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Abstract- In this study, a relation between generalized level density and standard level 

density is derived. Using this relation and Bethe formula of Fermi gas model for standart 

level density we obtained a generalized nuclear level density formula for nucleus. 

Generalized level densities were calculated for some nuclei in mass region between 20 

and 50 for different q  values close to 1 . Our results explain experimental data better than 

those of Gilbert-Cameron (GC) and Rohr, which are two of the leading compilations in 

evaluating nuclear level density.  
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1.INTRODUCTION 
 

 Nuclear structure physics is devoted to the study of the properties of nuclei at low 

excitation energies, where individual energy levels can be solved. This means that 

typically quantum effects are predominant. In contrast, at higher energies and especially 

for heavy-ion reactions, quantum mechanics becomes less important and preeminant 

place is instead given to the methods of statistical mechanics. In all statistical theories, the 

nuclear level density is the most characteristic quantity and plays an essential role in 

predicting the energy levels of nucleus which provides a severe challange to our 

theoretical understanding. A number of related areas of physics and technology are also 

dependent on the studies of the level density. These include nucleosynthesis studies in 

astrophysics, and fission and fusion reactor design. 

Theoretical investigations of level density started with the pionering work of 

Bethe [1,2], in which he has obtained a simple level density formula for a gas of 

non-interacting fermions with equally spaced non-degenerate single particles. Various 

corrections to the model have been added since the work of Bethe. One correction was the 

addition of an energy shift to the energy to include the pairing correlations and shell 

effects[3-9]. It is well known that level density of magic and near magic nuclei cannot be 

well reproduced over a large energy interval by using Bethe formula with constant level 

density parameter a . This problem has been investigated by inclusion of collective 

excitations associated mainly with the statical or dynamical deformation of mean field to 

the level density parameter [10-14]. Furthermore, combinatorial calculations have also 

been performed to solve this problem and, in particular, allowed better reproduction of 

total level densities data coming from counting the neutron resonance spacings and from 

the analysis of evaporation spectra using the independent particle model level density [5, 

12, 15, 16]. Recently, Oslo Group [17, 18], developed a new tecnique to extract level 

density data which is based on γ - decay energy distributions from a number of initial 
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excitation energies, and showed that although, for example, level densities of 26 Al 

exhibits Fermi-Gas behaviour up to 8 MeV of excitation energy [14, 19], those of 56,57 Fe 

measured with Oslo method [20] have more complicated behaviour which cannot be 

described by simple Fermi-Gas formula. The influence of pairing correlations leading 

step structure in vicinity of proton and neutron pairing energies and above might be 

reason of this complicated structure [21]. Hovewer, nonextensive statistical mechanics, 

based on the q -generalized entropy proposed by Tsallis [22] and developed by many 

researhers [23-33], has become powerful tool to deal with some systems which (a) have 

long range interactions, (b) have long range memory effects and (c) evolve in a 

multi-fractal space-time. In particular, it has been succesfully used to study the properties 

of the generalized Bose system and a large number of significant results have been 

obtained [26, 29]. Obviously, it is very meaningful to investigate the properties of a 

generalized Fermi system by using nonextensive statistical mechanics. Since nucleus is a 

Fermi system, it might also be interesting to consider nuclear level density in the 

framework of nonextensive statistical mechanics. In this direction, Lenzi et al. [34] 

established a relation between the clasical q -partition function and the level density 

using q -Laplace transform; for classical ideal gas, they obtained a level density formula 

from inverse q - Laplace transform of partition function which is the same with that of 

derived from Laplace transform of canonical partition function within Boltzmann-Gibbs 

extensive statistics. 

In this work, instead of inverse q -Laplace transform of partition function we use 

a different approach to calculate the level density within statistical mechanics. In this 

approach, we use a relationship between the generalized nuclear level density and the 

standard level density which is obtained by following Curilef's prescription [35] for the 

derivation of the relation between generalized statistical quantity and its standart quantity 

1q→  . Details of this derivation are given in next section. Advantage of this relation is 

that the generalized level density can be calculated directly without using inverse integral 

transform which is not available now. Using this relation and traditional Bethe theory of 

nuclear level density calculations for standart nuclear level density, we obtained a new 

formula for nuclear level density which depends on the entropic index q . This formula 

contains 3 parameter; two from previous theory, i.e. level density and energy shift, and 

one from q -generalized statistics characterized by the parameter q  which is based on the 

so-called Tsallis' entropy. In section 3, the results obtained from generalized nuclear level 

density formula are presented for 12  nuclei in the mass region 50<A<20  and 

compared with the experimental data and two models of Bethe formula. 

 

2.NUCLEAR LEVEL DENSITY 
 

 In this section, we obtain a useful relationship between the generalized level 

density and the standart level density which allows to calculate the generalized level 

density without using q-generalization of inverse Laplace transformation. To this aim, we 

calculate the generalized partition function qZ  in terms of a parametric integral over the 

usual grand canonical partition function ),1)q((Z1 µξβ − .  The grand-canonical partition 

function for 1>q  is obtained by using the Hilhorst integral representation of Gamma 
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function, [35] 

 

 ,ed
)(

1
=

0

1∫
∞

+−−−
+ Γ

ξηνν ξξ
ν

η         (1) 

as 

 ( ).,1)q(Z e d
)(

1
=Z

0

1
1

q ∫
∞

−− −
Γ

µξβξξ
ν

ξν  (2) 

where 1)q1/(= −ν  and )AE1)(q(1= µβη −−++ . The corresponding partition function for 1=q  

can be written in terms of level density regarded as the function of energy E  and the 
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The level density obtained from the inverse Laplace transform of ( )µξβ ,1)q(Z1 −  in Eq.(3) 

for especially ideal fermi gas depends on 
'

β , and therefore q  and ξ , but for classical 

ideal gas it is independent of these parameters. ξ  dependence of 1ρ  also appears in Eq 

(10). The generalized partition function related to the physical system can also be defined 

with respect to level density as  
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Comparing Eq.(4) with Eq.(5), for 1>q  we obtain a relationship between the generalized 

level density and the standard level density  
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The extension of the partition function for 1<q  shown by Prato [36] is  
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which can be derived from another integral representation of Gamma function  
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1>q  case, one can obtain the generalized level density for 1<q   
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At this stage, we need to adopt the relationship appeared in Eq.(9 ) to perform the 
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calculations for nuclear level density, because nucleus is composed of two kinds of 

particles, neutrons and protons. The nuclear level density must now depend on neutron 

number N  and proton number Z . For years, the simple models such as Fermi gas model, 

have been still used to calculate nuclear level density at high energies (or low 

temperatures). The nuclear level density for Bethe theory, 1ρ , is given by  
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where )(g Fε  is total single-particle level spacing of nucleons at Fermi energy and 

)/2(g=)(g=)(g FFnFp εεε . For the case 1<q  (and 1>q ), 
'

β  in Eq.(10) is equal to ξβ )q(1−−   

(and ξβ 1)q( − ). The details of the derivation of Bethe formula for nuclear level density can 

be found in Refs.[1-3, 37]. 

For 1>q  and sufficiently large N , the integral in Eq.(6) diverges when N1/1q +≥ . 

For the case 1,>q  previous works indicate that in the thermodynamic limit ( ∞→N ) 

employing nonextensive statistical mechanics is not suitable to the classical ideal gas [34], 

the classical systems with N  harmonic oscilators [38] and Fermi systems in a general 

power-law external potential [39]. Therefore, in this work, we consider only the case 1<q . 

Replacing the nuclear level density ),Z,N,E(1 ξρ  in the integrand of the Eq.(9), the 

generalized level density for 1<q  is obtained as 
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 and U is the excitation energy above the energy of fully degenerate states 0U , 

i.e. 0UE=U − . One might think that 0U  was simply the ground state, so that U could be 

simply the excitation energy. Malyshev [40] showed that there was a systematic 

difference in the values of a  for neighboring even-even, odd- A , and odd-odd nuclei. In 

another study, Newton [7] also showed that to obtain U  these discrepancies could be 

removed by substracting the pairing energy from the excitation energy. Thus, 

np0 ==U ∆+∆δ , p∆  ( n∆ ) is proton (neutron) pairing energy, and npE=U ∆−∆− . 

 

3.RESULTS AND DISCUSSION 

 

 Our calculations of level density have been performed with using formula in 

Eq.(11) with energy shift δ  that was simply due to pairing. This formula contains 3  
parameters; i.e. one more parameter q  in addition to the parameters of level density 

parameter a  and energy shift δ  (a  and δ  appears in Bethe formula). In general, the 
compilation of the parameters of  Bethe formula is based on the fit of two parameters. The 

fits of Braga-Marcazzan and Milazzo-Colli (BMMC) [41] and that of Rohr [42] were 

starting point. In BMMC compilation, a  values deduced individually for a number of 

nuclei whereas pairing energies of Gilbert-Cameron (GC) [3] determined from semi 
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emprical mass formula were used as the energy shift δ . Rohr compilation is the same 
with BMMC in that of energy shift wheras a  values were fitted to function CA=a +α , 

where A  is the mass number, and α  and C  fitting constants. In GC model, a  values are 
connected to shell correction S  as .CS=A/a +α  Further compilations include the shell and 

collective effects into level density parameter a  [13, 14, 43]. For δ , better results were 
obtained with the parameters of Myers and Swiatecki [44], and Grimes [6]. For energy 

shift ,δ  we use the pairing energy values of GC. The remaining parameters of 

generalized level density formula are the level density parameter a  and the order 

parameter q  which is less than 1  and has a lower limit which depends on level density 

parameter a . In our calculations, we fit only the parameter a  for a fixed value of q  to 

the experimental level density data [45] because the dependence of one parameter on 

another parameter makes difficult to fit both parameters simultaneously.  
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Figure 1. q -dependence of level density for 
24

11 Na at excitation energies 5=E  MeV (solid), 

7=E  MeV (dashed), 9=E  MeV (dotted) 

and 11=E  MeV (dot-dashed). 
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Figure 2. The generalized level density of   
24

11 Na as a function of excitation energy for a 

fixed value of 6=a . The solid, dashed, dotted, 

and dot-dashed lines correspond to ,0.85=q  

,0.9=q  0.95=q  and 0.99=q  

respectively. 

 

The fitting values of a  for a fixed value of q  are given in Table 1 . As q  values are 

getting closer to 1 , we obtained better fitting values for a . Our values of level density 

parameter lie between /15Aa ≈  and /8Aa ≈ , which are the predictions of Fermi Gas 

and the emprical values extracted from average spacings at neutron binding energies [2, 3, 

5, 37, 46], respectively. q  dependence of nuclear level densities at various excitation 

energies for 2411Na is shown in Fig. 1 . Level density increases rapidly at higher energies, 

but the contribution of this parameter shows a different behaviour as away from and close 

to 1. For example, as the excitation energy increases, the level density also increases 

through region where q  takes the values between 0.92  and 1  whereas it decreases for 
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0.92<q .  For the entropix index ,q  there is a lower limit arising from cut-off condition 

which also depends on excitation energy. These limits therefore change with excitation 

energy; higher excitation energy higher the limit value. However, when q  is fixed, the 

cut-off condition produces an upper limit for excitation energy. For various q  values and 

6=a , the level density of 2411Na is plotted as a function of excitation energy and those 

limits are shown in Fig. 2. The variation of level density with energy is different from the 

q  dependence of level density. While the former one increases with increasing q  value, 

the latter one has the same value for different excitation energies at one value of q . 

 

Table.1: Fitted values of  level density parameter a  which are obtained by fixing 
the q values for nuclei in mass region 50A20 << . 

 Nuclei    q    a    Nuclei    q    a   

  Na24    0.98    4.503    S33    0.98    4.927   

  0.99    3.621     0.99    3.733   

  0.9999    2.98     0.9999    2.944   

 Mg25    0.982    4.923    Cl34    0.98    3.223   

  0.99    3.955     0.99    2.882   

  0.9999    3.109     0.9999    2.582   

 Al27    0.985    4.407     0.98    3.736   

  0.99    3.955     0.99    3.26   

  0.9999    3.109     0.9999    2.861   

 Al28    0.98    4.299    Ar38    0.993    4.861   

  0.99    3.36     0.997    4.299   

  0.9999    2.079     0.9999    3.947   

 P31    0.98    3.343    K40    0.98    5.182   

  0.99    2.917     0.99    4.308   

  0.9999    2.56     0.9999    3.635   

 P32    0.98    2.944    Ca41    0.995    4.909   

  0.99    2.661     0.997    4.603   

  0.9999    2.409     0.9999    4.2   

   

In Figs. 3-5, we compare our results obtained from formula in Eq.(11) with the 

results of GC and Rohr models and also with the experimental data [45] for 2411Na, 
25

12Mg, 
27

13Al, 
28

13Al, 
31

15 P, 
32

15 P, 
33

16 S, 
34

17 Cl, 
36

18Ar, 
38

16Ar, 
40

19K and 
41

20Ca. Although the spin effects are 

not taken into account in our model, the generalized level density results are in better 

agreement than those of GC and Rohr models with experimental data. The contribution of 

q  (i.e. nonextensivity) to the behaviour of the level density is significant especially at 

higher excitation energies. The reason for it is that the entropic index q  is a -dependent 

and level densities are sensitive to a  at high excitation energies. The determination of the 

best fitted values of q  close to 1  indicates that level density could not exhibit 

nonextensive character. 
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Figure 3. The level densities of 24Na, 25Mg, 27Al and 28Al for some q  values. 
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Figure 4. The level densities of 31 P, 32 P, 33 S and 34Cl for some q  values. 
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Figure 5. The level densities of 36Ar, 38Ar, 40K and 41Ca for some q  values. 

 

Nevertheless we need to consider the spin effects in our model and also need more 

experimental data to decide whether the physical system might exhibit a nonextensive 

character or not. 

 

4. CONCLUSION 
 

 By using the relation between nonextensive and standart (Boltzmann-Gibbs) 

partition functions for grand canonical ensemble, we derived a similar relation between 

nonextensive and standart level density formula 1<q  and 1>q . From this relation we 

obtained a generalized nuclear level density formula in the framework of Fermi gas 

model for only 1<q . This is consistent with previous works in which they indicate that 

in the thermodynamic limit nonextensive statistical mechanics is not suitable. 

In the light of discussions in previous section, the generalized level density 

formula seems to be appropriate to perform calculations for nuclei with 50.A20 ≤≤  

Especially, at higher energies the level density is sensitive to q , but the effect of 

this parameter decreases at lower energies. However, since it has a lower limit which 

depends on the level density parameter, we should consider the total effects of these 

parameters in the calculations. 
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