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Abstract- In the Euclidean space the Darboux vector may be interpreted kinematically 

as the direction of the instantaneous axis of rotation in the moving trihedron. In this 

paper we mainly study the Darboux vector of ruled surfaces in pseudo-Galilean space. 

We obtain relationships between Darboux and Frenet vectors of each type of ruled 

surfaces in pseudo-Galilean space. Moreover we observe that in the pseudo-Galilean 

space the Darboux vector can be interpreted kinematically as a shear along the absolute 

line.  
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1. I�TRODUCTIO� 

 

 The motion in n-dimensional Galilean space nG  and pseudo-Galilean space 1

n
G    

has the form  
1 1 1 1

1, , ( , 2,3,..., )i i i j i

jx x a x A x A x a i j n= + = + + =& &                   

where i

jA  is an )1()1( −×− nn -orthogonal or pseudo-orthogonal matrix. These formulas 

coincide with the transformation formulas of orthogonal coordinates in the                    

n-dimensional isotropic or pseudo-isotropic space nI  or nI1 , respectively. Thus, the 

isotropic space 4I  is the space-time of classical mechanics of Galilei-Newton. The 

name of Galilean space is explained by the coincidence of the formulas of motion in 4G  

with the transformation formulas of orthogonal coordinates in .4I  Therefore, 

Kotelnikov, who defined the space 4 ,G  believed that it is the space-time of classical 

mechanics of Galilei-Newton, and this opinion was supported by Rosenfeld and 

Maryukova in [5]. 

I. M. Yaglom explained basics of Galilean geometry in [3]. Differential 

geometry of the Galilean space 3G  and especially the geometry of ruled surfaces in this 

space has been largely developed in O. Röschel's paper [6]. Some more results about 

ruled surfaces in  3G  have been given in paper by I. Kamenarovic [4]. Pseudo-Galilean 

space 3

1G  has been explained in details in [1, 8, 9]. 

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries 

equipped with the projective metric of signature (0, 0, +, -), as in [1]. The absolute 

figure of the pseudo-Galilean geometry consists of an ordered triple ),,( Ifω , where 

ω  is the ideal (absolute) plane, f  the real line (absolute line) in ω  and I the fixed 

hyperbolic involution of points of f . 
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A plane is called pseudo-Euclidean plane if it contains f , otherwise it is called 

isotropic. The planes constant=x are pseudo-Euclidean plane and so is the planes .ω  

Other planes are isotropic. A vector 1 2 3( , , )u u u=u  is said to be non-isotropic if 01 ≠u . 

All unit non-isotropic vectors are of the form 2 3(1, , )u u=u . For isotropic vectors 01 =u  

holds. There are four types of isotropic vectors; spacelike if 02

3

2

2 >−uu , timelike if 

02

3

2

2 <− uu   and two types of lightlike vectors if 32 uu ±= . A non-lightlike isotropic 

vector is a unit vector if  12

3

2

2 ±=− uu  [1]. 

Let ( , , )x y z=a  and 1 1 1( , , )x y z=b  be vectors in the pseudo-Galilean space. The 

scalar product is defined by  

1xx=ab                                                                   (1) 

If 0=ap  then ⊥a p  (in the sense of the pseudo-Galilean Geometry) implies, 
2 0≠a  that (0, , )y z=p   is an isotropic vector. 

For special vectors (isotropic) in pseudo-Galilean space (0, , )y z=p  and  

1 1(0, , )y z=q  the scalar product is defined by 

                                              1 1yy zz= −pq  

The orthogonality of these vectors, ⊥p q  means that 0=pq  [1].                          

Let 1 2 3( , , )u u u=u , 1 2 3( , , )v v v=v  be vectors in the pseudo-Galilean space. The 

cross product of the vectors u and v is  

2 3

1 2 3 3 1 1 3 2 1 1 2

1 2 3

0

(0, , ).u u u u v u v u v u v

v v v

∧ = = − −

e e

u v                       (2) 

A trihedron 0 1 2 3( ; ; ; )T e e e , with a proper origin 

                                               0 1 2 3 0 0 0( ; ; ; ) (1: : : )T x y z≈e e e  

is orthonormal in pseudo-Galilean sense if the vectors 1 2 3, ,e e e  are of following forms 

                              1 1 1 2 2 2 3 2 2(1, , ); (0, , ); (0, , )y z y z z yε ε= = =e e e                       (3) 

with δ=− 2

2

2

2 zy , where ,δ ε  is +1 or -1. Such trihedron 0 1 2 3( ; ; ; )T e e e  is called 

positively oriented if 1 2 3det( , , ) 1=e e e  holds for the vectors 1 2 3, ,e e e  i.e. if  .2

2

2

2 ε=− zy  

If a curve C  of the class )3( ≥rC r  is given by the parametrization 

                                         ( ) ( , ( ), ( ))r x x y x z x=  

then x  is a pseudo-Galilean invariant of the arc length on C . The associated invariant 

moving trihedron is given by  

                                       

(1, '( ), '( )),

1
(0, ''( ), ''( )),

1
(0, ''( ), ''( ))

y x z x

y x z x

z x y x

κ

ε ε
κ

=

=

=

t

n

b

                                                 (4) 
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where 22 )('')('' xzxy −=κ   is the curvature and  ]''','','det[
1

2
rrr

κ
τ =  is the torsion. 

Also 1±=ε , chosen by criterion det[ , , ] 1=t n b . 

In contrary to the geometrical interpretation of curvature in Euclidean and 

Galilean space, in pseudo-Galilean case κ  measures the absolute value of the change of 

the angle between tangents in neighbour points. 

The curve )(xr  given by (4) is timelike (resp. spacelike) if ( )xn  is a spacelike 

(resp. timelike) vector. The principal normal vector or simply normal is spacelike if  

1+=ε  and timelike if  1−=ε  [1].  

Frenet formulas may be written as 

                             

0 0

0 0 .

0 0

d

dx

κ

τ
τ

     
     =     
          

t t

n n

b b

                             

A general equation of a ruled surface in 3

1G  is 

                  3( , ) ( ) ( ), , ( ), ( )x v r x v x v R r x x Cϕ = + ∈ ∈a a                                          (5) 

where the curve )(xr  is parametrized by the pseudo-Galilean arc length. 

We say that the ruled surface given by (5) is regular if  

                                    0, 0, 0x v x vϕ ϕ ϕ ϕ≠ ≠ ∧ ≠ . 

According to the absolute figure of 3

1G , we distinguish the following three types 

of ruled surfaces in 3

1G : 

Type I. The ruled surfaces of type I are nonconoidal or conoidal ruled surfaces whose 

directional straight line at infinity is not the absolute line. The striction curve of these 

surfaces does not lie in a pseudo-Euclidean plane; 

 Type II. Ruled surfaces with the striction curve in a pseudo-Euclidean plane; 

 Type III. Conoidal ruled surfaces whose directional straight line at infinity is the 

absolute line. 

 

2. DARBOUX VECTOR OF A RULED SURFACE OF TYPE I  

I� PSEUDO-GALILEA� SPACE 

 

The equation of a ruled surface of type I in 3

1G  is given by the parametrization  

                                                      ( , ) ( ) ( )x v r x v xϕ = + a  

where ))(),(,()( xzxyxxr =  is the directrix curve and 2 3( ) (1, ( ), ( ))x a x a x=a  is a unit 

vector field. The associated trihedron of the ruled surface of type I in pseudo-Galilean 

space is defined by 

                                    

2 3

2 3

3 2

(1, , ),

1
(0, , ),

1
(0, , )

a a

a a

a a

κ

κ

=

′ ′=

′ ′=

t

n

b

                                                         (6) 
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where 2

3

2

2 )()( aa ′−′=κ  is curvature and n  is the central isotropic timelike normal 

vector field. In this study, n  is taken as timelike. If one takes it spacelike, similar 

procedures will be applied.  

The Frenet formulas are as follows:  

                                   

0 0

0 0

0 0

d

dx

κ

τ
τ

     
     =     
          

t t

n n

b b

                                                    (7) 

where 
2

1
det[ , ', '']τ

κ
= − a a a  is the torsion of the ruled surface. 

The shear motion is determined by an angular velocity vector given by Frenet 

vector  

                                              f τ κ= − +t b                                                                (8) 

which satisfies  
d

f
dx
= ∧
t

t ,  
d

f
dx
= ∧

n
n  and 

d
f

dx
= ∧

b
b .   

The Frenet vector of the associated trihedron can be separated into two shear 

motion: b  binormal vector shear with κ  angular speed along the absolute line, that is 

                                              ' ( )κ= ∧t b t  

and n  normal vector shear with τ−  angular speed along the absolute line, that is 

                                             ' ( )τ= − ∧n t n  

The surface frame { }, ,n bO S S  is defined as 

                                   ( ), ,x v
n b n

x v

x
ϕ ϕ
ϕ ϕ
∧

= = = ∧
∧

O a S S S O                                 (9) 

where nS  is the isotropic timelike normal vector of  ruled surface of type I. Let φ   be 

the hyperbolic angle between the isotropic timelike vectors nS  and n . Then we may 

express results in matrix form as 

                                          

1 0 0

0 cosh sinh .

0 sinh cosh

n

b

φ φ
φ φ

     
     =     
          

O t

S n

S b

                                    (10) 

By a straightforward computation, we have  

                                         

1 0 0

0 cosh sinh .

0 sinh cosh

n

b

φ φ
φ φ

     
     = −     
     −     

t O

n S

b S

                                (11) 

Differentiating (10) with respect to x  then substituting (11) and (7) into the 

result, one obtains 

                                     

0 cosh sinh

0 0 .

0 0

n n

b b

d
d

dx
d

κ φ κ φ

φ τ
φ τ

−     
     = +     
     +     

O O

S S

S S

                           (12) 

Thus, from (12) the normal curvature, the geodesic curvature and the relative 
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torsion are given by 

                                              

cosh ,

sinh ,

.

n

g

g

k

k

d

κ φ
κ φ

τ φ τ

=

= −

= +

                                               (13) 

respectively. Substituting (13) into (12), it can be written as  

                                        

0

0 0 .

0 0

n g

n g n

b g b

k k
d

dx
τ

τ

    
    =     
        

O O

S S

S S

                                          (14) 

Moreover the Darboux vector of the ruled surface of type I in pseudo-Galilean 

space is 

                                 g g n n bU k kτ= − + +O S S                                               (15) 

which satisfies   
d

U
dx

= ∧
O

O , n
n

d
U

dx
= ∧

S
S  and  .b

b

d
U

dx
= ∧

S
S   

Notice that relationship between Darboux and Frenet vectors may also be found. 

Since the vectors O  and t  are coincident, one may obtain 't  as 

                                                     ' .U f= ∧ = ∧t O t  

Then simple calculation implies that  

                                                       .U f λ= + t                                                             (16) 

Then from (15) and (8), we have 

                                 .g g n n bk kτ τ κ λ− + + = − + +O S  S t b t  

Finally using (13) and (16), it is obvious that we have the following relationship 

between Darboux and Frenet vectors of the ruled surface of type I in pseudo-Galilean 

space:  

                                        .U f dφ= − t                                                              (17) 

 

3. DARBOUX VECTOR OF A RULED SURFACE OF TYPE II 

I� PSEUDO-GALILEA� SPACE 

 

In this section, we investigate the ruled surface of type II which has striction line 

in pseudo-Euclidean plane. Since the striction line is a base curve, it may also be written 

as        

                                         ( ) (0, ( ), ( )).r x y x z x=                                                   (18) 

The ruled surface of type II in pseudo-Galilean space is parametrized as  

                                            ( , ) ( ) ( )x v r x v xϕ = + a                                                   (19) 

where )(xr  is the directrix curve and 2 3( ) (1, ( ), ( ))x a x a x=a  is a unit vector field. 

The associated trihedron of the ruled surface of type II in the 3-dimensional 

pseudo-Galilean space is defined by 

                                                    

2 3(1, , ),

(0, ', '),

(0, ', ').

a a

z y

y z

=

=

=

t

n

b

                                           (20) 

Then the Frenet formulas are 
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0 0

0 0

0 0

d

dx

κ

τ
τ

     
     =     
          

t t

n n

b b

                                           (21) 

where the curvature and the torsion of the ruled surface in pseudo-Galilean space are, 

respectively 

                                         .
'

''
,2

z

y

z

a
=

′
′

−= τκ                                                    (22) 

The Frenet vector of ruled surface of type II is  

                                               f τ κ= − +t b                                                            (23) 

which satisfies 
d

f
dx
= ∧
t

t ,  
d

f
dx
= ∧

n
n  and 

d
f

dx
= ∧

b
b . For ruled surfaces of type I 

and type II in pseudo-Galilean space we have the same Frenet vector, associated 

trihedron and also surface frame. Therefore (17) holds for ruled surfaces of type II in 

pseudo-Galilean space too. 

 

4. DARBOUX VECTOR OF A RULED SURFACE OF TYPE III 

I� PSEUDO-GALILEA� SPACE 

 

The surfaces of type III are conoidal surfaces with isotropic generator field. 

They can be parametrized by 

                                                     ( , ) ( ) ( )x v r x v xϕ = + a  

where )0),(,()( xyxxr =  is the directrix curve and 2 3( ) (0, ( ), ( ))x a x a x=a  is a unit 

vector field. The associated trihedron of ruled surfaces type III in pseudo-Galilean space 

is defined as  

                                          2 3

3 2

(1, ',0),

(0, , ),

(0, , ).

y

a a

a a

=

=

=

t

n

b

                                                       (24) 

Let θ  be the hyperbolic angle between the plane 0=z  and n ,  then Frenet 

formulas are 

                                 

0 cosh sinh

0 0 1/

0 1/ 0

d

dx

κ θ κ θ

δ
δ

−     
     =     
          

t t

n n

b b

                                   (25) 

where the curvature and the torsion of the ruled surface of type III are, respectively,  

                                               .,''
2

3

a

a
y

′
== δκ  

The Frenet vector of the ruled surface of type III is given by 

                               
1

sinh coshf κ θ κ θ
δ

= − − +t n b                                             (26) 

which satisfies  
d

f
dx
= ∧
t

t ,  
d

f
dx
= ∧

n
n  and 

d
f

dx
= ∧

b
b . 
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 The surface frame { }, ,n bO S S  is defined as 

                                   ( ), ,x v
n b n

x v

x
ϕ ϕ
ϕ ϕ
∧

= = = ∧
∧

O a S S S O  

where nS  is the isotropic timelike normal vector of ruled surface of  type III. Let φ  be 

hyperbolic angle between the isotropic timelike vectors nS  and n .  

We may express the relationship between the frames { }, ,t n b  and { }, ,n bO S S  in 

matrix form as 

                                          

1 0 0

0 cosh sinh .

0 sinh cosh

n

b

φ φ
φ φ

     
     =     
          

O t

S n

S b

                                      (27) 

By a straightforward computation, we have  

                            

1 0 0

0 cosh sinh .

0 sinh cosh

n

b

φ φ
φ φ

     
     = −     
     −     

t O

n S

b S

                                     (28) 

Differentiating (27) with respect to x  then substituting (28) and (25) into the 

result, one obtains 

                                     

0 cosh sinh

0 0 1/

0 1/ 0

n n

b b

d
d

dx
d

κ ψ κ ψ

φ δ
φ δ

−     
     = +     
     +     

O O

S S

S S

                            (29) 

where .ψ φ θ= +  The normal curvature nk , the geodesic curvature gk  and the relative 

torsion gτ  are given by 

                                              

cosh ,

sinh ,

1

n

g

g

k

k

d

κ ψ
κ ψ

τ φ
δ

=

= −

= +

                                                   (30) 

respectively. Substituting (30) into (29), we have  

                                        

0

0 0 .

0 0

n g

n g n

b g b

k k
d

dx
τ

τ

    
    =     
        

O O

S S

S S

                                             (31) 

Moreover the Darboux vector of ruled surface of type III in pseudo-Galilean 

space is 

                                 g g n n bU k kτ= − + +O S S                                                  (32) 

which satisfies  
d

U
dx

= ∧
O

O , n
n

d
U

dx
= ∧

S
S  and  .b

b

d
U

dx
= ∧

S
S   

  

Consequently, it is obvious that we have the following relationship between 

Darboux and Frenet vectors of ruled surface of type III in pseudo-Galilean space: 
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                                                             .U f dφ= − t                                                     (33) 

Example 4.1 Let us now consider the ruled surface of type I in pseudo-Galilean space, 

shown in Figure 1. It can be parametrized by 

1 1
( , ) ( , sinh , cosh ) (1, cosh , sinh )

x x x x
x v x A A v

p p B p B p
ϕ = +  

where  , , , 0, 0, 0A B p A B p∈ ≠ ≠ ≠Rç  and AB p v− > .  

Figure 1
 

     Figure 1 

 

The associated trihedron of the ruled surface of type I in pseudo-Galilean space 

is defined by  

1 1
(1, cosh , sinh ),

(0,sinh ,cosh ),

(0,cosh ,sinh )

x x

B p B p

x x

p p

x x

p p

=

=

=

t

n

b

 

where 
Bp

1
=κ . Frenet formulas are as follows: 

0 1/ 0

0 0 1/

0 1/ 0

Bp
d

p
dx

p

     
     =     
          

t t

n n

b b

 

where 
p

1
=τ   is called the torsion of the ruled surface and Frenet vector is 

                                                 
1

( ,0 ,0).f
p

= −  

Let φ  be the hyperbolic angle between isotropic timelike vectors nS  and n . 
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Using (13), we obtain 

              
1 1 1

cosh , sinh , .n g gk k d
Bp Bp p

φ φ τ φ= = − = +  

Then we have  

1 1 1
( ) sinh cosh .n bU d

p Bp Bp
φ φ φ= − + − +O S S  

 

Consequently, U  takes the form as .U f dφ= − t  

 

5. CO�CLUDI�G REMARKS 

 

G. Darboux was the first to point out the geometric significance of the Darboux 

vector for the natural trihedral of a space curve. The vector, since its discovery, has 

come into great prominence and proved of considerable interest especially in the theory 

of curves and surfaces. A Galilean space is a pseudo-Euclidean space of nullity one and 

it may be considered as the limit case of a pseudo-Euclidean space in which the 

isotropic cone degenerates to a plane. This limit transition corresponds to the limit 

transition from the special theory of relativity to classical mechanics. Consequently we 

shall bear in mind that our geometry arises naturally out of mechanical considerations 

connected with Galileo's principle of relativity. This implies that, in our case, properties 

of geometric significance are really properties of mechanical significance.  
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