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Abstract- In this Letter, the  /G G -expansion method is proposed to seek exact 

solutions of nonlinear evolution equations. For illustrative examples, we choose the 
compound KdV-Burgers equation, the compound KdV equation,  the KdV-Burgers 
equation, the mKdV equation. The power of the employed method is confirmed. 
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1. INTRODUCTION 
 
Nonlinear evolution equations (NLEEs) have been the subject of study in 

various branches of mathematical–physical sciences such as physics, biology, 
chemistry, etc. The analytical solutions of such equations are of fundamental 
importance since a lot of mathematical–physical models are described by NLEEs. 

In recent years, searching for explicit solutions of NLEEs by using various 
methods has become the main goal for many authors. Many powerful methods to 
construct exact solutions of NLEEs have been established and developed  1 10 . But 

up to now a unified method that can be used to deal with all types of NLEEs has not 
been discovered. 

Recently, Wang et al.  11 introduced an expansion technique called the 

 /G G -expansion method and they demonstrated that it is powerful technique for 

seeking analytic solutions of nonlinear partial differential equations. It has been shown 
that the proposed method is direct, concise, basic and effective. Applications of the 
method can be found in  12 22 .  

Our aim in this paper is to present an application of the  /G G -expansion 

method to the compound KdV–Burgers-type equations. 
 

2. DESCRIPTION OF THE  /G G -EXPANSION METHOD 

We suppose that a nonlinear equation, say in two independent variables x  and t , 
is given by 
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   , , , , , ,... 0                                                                                1x t xx xt ttP u u u u u u 

where  ,u u x t is an unknown function, P  is a polynomial in  ,u u x t  and its 

various partial derivatives, in which the highest order derivatives and nonlinear terms 
are involved. In the following we give the main steps of the  /G G -expansion method. 

Step 1. Seek traveling wave solutions of Eq.  1  by taking    ,u x t U   , x Vt   , 

where V  is the wave speed, and transform Eq.  1  to the ordinary differential equation 

   2, , , , ,... 0                                                                         2Q U U VU U V U    

where prime denotes the derivative with respect to  . 

Step 2. If possible, integrate Eq.  2  term by term one or more times. This yields 

constant(s) of integration. For simplicity, the integration constant(s) can be set to zero. 
Step 3. Introduce the solution  U   of Eq.  2  in the finite series form 

        
0

/                                                                           3
N

m

m
m

U a G G  


 
where ma  are real constants with 0Na  to be determined. The function  G  is the 

solution of the auxiliary linear ordinary differential equation 

       0                                                                            4G G G       

where   and  are real constants to be determined. Eq.  2  can be changed into  

       2
/ / /                                                               5

d
G G G G G G

d
 


     

Step 4. Determine N. This, usually, can be accomplished by considering homogeneous 
balance between the highest order derivatives and nonlinear terms appearing in Eq.  2 . 

Step 5. Substituting  3 together with  4  into Eq.  2  yields an algebraic equation 

involving powers of  /G G . Equating the coefficients of each power of  /G G   to 

zero gives a system of algebraic equations for , ,  and ia V  . Then, we solve the system 

with the aid of a computer algebra system (CAS), such as Mathematica, to determine 
these constants. On the other hand, depending on the sign of the discriminant 

2 - 4   , the solutions of Eq.  4  are well known to us. Then substituting 

, ,  and ia V  and general solution of Eq.  4 into Eq.  3 ,we have more travelling wave 

solutions of the nonlinear evolution Eq.  1 . 

 
3. THE COMPOUND KDV-BURGERS EQUATION 

 
Let us consider the Compound KdV-Burgers equation 

 2 0                                                                     6t x x xx xxxu puu qu u ru su    

where ,  ,  ,  p q r s   are constants. This equation can be thought of as a generalization of 
the KdV, mKdV and Burgers equations, involving nonlinear dispersion and dissipation 
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effects. The KdV-type Eq.  6   have some application in quantum field theory, plasma 

physics and solid-state physics 23 26 .  

As particular cases,  

 i when 0r   and , , 0p q s   Eq.  6 becomes the compound KdV equation 

 2 0                                                                               7t x x xxxu puu qu u su   

 ii  when 0p   and , , 0q r s   Eq.  6 becomes the KdV-Burgers equation 

 2 0                                                                                  8t x xx xxxu qu u ru su   

and  

 iii  when , 0p r   and , 0q s  in Eq.  6 , then we get the mKdV equation 

 2 0.                                                                                           9t x xxxu qu u su  

is obtained 23 . Now, we introduce the variable x Vt    and make transformation 

   ,u x t U   , to reduce Eq.  6 to the ODE 

 2 0,                                                             10VU pUU qU U rU sU        
integrating it with respect to ξ once yields 

 2 3 0,                                                      11
2 3
p q

VU U U rU sU C       

where C  is integrating constant. Assume that the solution of Eq.  11  can be expressed 

as an ansatz  3  together with  4 .Then, balancing the terms  3U and U   in Eq.  11 , 

we get 3 2  m m   which yields the leading order 1N  . Therefore, we can write the 
solution of Eq. (18) in the form 

   0 1 1/ ,    0.                                                                             12U a a G G a  

By  4 and  12 we derive that 

        3 2 2
1 1 1 1 12 / 3 / 2 /                           13U a G G a G G a a G G a          

Substituting    12 13  into  11 and setting coefficients of  /
m

G G  1,2,.., 4m  to 

zero, we obtain following undetermined system of algebraic equations for 

0 1, , ,  and a a C   : 

 0
/ :G G

2 3
0 0

0 1 12 3

pa qa
C Va r a s a       

 1/ :G G 2 2
1 1 1 1 0 1 0 12Va r a s a s a pa a qa a         

 2
/ :G G

2
21

1 1 0 13
2

pa
ra s a qa a     

 3
/ :G G

3
1

12
3

qa
sa   

Solving the above system with the aid of Mathematica, we obtain following two results:  
Case 1:                                                                                                                         
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 

   

2

0 0 1 0 1
1 0 1

1

2 3 2 2
0 0 0 1 0 1 0 1 1

1
4 12 6 6 2

6

2 26
, 0,    , ,  

6

1
4 3 4 4 2                                     14

6

V r s pa qa p a q a a
r pa qa as

s q a
q s

C r a pa qa r a p a a q a a p a

   

    

      
  

  

       



where 0a  and   are arbitrary constants. Substituting  14 together with the solutions of 

Eq.  4  into  12 , we have three types of travelling wave solutions of the Compound 

KdV-Burgers equation as follows: 
When 2 4 0   , we obtain hyperbolic function solution 

 
   

   
 

2 2

2
1 2

1,2
2 2

1 2

4 4
sinh cosh4 66 3 2 2 15

6 2 4 4
cosh sinh

2 2

   
C Csqr sq sp

U
sq q

C C

   
  

   
 

 


 
 



  
           
  

  



where
2

0 0 1 0 14 12 6 6 2
  t

6

r s pa qa p a q a a
x

  
      

   
 

and 1 2,C C  are two arbitrary 

constants. 
When 2 4 0   , we have trigonometric function solution  

 
   

   
 

2 2

2
1 2

3,4
2 2

2 1

4 4
cos sin4 66 3 2 2 16

6 2 4 4
cos sin

2 2

C Csqr sq sp
U

sq q
C C

   
  

   
 

 


 
 



  
                  

  

where
2

0 0 1 0 14 12 6 6 2
  t

6

r s pa qa p a q a a
x

  
      

   
 

and 1 2,C C  are two arbitrary 

constants. 
When 2 4 0   , we get rational solution 

 2
5,6

1 2

6 3 6
                                                             17

6

r sq sp sq C
U

sq q C C 

    
            



where
2

0 0 1 0 14 12 6 6 2
  t

6

r s pa qa p a q a a
x

  
      

   
 

 and 1 2,C C  are two arbitrary 

constants. 
Case 2: 

   2
1 0 0 0 1

2 1
, 0,  , 0,    ,   ,   C= 2 2          18

2

r
s q p r a V r pa r a pa r a

p
          

where 0 ,a   and   are arbitrary constants. Substituting  18  together with the solutions 

of Eq.  4  into  12 , we have three types of travelling wave solutions of the Compound 

KdV-Burgers equation as follows: 
When 2 4 0   ,  
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 
   

   
 

2 2

2
1 2

7
2 2

1 2

4 4
sinh cosh4 2 2          19

4 4
cosh sinh

2 2

C CrV
U

p p
C C

   
  

   
 

        
   

 
where  0x pa r t    and 1 2,C C  are two arbitrary constants. 

When 2 4 0   ,  

 
   

   
 

2 2

2
1 2

8
2 2

2 1

4 4
cos sin4 2 2              20

4 4
cos sin

2 2

C CrV
U

p p
C C

   
  

   
 

        
   

 
where  0x pa r t     and 1 2,C C  are two arbitrary constants. 

When 2 4 0   ,  

 2
9

1 2

2
                                                                                   21

CV r
U

p p C C 
 

    
where  0x pa r t    and 1 2,C C  are two arbitrary constants. 

 
4.THE COMPOUND KDV EQUATION 

 
Let us consider the Compound KdV equation 

 2 0                                                                            22t x x xxxu puu qu u su   

where ,  and p q s arbitrary real constants with , , 0p q s  .Now, letting    ,u x t U   , 

x Vt    in  22 , to reduce Eq.  22 to the ODE 

 2 0,                                                                       23VU pUU qU U sU       

integrating it with respect to ξ once yields 

 2 3                                                                240,    
2 3
p q

VU U U sU C     

where C  is integrating constant. Assume that the solution of Eq.  24  can be expressed 

as an ansatz  3  together with  4 . Balancing the terms  3U and U   in Eq.  24  , 

3 2  m m  , yields the leading order N = 1. Therefore, we can assume the solution of 
Eq.  24 in the form 

   0 1 1/ ,    0.                                                                              25U a a G G a  

By  4  and  25  we derive that 

        3 2 2
1 1 1 1 12 / 3 / 2 /                          26U a G G a G G a a G G a          

Substituting    25 26  into  24 , setting coefficients of  /
m

G G  1,2,.., 4m  to 
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zero, we obtain following undetermined system of algebraic equations for 

0 1, , , ,a a C   : 

 0
/ :G G

2 3
0 0

0 12 3

pa qa
C Va s a     

 1/ :G G 2 2
1 1 1 0 1 0 12Va s a s a pa a qa a       

 2
/ :G G

2
21

1 0 13
2

pa
s a qa a    

 3
/ :G G

3
1

12
3

qa
sa   

Solving the above system with the aid of Mathematica, we obtain following results: 

 

   

20
1 0 0 1

1

2 2
0 0 1 1

26 1
0,     ,    ,     12 4 2  ,   

6

1
 C=                                                                                   27

6

p qas
q a V s pa qa p a

q qa

pa p a a p a

  

 


       

 



where  0a  and   are arbitrary constants. 

Substituting  27  together with the solutions of Eq.  4  into  25 , we get three types of 

travelling wave solutions of the Compound KdV equation as follows: 
When 2 4 0   , 

 
   

   
 

2 2

2
1 2

1,2
2 2

1 2

4 4
sinh cosh4 6 2 2     28

2 2 4 4
cosh sinh

2 2

C Csqp
U

q q
C C

   
  

   
 

 



 



 
 

   
       

 



where
2

0 0 112 4 2
  

6

s pa qa p a
x t

 
    

   
 

and 1 2,C C  are two arbitrary constants. 

When 2 4 0   , 

 
   

   
 

2 2

2
1 2

3,4
2 2

2 1

4 4
cos cosh4 6 2 2                   29

2 2 4 4
cos sin

2 2

C Csqp
U

q q
C C

   
  

   
 

 



 



 
 

   
       

 

  

 

where 
2

0 0 112 4 2

6

s pa qa p a
x t

 
    

   
 

and 1 2,C C  are two arbitrary constants. 

When 2 4 0   , 

 2
5,6

1 2

6
                                                                         30

2

sq Cp
U

q q C C 
 

   


where
2

0 0 112 4 2
  

6

s pa qa p a
x t

 
    

   
 

 and 1 2,C C  are two arbitrary constants. 
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5. THE KDV-BURGERS EQUATION 
 
Let us consider the KdV-Burgers equation 

 2 0                                                                               31t x xx xxxu qu u ru su   

where ,  and p r s arbitrary real constants with , , 0q r s  .Now, letting    ,u x t U   , 

x Vt    in  31 , to reduce Eq.  31 to the ODE 

 2 0,                                                                      32VU qU U rU sU      
integrating it with respect to ξ once yields 

 3 0,                                                                          33
3

q
VU U rU sU C      

where C  is integrating constant. Assume that the solution of Eq.  33  can be expressed 

as an ansatz  3  together with  4 .Then, balancing the terms  3U  and U   in Eq.  11 , 

we get 3 2  m m   which yields the leading order 1N  . Therefore, we can assume 
the solution of Eq.  33 in the form 

   0 1 1/ ,    0.                                                                              34U a a G G a  

By  4  and  34  we derive that 

        3 2 2
1 1 1 1 12 / 3 / 2 /                          35U a G G a G G a a G G a          

Substituting    34 35  into  33 , setting coefficients of  /
m

G G  1,2,.., 4m  to 

zero, we obtain an undetermined system of algebraic equations for 0 1, , , ,a a C   . 

Solving this system with the aid of Mathematica, we obtain following results. 

 

   

20 1
1 0 0 1

3 2
0 0 1 0 1

6 1
, 0,     ,    ,     2 6 3  ,   

3 3

1
 C= 2 2 2                                                                36

3

r qa as
s q a V r s qa q a a

q s

r a qa r a q a a

   

  

 
       

   



where  0a  and   are arbitrary constants. Substituting  36  together with the solutions 

of Eq.  4  into  34 , we get three types of travelling wave solutions of the KdV-

Burgers equation as follows: 
When 2 4 0   ,

   
   

   
 

2 2

2
1 2

1,2
2 2

1 2

4 4
sinh cosh4 66 2 2            37

6 2 4 4
cosh sinh

2 2

C Csqr sq
U

sq q
C C

   
  

   
 

 


 
 



  
  
  
  
      

  

where
2
0 0 12 6 3

  
3

r s qa q a a
x t

  
    

   
 

 and 1 2,C C  are two arbitrary constants. 

When 2 4 0   , 
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 
   

   
 

2 2

2
1 2

3,4
2 2

2 1

4 4
cos sin4 66 2 2            38

6 2 4 4
cos sin

2 2

C Csqr sq
U

sq q
C C

   
  

   
 

 


 
 



  
  
  
  
      



where
2
0 0 12 6 3

  
3

r s qa q a a
x t

  
    

   
 

 and 1 2,C C  are two arbitrary constants. 

When 2 4 0   , 

 2
5,6

1 2

6 6
                                                              39

6

r sq sq C
U

sq q C C 
  

      


where 
2
0 0 12 6 3

3

r s qa q a a
x t

  
    

   
 

 and 1 2,C C  are two arbitrary constants. 

 
6.  THE MKDV EQUATION 

 
Let us consider the  mKdV equation 

 2 0.                                                                                        40t x xxxu qu u su  

where  and q s arbitrary real constants with , 0q s  . Now, letting    ,u x t U  , 

x Vt    in  40 , to reduce Eq.  40 to the ODE 

 2 0,                                                                                  41VU qU U sU     
integrating it with respect to ξ once yields 

 3 0,                                                                                    42
3

q
VU U sU C    

where C  is integrating constant. Assume that the solution of Eq.  42  can be expressed 

as an ansatz  3  together with  4 .Then, balancing the terms  3U and U   in Eq.  42 , 

we get 3 2  m m   which yields the leading order 1N  . Therefore, we can assume 
the solution of Eq.  42 in the form 

   0 1 1/ ,    0.                                                                              43U a a G G a  

By  4  and  43  we derive that 

        3 2 2
1 1 1 1 12 / 3 / 2 /                          44U a G G a G G a a G G a          

Substituting    43 44  into  42 , setting coefficients of  /
m

G G  1,2,.., 4m  to 

zero, we obtain an undetermined system of algebraic equations for 0 1, , , ,a a C   . 

Solving this system with the aid of Mathematica, we obtain following results. 

   20
1 0

1

26 1
0,     ,    ,     6  ,   0                            45

3

as
q a V s qa C

q a
       

where  0a  and   are arbitrary constants. 
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Substituting  45  together with the solutions of Eq.  4  into  43 , we obtain three types 

of travelling wave solutions of the mKdV equation as follows: 
When 2 4 0   , 

 
   

   
 

2 2

2
1 2

1,2
2 2

1 2

4 4
sinh cosh6 4 2 2               46

2 4 4
cosh sinh

2 2

C Csq
U

q
C C

   
  

   
 

 



 



 
 
 
 
  
 



where 
2
06

3

s qa
x t


  

   
 

and 1 2,C C  are two arbitrary constants. 

When 2 4 0   ,  

 
   

   
 

2 2

2
1 2

3,4
2 2

2 1

4 4
cos sin6 4 2 2                   47

2 4 4
cos sin

2 2

C Csq
U

q
C C

   
  

   
 

 



 



 
 
 
 
  
 



where 
2
06

3

s qa
x t


  

   
 

and 1 2,C C  are two arbitrary constants. 

When 2 4 0   , 

 2
5,6

1 2

6
                                                                                48

sq C
U

q C C 
 

   


where 
2
06

3

s qa
x t


  

   
 

 and  1 2,C C  are two arbitrary constants. 

7. CONCLUSIONS 
 

In this paper we have seen that three types of travelling solutions of the 
compound KdV-Burgers types equations, namely, the compound KdV-Burgers 
equation, the compound KdV equation,  the  KdV-Burgers equation, and the mKdV 
equation, are successfully found out by using the  /G G -expansion method. 

Advantages of this method is being direct, concise, more powerful and effective.  
The performance of this method is reliable and allows us to solve complicated and 
tedious algebraic calculation. This verifies that the method can be used for many NLEEs 
in mathematical physics. 
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