replication and the pathological
condition. The ROS level was significantly elevated in the cells treated with the spike
protein of SARS-CoV-2 and hence ROS are speculated to play a large role in SARS-CoV-2
infection. They are responsible for the aggravation of the disease and its progression. This
induces apoptosis of lung cells leading to acute respiratory distress syndrome (ARDS), and
even death in COVID-19 patients [106]. The increased ROS level is also a characteristic of
other respiratory diseases such as, e.g., acute pneumonia [107]. Research also suggests that
oxidative stress is very common in patients infected with RNA viruses [108]. Moreover, in
many cases, such as, e.g., in hepatitis C (HCV virus), proteins are strongly associated with
extended ROS production. In hepatitis C patients, an abnormally high level of copper was
also observed [108,109]. Therefore, it is likely that the spike protein fragments after metal
ion chelation may be involved in the Fenton reaction and the induction of oxidative stress.
In turn, the oxidative stress can lead to lung damage in COVID-19.
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3. Bright Side of Copper–Peptide Complexes
3.1. Cancer Treatment
3.1.1. Copper Complexes with Amino Acids and Peptide

Copper(II) complexes with amino acids (AC) are a group of chemicals extensively
studied with respect to various cancer cells. The literature is dominated by many examples
of Cu(II) heteroleptic inorganic compounds especially with lysine, arginine (Figure 13A,C),
and phenanthroline derivatives. Good examples are those with lysine and ornithine (Fig-
ure 13B); phenanthroline and bipyridine as the N,N′ coordinating bases give the classical
complexes [Cu(Lys)(phen)(H2O)]2+ and [Cu(Orn)(bipy)(H2O)]2+ having potential anti-
cancer properties.
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It was proven that some of these inorganic compounds are able to interact with de-
oxyribonucleic acid molecules by releasing their ligands, leading to Cu(II)/Cu(I) redox
processes that initiate the formation of reactive oxygen species (ROS) in vivo, especially
hydroxyl radicals [110,111]. This phenomenon suggested that these compounds may act
as prodrugs having significant potential towards various cancer cell types [111]. Among
the copper(II) complexes, a group with L−arginine (L−Arg; [Cu(L−Arg)2](NO3)2 and
[Cu(L−Arg)(B)Cl]Cl·2.5H2O complexes (B = heterocyclic base)) was a remarkable idea
for potential anticancer drugs [112,113]. Moreover, these compounds exhibited interest-
ing antibacterial and antifungal activity. Importantly, they were found to act as strong
minor groove binder agents causing plasmid DNA damage via a ROS-dependent action
mode [113–117].

Interestingly, studies on the biological activity of different L−arginine copper(II) com-
plexes with addition of phenanthroline molecules into the coordination sphere i.e., ([Cu(L-
Arg)2(µ-4,4′-bpy)]Cl2·3H2O}(4,4′−bpy = 4,4′−bipyridine), [CuCl(L-Arg)(phen)]Cl·2H2O
(phen = 1,10−phenanthroline) and [Cu(L-Arg)2(H2O)]C2O4·6H2O (C2O4

2--oxalate counter
ion) have shown that these complexes were inactive towards cancer cells but exhibited
antimicrobial activity by increasing oxidative stress [112,118,119]. Different groups of
L−arginine copper(II) complexes ([Cu(L−Arg)2(NCS)](NCS)·H2O and [Cu(L−Arg)(NCS)2])
were intensively examined due to their therapeutic potential and they exhibited strong
anticancer properties towards the A549 cell line (human lung epithelial carcinoma). The
authors proved that [Cu(L−Arg)2(NCS)]+ is the only species in aqua solution (pH around
7.0) of the investigated inorganic compound [Cu(L−Arg)2(NCS)](NCS)·H2O. Importantly,
it was proven that these species most probably are minor groove-binding agents. Addi-
tionally, they are able, in the presence of H2O2, to facilitate reactive oxygen species (ROS)
generation and consequently damage of plasmid DNA. ROS are well recognized as me-
diators of DNA damage. They can cause double strand breaks (DSBs) of DNA through
direct high-energy damage to the sugar backbone of DNA, and also through free radicals
generated in cells—mostly •OH [120]. Chemotherapeutics increase the ROS levels, which
contributes to their genotoxicity [116,117]. ROS have also been reported to directly induce
other forms of deoxyribonucleic acid damage through oxidation of nucleoside bases (e.g.,
8-oxo guanine can be formed) [121]. Most probably these processes are the main ones
involved in the anticancer mode of action of these copper complexes [122–124].
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A copper–peptide complex consisting of a domain GGH (Gly-Gly-His) able to effi-
ciently bind copper ions and the peptide (MPP) FrFKFrFK-CONH2 (Phe-r-Phe-Lys-Phe-r-
Phe-Lys-CONH2, where r = D-arginine) was designed. It turned out to be well known for its
mitochondria-penetrating properties (Figure 14). This inorganic compound is highly active
towards various cancer cell lines, especially HeLa cells. It is worth noting that these cells
are able to facilitate the selective intracellular uptake of Cu(II) ions. When the Cu–peptide
compound reaches the mitochondria, the Fenton reaction is induced. As a result of this
reaction, the reactive •OH radical is produced that can induce cancer cell apoptosis [125].
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In modern medicine, especially in the field of novel broad-spectrum anticancer drugs,
host defense peptides (HDPs) are attracting great attention. Metallating HDPs with Cu2+

is an effective, smart and novel synthetic strategy to increase the cytotoxicity of copper
complexes against cancerous cells. It was found that peptidic (piscidins 1 (P1) and 3
(P3)) Cu(II) complexes not only physically but also chemically, with the help of reactive
oxygen species, damage lipid membranes [126–131]. Interestingly, P1 seems to be a much
more potent antimicrobial agent [127,130,132]. Additionally, this fragment is also active
towards viruses such as HIV-160, coronaviruses [133], and pseudorabies [134]. However,
some cytotoxic properties of both peptide fragments P1 and P3 against several cancerous
cell lines were reported by Lin et al. (2012) [134]. The authors found that P1 can induce
apoptosis in HT1080 cells supported by radical generation [126].

3.1.2. Copper Complexes with Peptide and Diimines

A new large group of Cu complexes with anticancer properties have been reported as a
series of Cu(L-dipeptide)]·nH2O (L-dipeptide: L-Gly-Val, L-Gly-Leu, L-Gly-Phe, L-Ala-Gly,
L-Ala-Phe, L-Val-Phe, L-Phe-Ala, L-Phe-Phe) [135–137], Cu(II)–L-dipeptide–phen (phen
= 1,10-phenanthroline, L-dipeptide: Ala-Phe, Phe-Ala, Phe-Val and Phe-Phe [138–141],
and Cu(II)–L-dipeptide–5-NO2-phen (where 5-NO2-phen = 5-NO2-1,10-phenanthroline;
L-dipeptide: where L-dipeptide: Ala-Phe, Phe-Ala, Phe-Val and Phe-Phe) (Figure 15) [142].
Heteroleptic inorganic compounds Cu(II)–L-dipeptide–phen are much more active than
Cu–phen or Cu–L-dipeptide complexes separately [135–148]. Their mode of cytotoxic
action most probably includes DNA binding via phenanthroline ligand (intercalation
processes) and also oxidative damage of this acid. The authors obtained similar results
while investigating Cu(II)–L-dipeptide–5-NO2-phen.
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phenanthroline), (C) Cu(II)–L-dipeptide–5-NO2-phen (5-NO2-phen = 5-NO2-1,10-phenanthroline),
and (D) Cu(II)–L-dipeptide–dmp (dmp = 2,9-dimethyl-1,10-phenanthroline).

Another significant group of copper complexes [Cu(L-dipeptide)(dmp)]·nH2O bear-
ing the dipeptide and neocuproine (dmp) ligand ([Cu(Gly-Val)(dmp)]·3H2O (Figure 15),
[Cu(Gly-Leu)(dmp)]·H2O, [Cu(Ala-Gly)(dmp)]·4H2O, [Cu(Val-Phe)dmp)]·4.5H2O, and
[Cu(Phe-Phe)(dmp)]·3H2O) were studied using various cancer lines [8]. It was proven that
they possess better anticancer activity than those with phenanthroline ligands (Figure 15).

The synthesized inorganic compounds exhibited a high cytotoxic effect especially
towards a few cancer cell lines: MDA-MB-231, MCF-7 (human metastatic breast adenocar-
cinomas, the first triple negative), MCF-10A (human normal breast cells), A549 (human
lung epithelial carcinoma), and MRC-5 (human lung epithelial cells). Mechanistic stud-
ies revealed that the mode of action is mainly connected with DNA partial intercalation
causing double strain damage, but also with an increase in the intracellular oxidative stress
level [8,149].

3.1.3. Copper Complexes with Peptide and Imidazole

A group of Cu(II)–dipeptide complexes of 2-(4′-thiazolyl)benzimidazole, [Cu(Gly-
Gly)(TBZ)(Cl)]·4H2O and [Cu(Gly-L-Leu)(TBZ)(Cl)]·H2O (Gly-Gly = glycyl-glycine, Gly-L-
Leu = glycyl-L-leucine, and TBZ = 2-(4′-thiazolyl)benzimidazole) were synthesized and
fully characterized (Figure 16). It was proved that all compounds partially intercalate to
calf thymus DNA causing degradation. Interestingly, these complexes in the presence of
ascorbic acid (AA), induced •OH production. The presence of reactive oxygen species
can cause peroxidation of lipid and cellular DNA leading to cancer cell death. Moreover,
the activity of the complexes described above was tested in vitro towards a few human
carcinoma cell lines (HeLa, A549 and HepG2). The analysis of the results showed that the
complexes exhibited a significant cytotoxic effect (IC50 from 33.17 to 100 µM) toward HeLa
cancer cells. These phenomena undoubtedly indicate that these inorganic compounds have
the potential to be effective metallo–peptide anticancer agents [150].
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Figure 16. Cu(II)–dipeptide complexes of 2-(4′-thiazolyl)benzimidazole.

Two different mononuclear peptide–copper(II) complexes with imidazole derivatives,
[Cu(Gly-L-val)(HPB)(H2O)]·ClO4·1.5H2O (Figure 17) and [Cu(Gly-L-val)(PBT)(H2O)]·ClO4 (Gly-
L-val = glycyl-L-valine, HPB = 2-(2′-pyridyl)benzimidazole, PBT = 2-(2′-pyridyl)benzothiazole),
were described. It was found that this type of complex, with imidazole derivatives, can bind
to calf thymus DNA through hydrophobic interactions. Importantly, the inorganic compounds
displayed, in the presence of ascorbic acid, induced oxidative cleavage of plasmid DNA. This
process resulted in reactive oxygen species, especially •OH production. The cytotoxic study of the
Cu(II) complexes against A549, HeLa, and PC-3 tumor cell lines and NIH3T3 (non-tumor cell line)
revealed that [Cu(Gly-L-Val)(HPB)(H2O)]·ClO4·1.5H2O exhibited better cytotoxicity towards
A549 and PC-3 than [Cu(Gly-L-val)(PBT)(H2O)]·ClO4 and the widely used drug cisplatin [151].
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val)(HPB)(H2O)]·ClO4·1.5H2O and Cu(II) complex of 5-methyl-2-(2′-pyridyl)benzimidazole (HPBM;
[Cu(Gly-gly)(HPBM)(H2O)]ClO4·0.5H2O).

The search for better and more selective anticancer drugs led to the synthesis of the Cu(II) com-
plex of 5-methyl-2-(2′-pyridyl)benzimidazole (HPBM; [Cu(Gly-gly)(HPBM)(H2O)]ClO4·0.5H2O
(Figure 17) and [Cu(Gly-L-leu)(HPBM)(H2O)]ClO4, where Gly-Gly = Glycyl-glycine, Gly-L-leu =
Glycyl-L-leucine). All the complexes turned out to be highly active towards a few types of cancer
cells (A549, HeLa, and PC-3). It has been discovered that the possible action mode is related to
intracellular reactive oxygen species (ROS) generation with damage of mitochondria and DNA.
The results clearly prove that the complexes could induce HeLa cell apoptosis via a ROS-mediated
mitochondrial pathway [152].
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3.1.4. Copper Complexes with Phosphines

To improve the selectivity of copper(I) complexes, a simple dipeptide motif (sarcosyl-
glycine SarGly) was attached to the inorganic compound ([CuI(dmp)(P(Ph)2CH2-SarGly-OH)],
where dmp stands for 2,9-dimethyl-1,10-phenanthroline) (Figure 18). The cytotoxic effect of
the compounds and cisplatin was tested towards cancer cell lines: mouse colon carcinoma
(CT26; 1IC50 = 3.12 ± 0.1 µM), human lung adenocarcinoma (A549; IC50 = 2.01 ± 0.2 µM),
and human breast adenocarcinoma (MCF7; IC50 = 0.98 ± 0.2 µM) as well as against a primary
line of human pulmonary fibroblasts (MRC-5; IC50 = 78.56 ± 1.1 µM).
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Attachment of the peptide motif SarGly to the cytotoxic Cu(I) complex via phosphine
motif significantly enhanced the selectivity of this inorganic compound toward the can-
cerous cells. Insight into the mode of action of this Cu(I) complex showed that it led to
apoptotic cell MCF7 death. What is more, a decrease in mitochondrial membrane potential
and increase in caspase-9 and -3 activities were observed. Importantly, the investigated
compound was able to generate a high level of ROS. Most probably these radicals were the
reason for oxidative damage of the sugar–phosphate backbone of DNA [153].

An analogous copper(I) complex [Cu(I)(dmp)(P(p-OCH3-Ph)2CH2SarGly)] was syn-
thesized but with methoxy groups introduced on the phosphine phenyl rings (Figure 18).
The cytotoxicity of this inorganic compound was checked in vitro towards colon, lung,
breast, pancreatic, and prostate tumor cell lines, as well as towards non-tumor cell lines:
lung, kidney, and keratinocyte. The Cu(I) complex turned out to be significantly more
effective than cisplatin towards all tested cancerous cell lines. The addition of the methoxy
group onto the phenyl rings of the phosphine ligand caused increased cytotoxic activity
resulting in damage to breast, pancreatic and prostate tumor cell lines in vitro. Importantly,
after the connection of the peptide motif to the metal ion via the phosphine ligand, a
significant increase in the selectivity towards cancer cells was observed. Additionally, the
described metal complexes were found to be redox active and reactive oxygen species
generation was detected [154].

3.2. Neurodegenerative Diseases

Despite the rapid growth of scientific publications describing neurodegenerative
disorders, especially Alzheimer’s disease (AD), the exact etiology of this of type issue is still
not well understood as we described above in the previous section (Section 2.1). Moreover,
there is still no good therapeutic opportunity accessible for this disorder [155]. While there
is no treatment, there are five FDA-approved medicines to manage the symptoms of AD.
However, they can only prevent the disease from getting much worse with time [156]. It has
been proven that in vitro, Cu2+ removal from amyloids prevents its accumulation leading



Separations 2022, 9, 73 15 of 23

to the inhibition of hydroxyl radical (•OH) production. For the reasons mentioned above, it
is suggested that a potential therapy for AD is metal chelation therapy [155,156].

Substances characterized by antioxidant and anti-inflammatory activity and com-
pounds capable of restoring copper balance can prevent age-associated cognitive decline
and eliminate, delay, and even cure many common neurodegenerative conditions. The
human tripeptide GHK (glycyl-L-histidyl-L-lysine) (Figure 19) was discovered in 1973 as
one of the human blood proteins. This peptidic motif is able to form copper inorganic
compounds (GHK-Cu). Importantly, the tripeptide GHK is characterized by plenty of
different properties such as regenerative and protective actions including antioxidant,
anti-inflammatory, and wound healing properties. Current research showed that GHK
tripeptide is a very promising agent for the treatment of age-associated neurodegeneration
and cognitive decline [157].
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3.3. Antiviral Properties

Viral infections occur all over the world and have a significant impact on people’s
health, finances and quality of life. Currently, short antiviral peptides are a perfect example
of a therapeutic agent that binds various metal ions such as Cu [158]. A great example of
such a peptide is 3,4-dihydroxyphenylalanine (DOPA) with a peptide motif with adhesive
properties (a diphenylalanine motif induces peptide self-assembly; sequence DOPA-(Phe)2-
(His)6 is responsible for metal binding, Figure 20) [159].
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The authors proved that this compound is able to release monovalent copper ions
that interact with hydrogen peroxide leading to ROS generation, giving the compound
significant antiviral properties. Additionally, the relief of Cu(I) and H2O2 from the old
PCN-coated surface, as well as the probability of renewing these surfaces, enhances the
potential of this coating [158].

It is worth emphasizing that copper ions alone exhibited antiviral properties. Interest-
ing research was performed by a few independent scientific groups [160–162] showing that
copper ions can inactivate viruses (e.g., herpes simplex virus (HSV), feline calicivirus (FCV),
bronchitis virus, poliovirus, and human immunodeficiency virus type 1 (HIV-1)) since
copper ions can disrupt the activity of certain proteins and are responsible for hydroxyl
radical production [162]. However, when the concentration of copper ions was too high,
the resulting toxicity was fatal because copper chloride can inactivate specific proteins and
produce a large number of reactive oxygen species in cells inducing apoptosis [162].

4. Conclusions

In this short review, we demonstrated the negative and positive consequences of ROS
produced by copper(II)–peptide complexes on the human body. It has been documented
that ROS can damage healthy cells leading to the initiation of many pathogenic states,
e.g., neurodegenerative disorders, cancer, and respiratory system diseases. However,
Cu(II)–peptide complexes are well known as agents causing pathogen and cancer cell death
through ROS-dependent pathways.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/separations9030073/s1, Figure S1 The structural formulas of the (A)275VQIINKKLDLSNVQSKCG
SKDNIKHVPGGGS305 (L1, Tau 275-305) and (B) 306VQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQ336
(L2, 306-336) peptides, Figure S2: The structural formulas of the DAEFRHDSGYEVHHQKLVFFAED-
VGSNK (L7, Aβ 1-28) peptide, Figure S3: The structural formulas of the (A) Ac-HGGG-NH2 (L8,
PrPC 61-64) and (B)Ac-PHGGGWGQNH2 (L9, PrPC 60-67) peptides (Ac- acetyl group), Figure S4:
The structural formulas of the(A) ATDAAS-NH2 (L10, FadA 19-24) and (B) MKKFL-NH2 (L11, FadA
1-5) peptides.
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Abbreviations

Ac acetyl group
Dmp neocuproine; 2,9-dimethyl-1,10-phenatroline
SarGly sarcosyl-glycine
DSBs double strand breaks
DNA deoxyribonucleic acid
Phen 1,10-phenanthroline
ROS reactive oxygen species
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Prs1 Presenilin 1
αSyn alpha-synuclein
MDA malondialdehyde
4-HNE 4-hydroxynonenal
AD Alzheimer’s disease
MCO metal-ion-catalyzed oxidation
FAD Familial Alzheimer’s disease
APP protein amyloid precursor protein
Fn Fusobacterium nucleatum
AC amino acids
DSBs double strand breaks
GGH Gly-Gly-His
MPP FrFKFrFK-CONH2 (Phe-r-Phe-Lys-Phe-r-Phe-Lys-CONH2, where r = D-arginine)
HDPs host defense peptides
MDA-MB-231 human metastatic breast adenocarcinoma
MCF-7 human metastatic breast adenocarcinoma
MCF-10A human normal breast cells
A549 human lung epithelial carcinoma
MRC-5 human lung epithelial cells
AA ascorbic acid
TBZ 2-(4′-thiazolyl)benzimidazole)
DOPA 3,4-dihydroxyphenylalanine
HSV herpes simplex virus
FCV feline calicivirus
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76. Kowalik-Jankowska, T.; Ruta, M.; Wiśniewska, K.; Łankiewicz, L. Coordination abilities of the 1-16 and 1-28 fragments of
β-amyloid peptide towards copper(II) ions: A combined potentiometric and spectroscopic study. J. Inorg. Biochem. 2003, 95,
270–282. [CrossRef]

77. WilochM, Z.; Wawrzyniak, U.E.; Ufnalska, I.; Bonna, A.; Bal, W.; Drew, S.C.; Wróblewski, W. Tuning the Redox Properties of
Copper(II) Complexes with Amyloid-β Peptides. J. Electrochem. Soc. 2016, 163, 196–199. [CrossRef]

78. Jiang, D.; Men, L.; Wang, J.; Zhang, Y.; Chickenyen, S.; Wang, Y.; Zhou, F. Redox reactions of copper complexes formed with
different beta-amyloid peptides and their neuropathalogical relevance. Biochemistry 2007, 46, 9270–9282. [CrossRef] [PubMed]

79. Acevedo-Morantes, C.Y.; Wille, H. The structure of human prions: From biology to structural models-considerations and pitfalls.
Viruses 2014, 6, 3875–3892. [CrossRef] [PubMed]

80. Wulf, M.A.; Senatore, A.; Aguzzi, A. The biological function of the cellular prion protein: An update. BMC Biol. 2017, 15, 34.
[CrossRef]

81. Linden, R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front. Mol. Neurosci. 2017,
10, 77. [CrossRef]

82. Zidar, J.; Pirc, E.T.; Hodoscek, M.; Bukovec, P. Copper(II) ion binding to cellular prion protein. J. Chem. Inf. Model 2008, 48,
283–287. [CrossRef]

83. Bonomo, R.P.; Cucinotta, V.; Giuffrida, A.; Impellizzeri, G.; Magri, A.; Pappalardo, G.; Rizzarelli, E.; Santoro, A.M.; Tabbi, G.;
Vagliasindi, L.I. A re-investigation of copper coordination in the octa-repeats region of the prion protein. Dalton Trans. 2005, 1,
150–158. [CrossRef]

84. Srikanth, R.; Wilson, J.; Burns, C.S.; Vachet, R.W. Identification of the copper(II) coordinating residues in the prion protein by
metal-catalyzed oxidation mass spectrometry: Evidence for multiple isomers at low copper(II) loadings. Biochemistry 2008, 47,
9258–9268. [CrossRef] [PubMed]

85. Pocanschi, C.L.; Apell, H.-J.; Puntervoll, P.; Høgh, B.; Jensen, H.B.; Welte, W.; Kleinschmidt, J.-H. The major outer membrane
protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. J. Mol. Biol. 2006,
20, 548–561. [CrossRef]

86. Nobbs, A.H.; Jenkinson, H.F.; Jakubovics, N.S. Stick to your gums: Mechanisms of oral microbial adherence. J. Dent. Res. 2011, 90,
1271–1278. [CrossRef] [PubMed]

87. Liu, P.F.; Shi, W.; Zhu, W.; Smith, J.W.; Hsieh, S.L.; Gallo, R.L.; Huang, C.M. Vaccination targeting surface FomA of Fusobacterium
nucleatum against bacterial co-aggregation: Implication for treatment of periodontal infection and halitosis. Vaccine 2010, 28,
3496–3505. [CrossRef] [PubMed]

88. Zhang, S.; Cai, S.; Ma, Y. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions. J.
Cancer 2018, 9, 1652–1659. [CrossRef] [PubMed]

89. Hordyjewska, A.; Popiołek, Ł.; Kocot, J. The many “faces” of copper in medicine and treatment. Biometals 2014, 27, 611–621.
[CrossRef]

90. Lesiów, M.K.; Pietrzyk, P.; Kyzioł, A.; Komarnicka, U.K. Cu(II) complexes with fomA protein fragments of Fusobacterium nucleatum
increase oxidative stress and malondialdehyde level. Chem. Res. Toxicol. 2019, 32, 2227–2237. [CrossRef]
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154. Komarnicka, U.K.; Kozieł, S.; Zabierowski, P.; Kruszyński, R.; Lesiówa, M.K.; Tisato, F.; Porchia, M.; Kyzioł, A. Copper(I)
complexes with phosphines P(p-OCH3-Ph)2CH2OH and P(p-OCH3-Ph)2CH2SarGly. Synthesis, multimodal DNA interactions,
and prooxidative and in vitro antiproliferative activity. J. Inorg. Biochem. 2020, 203, 110926. [CrossRef] [PubMed]

155. Hegde, M.L.; Bharathi, P.; Suram, A.; Venugopal, C.; Jagannathan, R.; Poddar, P.; Srinivas, P.; Sambamurti, K.; Rao, K.J.;
Scancar, J.; et al. Challenges Associated with Metal Chelation Therapy in Alzheimer’s Disease. J. Alzheimers Dis. 2009, 17, 457–468.
[CrossRef] [PubMed]

156. Szeto, J.Y.Y.; Lewis, S.J.G. Current Treatment Options for Alzheimer’s Disease and Parkinson’s Disease Dementia. Curr. Neu-
ropharmacol. 2016, 14, 326–338. [CrossRef] [PubMed]

157. Pickart, L.; Michelle, J.; Soltero, V.; Margolina, A. The Human Tripeptide GHK-Cu in Prevention of Oxidative Stress and
Degenerative Conditions of Aging:Implications for Cognitive Health. Oxidative Med. Cell. Longev. 2012, 5, 8.

158. Boas, D. A Novel Copper-Binding Peptide That Self-Assembles Into a Transparent Antibacterial and Antiviral Coating Front.
Bioeng. Biotechnol. 2021, 20, 11–19.

159. Andersen, A.; Chen, Y.; Birkedal, H. Bioinspired Metal–Polyphenol Materials: Self-Healing and Beyond. Biomimetics 2019, 4, 30.
[CrossRef] [PubMed]

160. Sagripanti, J.L.; Routson, L.B.; Bonifacino, A.C.; Lytle, C.D. Mechanism of coppermediatedinactivation of herpes simplex virus.
Antimicrob. Agents Chemother. 1997, 41, 812–817. [CrossRef]

161. Betanzos-Cabrera, G.; Rez, F.J.R.; Oz, J.L.M.; Barrn, B.L.; Maldonado, R. Inactivation ofHSV-2 by ascorbate-Cu (II) and its
protecting evaluation in CF-1 miceagainst encephalitis. J. Virol. Methods 2004, 120, 8. [CrossRef]

162. Guo, W.J.; Ye, S.S.; Cao, N.; Huang, J.; Gao, J.; Chen, Q.Y. ROS-mediatedautophagy was involved in cancer cell death induced by
novel copper(II)complex. Exp. Toxicol. Pathol. 2010, 62, 577–582. [CrossRef]

http://doi.org/10.1021/ic00074a047
http://doi.org/10.1016/j.microc.2016.12.007
http://doi.org/10.1039/C6RA01868H
http://doi.org/10.1016/j.ejmech.2018.05.023
http://www.ncbi.nlm.nih.gov/pubmed/29803995
http://doi.org/10.1016/j.jinorgbio.2018.06.009
http://doi.org/10.1016/j.jinorgbio.2019.110926
http://www.ncbi.nlm.nih.gov/pubmed/31759264
http://doi.org/10.3233/JAD-2009-1068
http://www.ncbi.nlm.nih.gov/pubmed/19363258
http://doi.org/10.2174/1570159X14666151208112754
http://www.ncbi.nlm.nih.gov/pubmed/26644155
http://doi.org/10.3390/biomimetics4020030
http://www.ncbi.nlm.nih.gov/pubmed/31105215
http://doi.org/10.1128/AAC.41.4.812
http://doi.org/10.1016/j.jviromet.2004.05.003
http://doi.org/10.1016/j.etp.2009.08.001

	Introduction 
	Dark Side of Copper–Peptide Complexes 
	Neurodegenerative Disorders 
	Tau (T) Protein 
	-Synuclein (Syn) Protein 
	Presenilin 1 (Prs1) Protein 
	-Amyloid (A) Protein 
	Cellular Prion (PrPC) Protein 

	Cancer 
	Major Outer Membrane (FomA) Protein 
	Adhesion (FadA) Protein 

	Respiratory System Diseases 

	Bright Side of Copper–Peptide Complexes 
	Cancer Treatment 
	Copper Complexes with Amino Acids and Peptide 
	Copper Complexes with Peptide and Diimines 
	Copper Complexes with Peptide and Imidazole 
	Copper Complexes with Phosphines 

	Neurodegenerative Diseases 
	Antiviral Properties 

	Conclusions 
	References

