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Abstract- Ranked voting data arise when voters select and rank more than one 
candidate with an order of preference. Cook et al.[1] introduced data envelopment 
analysis (DEA) to analyze ranked voting data. Obata et al.[2] proposed a new method 
that did not use information obtained from inefficient candidates to discriminate 
efficient candidates. 
Liu et al.[3] ranked efficient DMUs on the DEA frontier with common weights. They 
proposed a methodology to determine one common set of weights for the performance 
indices of all DMUs. Then, these DMUs were ranked according to the efficiency score 
weighted by the common set of weights. In this paper, we use one common set of 
weights for ranked voting data. 
Key Words- Data envelopment analysis (DEA), Ranked voting data, Ranking of 
candidates, Common weight 
 

1. INTRODUCTION 
 

In the recent papers, we have considered ranked voting data which are obtained when 
voters select and rank more than one candidate. Here, it is assumed that a voter selects 
k(k>0) candidates from a set of ( )m m k  candidates and ranks them from top to the kth 

place. Let ijv  be the number of the jth place votes of candidate i(i=1,...,m, j=1,...,k). A 

preference score Zi, of candidate i should be calculated as a weighted sum of the votes 
with certain weights wj,  i.e., 

1

k

i j ij
j

Z w v


     (1) 

By using data envelopment analysis (DEA) [4], Cook et al.[1] have proposed a method 
for estimating preference scores without imposing any fixed weights on outputs. Each 
candidate's score is calculated with the most favorable weight for the outputs. 
Their formulation is as follows: 
 

Z0
*=Max              01

k

j jj
w v

  

       s.t.                 
1

1,
k

j ijj
w v


                            i=1,...,m.                          (2) 

                           1 ( , ),j jw w d j                     j=1,...,k-1. 

                           ( , ),kw d k   

Where d(., ), called the discrimination intensity function, is nonnegative and non 
decreasing in , and satisfied d(.,0)=0, parameter  is nonnegative. 
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This is solved for each candidate  , ( 1,..., )o o m . The resulting score Z0
* is the 

preference score of the candidate. This model obtains favorable weights that are 
different for each DMU. 
Liu et al. [3] ranked efficient DMUs using common weight but the object of this paper 
is ranked voting in the method of Obata et al. [2] with common weight; therefore, we 
use Liu et al. [3] method. In previous methods, for example method of Cress et al. [1], 
weights changed from one DMU to another DMU. But in the proposed model we have a 
common weight for all of DMUs that makes the model more valuable. Also in the 
proposed model, we solve one linear programming, but in the previous models n linear 
programming had to be solved. 
In this paper we want to rank units by common weights. In section 2, we will introduce 
a method for finding the common weights for this method. We will use CWA-efficiency 
(Common Weights Analysis) method. In section 3, we will propose a ranking rule for 
ranking the candidates. We will give an example for our method in section 4, and 
Section 5 will be comparison with other models. section 6 will provide our conclusion.  

 
2. OUR PROPOSED METHOD 

 
We defined  ijv  to be the number of the jth place votes of candidate i, (i=1,...,m, 

j=1,...,k).  We define DMUi with coordinate (1, vi1,vi2,...,vik) i=1,...,m. Therefore, we 
have m DMUs with k outputs, and a single input with one value. 
In Fig.1, both the vertical and the horizontal axes are outputs. Similar to Liu et al. [3], 
we define the benchmark level in the two-dimensional outputs space as the benchmark 
level (Ox), which is one straight line that passes through the origin with slope 1.0 in 
outputs space. wj (j=1,...,k) in the weighted sum denotes the decision variable of the 
common weights for the outputs. We want to compare the DMUs with the benchmark 
level and obtain the common weights and rank them with these common weights. 

The notation of a decision variable with superscript symbol" "   represents an arbitrary 
assigned value. For any two DMUs, DMUM and DMUN , given one set of weights 

( 1,..., ),i
jw j k  the coordinates of points M    and  N   in Fig.1 are 

1
( )

k

j Mjj
w v


    and 

1
( )

k

j Njj
w v


 ,  respectively. The virtual gaps between points M   and PM  the 

horizontal and vertical axes are denoted by 1
M , 2

M  , respectively. Similarly, for points 

N   and PN  the gaps are denoted 1
N , 2

N , respectively. Therefore, in view of points 

M   and N  , we observe that there exists a total virtual gap 1
M + 2

M + 1
N + 2

N ,  to the 

benchmark line. Let the notation of a decision variable with superscript " * " represent 
the optimal value of the variable. 
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Figure 1. Gap analysis showing the DMUs below the virtual benchmark line. 

 
We want to determine an optimal set of weights wj

*(j=1,...,k) so that both points M* and  
N* below the benchmark line could be as close to their projection points, M*P  and N*P  
on the benchmark line, as possible. In other words, by adopting the optimal weights, the 
total virtual gap *1

M + *2
M + *1

N + *2
N , to the benchmark line is shortest to both DMUs. 

As for the constraint, the weighted sum of outputs plus the vertical virtual gap 
( 1,..., )i i m   equals 1. This constraint implies that the direction closest to the 

benchmark line is upwards and rightwards at the same time. This equality to 1 in the 
constraint means that the projection point on the benchmark line is reached.     is a 
positive non-Archimedean infinitesimal constant. We also avoid a case of zero value of 
indices obtained by choosing the set of zero weights. 
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 *=Min             
1

m

ii
  

       s.t.                 
1

1,
k

j ij ij
w v


                   i=1,...,m,                          (3) 

                           1 ( , ),j jw w d j                     j=1,...,k-1, 

                           ( , ),kw d k    

                           0,i                                       i=1,...,m.                           

 
(3) could be rewritten as the equivalent linear programming problem (4) by the 
following equation: 
 

 i=1-
1

,
k

j ijj
w v

  

1

m

ii
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1 1 1 1 1
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Min 
1

m

ii
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1 1

m k

j iji j
w v m Max

 
       

1 1

m k

j iji j
w v

    

m- *=Max                  
1 1

m k

j iji j
w v

    

s.t.                                
1

1,
k

j ijj
w v


               i=1,...,m,                                            (4) 

                                    1 ( , ),j jw w d j          j=1,...,k-1, 

                                    ( , ),kw d k   

 
So (3) translates to the following model: 
We need dual of model (4) for a better analysis. Here, we use  | 1,...,i i m   as the 

standard dual variable associated with the m first constraints, and the variables 

 , | 1,..., 1j k i k     are the dual variables associated with the k-1 and first, second 

and third constraints. In order to obtain more information, we transform (4) to its dual 
form (5). 
 

Min                     
1 1

( , )
m k

i ji j
d j  

 
     

s.t.                        1 1 11 1
,

m m

i i ii i
v v 

 
                                                               (5) 

                            11 1
,

m m

i ij j j iji i
v v   
                       j=2,...,k, 

                            0,i                                                          i=1,...,m,                

                                  0,j                                                         j=1,...,k,                                        

 
We can rank voting for each DMU using models (4), (5). In these model j  is value of 

reference share of jDMU  and value of j  can be used for ranking candidates. 
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3. PROPOSED RANKING RULE 
 

First, we solve models (4) and (5) and obtain w*=(w1
*,...,wk

*), *  and * * *
1( ,..., )m   , 

which are the optimal solutions. Then, we calculate the preference score of the DMU 

under evaluation (DMU0). That is, we obtain * *
0 01

k

j jj
Z w v


  

By the value of Z0
*, we can rank the voting data.  

Definition 1: Candidate i has the first rank if Z0
*=1.  

Definition 2: The preference score of candidate is better than that of candidate j if 
* *
i jZ Z . 

Definition 3:  If  * * 1i jZ Z  , then the preference score of candidate i is better than that 

of candidate j,  if * *
i j   . 

Definition 4:  If * * 1i jZ Z  , then the preference score of candidate i is better than that 

of candidate j,  if * *
i j   . 

We can be sure that there exists at least one candidate that has a preference score of 1.0. 
Theorem 1: There is at least one candidate such as DMUi(i=1,...,m), with 

* *

1
1.

k

i j ijj
Z w v


   

Proof: We will use contradiction to prove the existence of the above theorem. Assume 
that there is not a candidate that has a preference score of 1.0. So, there is * 0i  so 

that * *

1
1,

k

j ij ij
w v


     i=1,...,m.  

We can obtain ai>1so that   
1

1,
k

i j ijj
a w v


   i=1,...,m. Let a be the minimum of set 

 | 1,...,ia i m  Then we can obtain another feasible common set of weights wj leads to 

a smaller objective function, and this contradicts the assumption. Hence, there is at 
least one candidate with Z0

*=1.  

 
4. NUMERICAL EXAMPLE 

 
We assume that 10 people take part in a voting. Each person can vote for three 
candidates. We can see the data obtained from this voting in Table 1. 
 

Table 1. Voting data  
Third  vote Second  vote Firs t vote candidates 

2 
7 
10 
2 
1 
7 
3 
5 
7 
3  

3 
9 
5 
7 
2 
2 
4 
10 
6 
2 

5 
10 
1 
6 
3 
5 
1 
9 
2 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
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In this paper, vij denotes the number of the jth place votes of candidate   (i=1,...m, 
j=1,...,K). Also we define DMUi=(1,vi1, vi2,...,vik). Therefore, we have 10 DMUs with 3 

outputs and a single input with one value.  
 

Table 2. DMUs 
vi3  vi2  vi1 DMU 

1 
2 
2 
0 
1 
0 
2 
0  
0 
1  

0 
3 
1 
1 
1 
1 
1 
0 
1 
1 

3 
1 
1 
0 
2 
1 
0 
0 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 
In Table 2, the coordinate of DMU8 is (0,0,0), which means that nobody has voted for it 
so, it has the last rank and we exclude it from the evaluation. After solving models (4), 
(5), the following results are obtained (see Table 3). 

)142851.0,142861.0,285716.0(),,( *
3

*
2

*
1

*  wwww  
 

Table 3. Results 
DMUj Zj

* *
j  *

j  Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.00000 
1.00000 

0.714279 
0.142861 
0.857144 
0.428577 
0.428562 

- 
0.428577 
0.571428 

0.000000 
0.000000 
0.285721 
0.857139 
0.142856 
0.571423 
0.571438 

- 
0.571423 
0.428572 

2.21 
3.35 
0.00 
0.00 
0.00 
0.00 
0.00 

- 
0.00 
0.00 

2 
1 
4 
8 
3 
6 
7 
8 
6 
5 

 
Note that DMU6 and DMU9 have the same coordinate; therefore, both of them are in 
rank 6. 

5. COMPARISON WITH OTHER MODELS 
 

In this section, we intend to compare proposed  model to the mentioned ones.  Therefore 
we apply given data in Obata et al.[2] in Table 4. We consider 0)(., d as Cook and 
Kress did. 
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Table 4. Sample data(m=6,k=2) 
Candidate First rank Second rank 

A 
B 
C 
D 
E 
F 
G 

32 
28 
13 
20 
27 
30 
0 

10 
20 
36 
27 
19 
8 

30 

The results of model (1) from Cook et al. [1] are showed in table 5. 
 
 

Table 5. Results of  Cook and Kress’s model 
DMUj A             B             C               D             E             F              G 

Zj
* 1.0000    1.0000     1.0000     0.9693    0.9611    0.9375      0.6122 

 
The feasible solutions of Cook and Kress’s model on the weight space are 

4321 ,,, wwww so 

that )49/1,49/1(),748/15,187/4(),90/1,36/1(),0,32/1( 4321  wwww . The 

longest sets of favorable weight vectors for the candidates A, B and C are 
],[],,[],,[ 433221 wwPwwPwwP CBA  , respectively, where ],[ ji ww  means a line 

segment from iw  to jw . 

Obata et al. [2] scaled these weights to: 
)2/1,2/1(ˆ),31/15,31/16(ˆ),7/2,7/5(ˆ),0,1(ˆ 4321  wwww  

When the 1L -norm was used, the preference scores of A,B and C on their own territory 

were estimated  ]ˆ,ˆ[],ˆ,ˆ[ 3221 wwww  and ]ˆ,ˆ[ 43 ww , respectively. The results showed that  

the score of A is maximum at 1ŵ  and the normalized preference score was .32ˆ 
Az  

Similarly, 714.25ˆ 
Bz (at 2ŵ ) and 5.24ˆ 

Cz (at 4ŵ ). So Obata et al. [2] could judge 

that the winner was candidate A, and was followed by B then C. Obata et al. [2]  could 
rank the efficient candidates. 
Now, by solving model (4) with data of table 4, one could obtain 

)020053.0,021390.0(),( 21 ww . Then, 
jz  is calculated from (1). Their results are 

shown in the second column in table 6. In this method, there are just two efficient 
candidates. For ranking efficient candidates, model (5) is solved and 

j  (j=B,C),  

60.161.4  
CB   are obtained; therefore, the winner is candidate B. Ranking of all 

candidates is shown in the last column of table 6. 
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Table 6. Results of the proposed model 
DMUj Zj

* *
j  *

j  Rank 

A 
B 
C 
D 
E 
F 
G 

0.885027 
1.000000 
1.000000 
0.969200 
0.958556 
0.802139 
0.601604 

0.114973 
0.000000 
0.000000 
0.030749 
0.041440 
0.197861 
0.398396 

 

0.00 
4.61 
1.60 
0.00 
0.00 
0.00 
0.00 

 

5 
1 
2 
3 
4 
6 
7 

 
Previous models solved one LP for each candidate and obtained one weight 
corresponding with each LP for the evaluated candidate. Although, proposed method 
solved just one LP for all candidates with a common set of weights.  
The results of Obata’s model are almost the same as those of   proposed model; 
however, they are different in ranking. It's worth mentioning that our model has less 
series of calculations and applied just one common set of weights for all candidates.         

 
6. CONCLUSION 

 
In this paper, we have briefly surveyed ranked voting data and its analysis with DEA. 
Our model is based on the ranking of units by DEA with common weights. This paper 
obtains one common set of weights that is the most favorable for determining the 
absolute efficiency for DMUs at the same time. As for its practical application, this 
methodology is aimed at the ranking of voting data. New ranking rules, obtained from 
absolute efficiency, could help decision makers understand the performance of 
candidates. The CWA (Common Weights Analysis) methodology helps us in ranking 
voting data. 
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