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Abstract- In this study, free vibration analysis of carbon nanotubes is investigated 
based on Timoshenko beam theory. Discrete singular convolution (DSC) method is 
used for free vibration problem of numerical solution of carbon nanotubes. Numerical 
results are presented and compared with that available in the literature. It is shown that 
reasonable accurate results are obtained.  
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1. INTRODUCTION 

 

Carbon nanotubes were discovered in 1991 by Sumio Iijima [1]. Carbon nanotubes 
(CNT) are molecular-scale tubes of graphitic carbon with outstanding properties (Fig. 
1). It is accepted that CNT are unique nanostructures with remarkable electronic and 
mechanical properties. Since the CNT were discovered extensive theoretical and 
experimental studies on mechanical properties of CNT has been performed [2-10]. 
Vibration, bending and buckling behavior of CNT has been a subject of interest in the 
past five years. Molecular dynamics or atomistic model has been used in order to look 
into the mechanics of nanotubes. Moreover, many authors have employed a continuum 
or structural mechanics approach for more practical and efficient modeling. For this 
purpose, rod, beam and shell theories have been used by researchers [11-16].  

Recently, much attention has been devoted to the mechanical behavior of 
micro/nano structures such as nanobeam, nanorods, nanotubes and microtubules. Beam 
theories have been always used for modeling of this kind of nanodevices. The main 
objective of this study is to give a numerical solution of free vibration analysis of 
carbon nanotubes based on the theory of Timoshenko beam. To the author knowledge, it 
is the first time the DSC method has been successfully applied to carbon nanotubes 
based on Timoshenko beam for the numerical analysis of vibration. 
 

2. DISCRETE SINGULAR CONVOLUTION (DSC) 

 

Discrete singular convolution (DSC) method is a relatively new numerical 
technique in applied mechanics. The method of discrete singular convolution (DSC) 
was proposed to solve linear and nonlinear differential equations by Wei [17], and later 
it was introduced to solid and fluid mechanics by Wei [18], Wei et al. [19], Zhao et 
al.[20,21], and Civalek [22-29]. 
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Figure 1. Typical single and multi-walled carbon nanotubes 
 

For more details of the mathematical background and application of the DSC method in 
solving problems in engineering, the readers may refer to some recently published 
reference [21-30]. In the context of distribution theory, a singular convolution can be 
defined by [17] 
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Where T is a kind of singular kernel such as Hilbert, Abel and delta type, and )(tη is an 

element of the space of the given test functions. In the present approach, only singular 
kernels of delta type are chosen. This type of kernel is defined by [18] 
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where subscript r denotes the rth-order derivative of distribution with respect to 
parameter x. In order to illustrate the DSC approximation, consider a function F(x). In 
the method of DSC, numerical approximations of a function and its derivatives can be 
treated as convolutions with some kernels. According to DSC method, the rth derivative 
of a function F(x) can be approximated as [19] 
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where ∆ is the grid spacing, xk are the set of discrete grid points which are centered 
around x, and 2M+1 is the effective kernel, or computational bandwidth. It is also 
known, the regularized Shannon kernel (RSK) delivers very small truncation errors 
when it use the above convolution algorithm. The regularized Shannon kernel (RSK) is 
given by [20] 
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The researchers is generally used the regularized delta Shannon kernel by this time. The 
required derivatives of the DSC kernels can be easily obtained using the below 
formulation 
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3. SOLUTION OF GOVERNING EQUATIONS 

 
A typical single walled carbon nanotubes (SWCNTs) based on beam theory is 

depicted in Fig. 2. In this figure, the letter d is the diameter of beam, L length of the 
beam. 
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Figure 2. The illustration of carbon nanotubes as Timoshenko beam  
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The governing equations for free vibration of carbon nanotubes based on Timoshenko 
beam can be written as 
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By using DSC discretization the Eqs. (6-7) take the form 
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Two-types of boundary conditions are considered. These are: 
 
Clamped (C) 
 

0=θ  and 0=W         (10) 
 
Simply supported (S) 
 

0=M  and 0=W         (11) 
 
In these equations V and M are the shear and moment resultants and given by 
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After implementation of the given boundary conditions, Eqs. (8) and (9) can be 
expressed by 
 

[ ]{ } { },2 UUR ω=          (14) 

 
where U is the displacements vector, R  is the stiffness matrix. The frequency values 
for Timoshenko beam are given by the following non-dimensional form 
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EI

ρA
ωL22 =Ω           (15) 

 
where ρ is the mass density, A the cross-sectional area, I  the second moment of area of 
cross-section, E the Young’s modulus, L is the length of the carbon nanotubes, ω is the 
circular frequency. For tapered nanotubes Eqs. (8-9) take the form 
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4. RESULTS 

 

In the manuscript, following material and geometric parameters have been used: ρ 

=2300 kg/m3, E=1012 N/m2, L=10-8 m, d=33×10-9 m, t=0.34×10-9 m. The results given 
in this section are aimed to illustrate the numerical accuracy of the proposed DSC 
method. The obtained results are listed in Table 1. In this table υ is the Poisson’s ratio 
and k is shear correction factor. First four non-dimensional frequency parameters of 
simply supported carbon nanotubes are given in Table 1 for d/L=0.1. It is observed that 
a good agreement between the present calculated results and the results of literature 
[20,21] has been obtained. Frequency values with mode number of CNTs are depicted 
in Fig.3 for three different boundary conditions. Effect of diameter-to-length ration on 
frequency of CNTs is given in Fig. 4 for first two mode numbers. It is shown from these 
figures that frequency values are increased with mode number and diameter. Variations 
of mode shapes with the taper ratios (Fig. 5) are presented in Figure 6 for S-S carbon 
nanotubes with linearly tapered.  It is shown that the increasing value of taper ratio, 
always increases the frequency parameter. The taper ratio is given as 01 / ddα = .  

 

Table 1. Comparison of non-dimensional frequency parameters ( EIρAωL /22 =Ω ) of 

S-S nanotubes (d/L=0.1; k=5/6; 3.0=υ ) 
 

 
Mode  

Reddy 
Exact [30] 

Heireche 
et al. [31] 

DSC 
N=11 

DSC 
N=13 

 DSC 
N=15 

DSC 
N=18 

1 3.1217  3.0929 3.1405 3.0962 3.1405 3.1405 
2 - 5.4658 6.2747 6.2747 6.2747 6.2747 
3 - 8.444 9.3965 9.3964 9.3963 9.3963 
4 - 10.6260 10.7219 10.7219 10.7218 10.7218 
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Figure 3. Frequency values of CNTs for different boundary conditions 
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Figure 4. Effect of diameter-to-length ration on frequency of CNTs 
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Figure 5. Tapered carbon nanotubes  

 

0

2400

4800

7200

1 1.2 1.4 1.6 1.8 2

Taper Ratio

F
re

q
u

en
cy

(E
+

1
0

)H
z

ω1
ω2
ω3

 
 

Figure 6. Frequency values for S-S tapered carbon nanotubes 
 

 

5. CONCLUSIONS 

 

A numerical approach for the free vibration analysis of carbon nanotubes based on 
Timoshenko beam theory is presented. Several examples were worked to demonstrate 
the convergence of the method. Excellent convergence behavior and accuracy in 
comparison with exact results or results obtained by other numerical methods were 
obtained. Nonlinear beam-mass model [32] is another efficient approach for modeling 
of CNTs.  Although not provided here, the method is also useful in providing vibration 
solutions of multi-walled carbon nanotubes [33,34]. The present study is being further 
developed to overcome the convergence problems encountered in the nonlinear 
vibration analysis of carbon nanotubes. 
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