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Abstract - The free and forced in-plane and out-of-plane vibrations of frames are 
investigated. The beam has a straight and a curved part. It has a circular cross-section. A 
concentrated mass is also located at different points of the frame with different mass 
ratios. FEM is used to analyze the problem. The in-plane and out-of-plane natural 
frequencies, point and transfer receptances of the system are obtained to determine the 
sensitive and non-sensitive frequency intervals depending on the location and direction 
of the force. 
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1. INTRODUCTION 
 

The curved beams are commonly used for many purposes in technology. They can be 
used as gears, electrical machines, pumps and turbines, ships, in horizontally curved 
continuous bridges or in the design of ribs, edge stiffeners in bridge deck slabs and 
stiffened shell characteristics of turbomachinary and rockets, etc. The governing 
equations were presented together with their solutions in the book by Love [1]. Den 
Hartog [2] used the Rayleigh-Ritz method to obtain the in-plane lowest frequencies of 
circular curved fixed-fixed beams. Volterra and Morell [3-4] and Ojalvo et al. [5] 
calculated the natural frequencies of in-plane and out-of-plane vibration of circular 
arches based on classical beam theory by excluding rotary inertia and shear 
deformation. Pestel and Leckie [6] compared the natural frequencies of curved beams 
obtained by different methods. Veletsos et al. [7] studied free in-plane vibrations. 
Pandalai and Sathyamoorthy [8] obtained the modal equations of large amplitude 
vibrations of beams, plates, rings, and shells using Lagrange equations. Bickford and 
Storm [9] sought an exact solution for in-plane and out-of-plane vibrations of arbitrarily 
shaped curved bars, including the effects of shear deformation and rotary inertia, by a 
vector/transfer matrix approach, using exact solutions of the differential equations by 
the transfer matrix method. The large amplitude free vibrations of horizontally curved 
beams were investigated by Mukhopadhyay and Sheikh [10] and numerical solutions 
were obtained using FEM. The effect of shear deformation on displacements and the 
effect of rotary inertia and shear deformation on the natural frequencies were 
investigated by Krishnan and Suresh [11] by using four degree-of-freedom linear beam 
elements. Kawakami et al. [12] presented an approximate method to study the analysis 
for planar free vibrations of horizontally curved beams with arbitrary shapes and 
variable cross-sections. Kang et al. [13] applied the differential quadrature method to 
calculate the eigenvalues of planar vibration of circular arches, based on the Bresse-
Timoshenko beam theory in which both rotary inertia and shear deformation were taken 
into account. Wang and Sang [14] set up the displacements for a curved beam to derive 
the equations for the out-of-plane motion of the beam via Timoshenko beam theory. A 
systematic method for analyzing the out-of-plane dynamic behaviors of non-circular 
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curved beams was presented by taking into account the effects of shear deformation, 
rotary inertia, and viscous damping as demonstrated in [15]. Without considering the 
shear deformation, the rotary inertia and the warping effects, the governing differential 
equations for the out-of-plane vibrations of curved non-uniform beams of constant 
radius were derived via Hamilton principle by Lee and Chao [16]. There are many 
systems comprised of straight and curved members used in practice. But there are very 
few studies in the literature. Yuan and Dickinson [17] presented an approximate 
approach using artificial springs to calculate the natural frequencies of a straight-curved 
beam frame using the Rayleigh-Ritz method. Kashimoto et al. [18] presented the 
dynamic stress concentration problem of an inhomogeneous rod of infinite length, 
consisting of two infinite straight portions and one finite portion of arbitrary curvature 
using transfer matrix method. They obtained natural frequency values for only curved 
part. Wang [19-20] set up the displacements which are two bending slopes and one twist 
angle, for a curved frame to derive the governing equations of a T-type curved frame via 
the same beam theory. An analytical method for both in-plane motion and out-of-plane 
motion of a curved hollow shaft was presented for two types of shaft structures, which 
are a curved hollow shaft and a fixed-fixed straight-curved-straight-hollow shaft by 
considering torsion and bending. The author found that the first in-plane modal 
frequency of a structure was greater than the first out-of-plane modal frequency of the 
same structure. Petrolito and Legge [21] developed a general nonlinear analysis method 
for structural frames with curved members to calculate the complete load-deflection 
response. Ercoli et al. [22] had an analytical and experimental investigation on vibrating 
arches clamped at one end and carrying a concentrated mass at the other end. Ercoli et 
al. [23] developed previous work by using an intermediate support. Laura et al. [24] 
investigated the in-plane vibrations of an elastically cantilevered circular arc with a tip 
mass. Cortinez et al. [25] calculated the inextensional natural frequencies of a fixed-free 
straight-curved beam system having a concentrated mass at the end of the curved 
member for in-plane vibrations by excluding rotatory inertia, used the Rayleigh-
Schmidt technique, and compared the results with the results of Dunkerley’s approach 
and FEM. 
 
In this study, it is aimed to investigate the linear free and forced, in-plane and out-of-
plane vibrations of frames carrying a point mass. The frame is fixed at the left end of the 
straight beam while the right end of the curved part is free. The frame is modeled by 
FEM. Rotary inertia and extensional effects are included for curved part while shear 
effects are excluded for all parts of the frame. The in-plane vibrations are analyzed 
where the longitudinal and flexural vibrations are coupled for each beam. Cubic 
functions are used for bending and elongation which means four degrees of freedom for 
each node of the frame. The natural frequencies are obtained for different additional 
mass locations. Then the out-of-plane vibrations are investigated. The flexural and 
torsional vibrations are coupled in out-of-plane vibrations for both beams. The three 
degrees of freedom is used for each node for out-of plane vibrations. The changes in 
natural frequencies are investigated depending on the location and amount of additional 
mass. The point and transfer receptance curves are plotted for different cases. 
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2. THE FRAME SYSTEM, ENERGY EQUATIONS  

AND FINITE ELEMENT FORMULATION 

 
The frame system used is shown in Figure 1. X, Y, and Z are global coordinates, and u, 
v, w are the longitudinal, transverse, and out-of-plane displacements for the straight part, 
and the tangential, radial and out-of-plane displacements for the circular part, 
respectively. The straight and curved parts have torsion Φs and Φc . Sub indices c and s 
denote curved and straight members, respectively. Curved beam lies in X-Y plane. LT 
and S are the lengths of straight and curved members respectively. Cross-sections are 
circular for both members, A is the cross-sectional area. Modulus of elasticity E, 
modulus of shear G, mass moment of inertia I, and polar moment of inertia J are also 
equal for both beams. α  is the arch angle of curved beam. 

 
Figure 1. The frame 

The in-plane (XY), out-of-plane (XZ) elastic and kinetic energies of the frame can be 
expressed as follows 
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In these equations ( ) &  denotes differentiation with respect to time t. In-plane strain, net 
cross-sectional rotation and curvature change of the curved and straight member, out-of-
plane curvature change and torsion in Equation (1) are as follows 
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Finite element method [26] is used for vibration analysis of the frame. Four degrees of 
freedom for in-plane vibrations, and three degrees of freedom for out-of-plane 
vibrations are good enough to obtain the results as demonstrated by [27]. One can take 
the element displacement vector as 
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The stiffness and inertia matrices for each finite element can be obtained. In in-plane 
vibrations (occurs in XY plane), the stiffness matrix of curved beam is a combination of 
elongation and bending part while the inertia matrix is that of the translation and 
rotation part of the circular member. In out-of-plane (occurs in XZ plane) vibrations, the 
flexural and torsional vibrations are coupled for both beams. The stiffness matrix is a 
combination of bending and torsion and inertia matrix is a combination of that of out-
of-plane translation, rotary inertia, and torsion of the curved member. The concentrated 
mass appears in the inertia matrix. Since the coordinate systems used for two members 
of the frame are different, the coordinates of straight and curved beams should be 
transformed to each other to analyze the frame as a single system. The support condition 
is fixed-free. 
 

3. FREE VIBRATIONS 

 

The total energy in the system is constant as follows 

{ } [ ]{ } { } [ ]{ } 0
T T

V M V V K V+ =& &                (4) 

where {V} denotes global displacement vector, [K] and [M] are global stiffness and 
inertia matrices. The solution of equation (4) is assumed as  

{ } { }  nj t
V V e

ω=                  (5) 

where 1j = − , ωn is natural frequency and {V } is displacement amplitude vector of all 

nodes. Then, one obtains the eigenvalue equation giving the natural frequencies for both 
vibrations 

[ ] [ ]2  0nK Mω− = .                (6) 

 
4. FORCED VIBRATIONS 

 

The characteristics of forced vibrations are important due to the need of controlling 
vibration amplitudes. The point and transfer receptances of the frame by forcing the free 
end are calculated by including structural damping. The general equation of motion for 
a harmonically forced system is as follows 

exp( )MQ CQ KQ f j tω+ + =&& &                (7) 

(3) 
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where Q is the nodal displacement vector, C is viscous damping matrix and f is the 
vector formed by forces at the nodes. There are some mathematical models for the 
damping expressing energy losses in mechanical systems as demonstrated in [19]. The 
structural damping can be considered by replacing K(1+iη) with the viscous damping. 
In this case, Equation (7) becomes 

12 exp( )Q K M i K f i tω η ω
−

 = − +                (8) 

where η is the loss factor. Equation (8) can be written as 
[ ] 1 exp( )

R I
Q A iA f i tω−
= + , 2

R
A K Mω= − , 

I
A Kη=             (9) 

 
5. NUMERICAL RESULTS AND DISCUSSION 

 

In this section, the results of free and forced planar vibration analysis will be given. The 
modulus of elasticity and shear of the frame are 200 GPa and 84 GPa respectively. The 
density of the material is 7800 kg/m3. The lengths of curved and straight parts are 1 m 
each. The cross-sectional radius is r = 20 mm. In Table 1, the first five natural 
frequencies of in-plane and out-of-plane vibrations of frame are presented respectively 
for different mass and arch angles. The point mass is located at the connection point 
(position-a), at the middle of curved beam (position-b) and at free end (position-c), and 
the mass ratio (γ) is taken ¼ of the whole frame. Bending is the main behavior of the in-
plane vibration modes. Torsion is effective as much as bending in out-of-plane vibration 
modes. The mass ratio (γ) is changed from ¼ to 1. 

 

Table 1. The in-plane and out-of-plane natural frequencies of frame 
  

In-Plane-Vibrations  ( XY) Out-of-Plane Vibrations  (XZ) 

 
Arch 
angle 

 

Position of Mass 

 

ωωωω1 

(r/s) 

 

ωωωω2 

(r/s) 

 

ωωωω3 

(r/s) 

 

ωωωω4 

(r/s) 

 

ωωωω5 

(r/s) 

 

ωωωω1 

(r/s) 

 

ωωωω2 

(r/s) 

 

ωωωω3 

(r/s) 

 

ωωωω4 

(r/s) 

 

ωωωω5 

(r/s) 

 
          No   

Mass 
55.94 170.73 765.12 1190.91 2502.67 61.73 144.89 720.66 1205.5 2535.50 

 
      (a) 51.36 158.61 764.70 1165.82 2500.75 58.50 110.46 720.04 981.60 2532.49 

 
(b) 47.53 149.56 657.82 1061.86 2434.50 51.34 144.32 644.94 1104.45 2491.90 

 
300 

 
(c) 38.97 125.00 609.14 1093.99 2196.18 42.79 122.10 613.51 1081.63 2243.29 

 
       No   
Mass 

54.64 176.21 744.41 1197.34 2479.53 64.63 140.68 679.40 1197.39 2510.46 

 
      (a) 50.34 163.13 744.40 1165.45 2478.12 60.98 108.07 675.79 982.65 2502.86 

 
(b) 46.40 154.42 646.67 1064.58 2400.30 53.49 140.16 604.61 1110.42 2473.36 

 
450 

 
(c) 38.00 129.57 583.32 1101.93 2170.53 45.27 117.56 569.17 1083.91 2208.93 
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All figures between 2 and 4 are drawn for 30o arch angle. In Figure 2 (a-b), the change 
of in-plane and out-of plane frequencies due to the location of concentrated mass are 
drawn respectively.  The frame is divided into 60 finite elements for in-plane vibration, 
and 40 elements for out-of-plane vibration. d shows the place of concentrated mass 
from left hand side. For example if d is 30 in Figure 2a, that means the additional mass 
is on the connection point of the straight and curved beams ( position-a in Table 1 ), and 
if d is 60 it means that the mass is on the free end ( position-c ).  
 
 

 

 
     (b) 

Figure 2. The variation of 1
st
 and 2

nd
 in-plane (a) and out-of-plane (b) natural 

frequencies due to the mass location and ratio 

(a)  
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As it seen in Figure 2a, the moving the additional mass from left to right generally 
decrease the frequencies for all mass ratios. The increase in the mass also decreases the 
frequencies further. This effect becomes larger at the free end (position-c). Replacing 
the mass toward the center of the curved part (position-b) slightly increases the 
frequencies in the second mode. In Figure 2b (out-of-plane vibrations), all frequencies 
decrease again by adding mass and this effect becomes larger as it is replaced at the free 
end. In the second mode, there is an increase in frequencies when the mass is moved to 
right from the position-a. However, the natural frequencies take constant values around 
the position-b interestingly and decreases again further.  

 

  

Figure 3. The in-plane point receptance amplitudes a) u/f , b) v/f ( γ =0.25 , η=0.01 ) 

 

(a) 

  (b) 
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Finally, the forced vibrations of the frame are investigated. In Figure 3a and b, the in-
plane point receptance amplitudes of tangential and radial directions at the free end are 
shown, in Figure 4a and b, the out-of-plane point and transfer receptance amplitudes are 
shown, respectively, the force is applied at the free end and transfer receptance of the 
connection point between straight and curved part is obtained. The loss factor is 
assumed as 0.01 and the mass ratio is 0.25, and located at the free end. The last two 
figures can be used to understand the behavior of traffic or lighting poles under wind 
forces. 

0 200 400 600 800 1000 1200 1400 1600 1800
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

              ω (rad/s)

w
 /
 f
 (
m

/N
)

η = 0.01

without mass

with mass

out-of-plane point receptance

 

0 200 400 600 800 1000 1200 1400 1600 1800
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

             ω (rad/s)

 φ
s
 /

 f
 (

ra
d
/N

 )

η = 0.01out-of-plane transfer receptance

without mass

with mass

 
(b)Figure 4. The out-of-plane receptance amplitudes a) w/f, b) ΦΦΦΦs/f   

( γ =0.25 , η=0.01 ) 

  (a) 

(b) 
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6. CONCLUSIONS 
 

The linear, in-plane and out-of-plane vibrations of frames having a straight and a curved 
part are investigated. The frame also carries a point mass. The rotary inertia effects and 
extensibility are included for curved part while the shear effects are excluded for all 
parts of the frame. The vibrations are analyzed using FEM, and the natural frequencies 
are obtained for different additional mass location. The frequencies decrease mostly by 
adding point mass. Finally, in-plane and out-of-plane receptances are obtained when the 
external force acted at the free end of the frame. The changes of point and transfer 
receptance amplitudes are plotted and the effect of additional mass is observed. The 
sensitive and non-sensitive frequency intervals are determined. 
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