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Abstract- This article presents a new approach for obtaining the change point in the 

hazard function. The proposed approach is developed with the Bayesian estimator. 

Using a simulation study, mean value and mean square error (MSE) of proposed 

estimator are obtained and compared with the mean and MSE of traditional estimators. 

It is showed that the proposed estimator is more efficient than the traditional estimators 

in many cases. Furthermore,  a numerical example is discussed to demonstrate the 

practice of the proposed estimator.  
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1. INTRODUCTION 

 

Let T denote an independent identically disrtributed random variable of survival 

times. The hazard model of T is given by 
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where >0, >0, >0,  and  are hazard rates, and  is the change point. Hence, the 

hazard function, h(t), is assumed to have a constant value  until time , and a constant 

value  after time . Therefore, obtaining a correct estimate of the change point plays an 

important role in medical and biological researches. Some recent studies in these fields 

are given as Gupta et al. [1], Tabnak et al. [2], Faucett et al. [3], Gijbels and Gurler [4], 

Lin [5], Daniel and Nader [6], Karasoy and Kadilar [7], etc.  

It is well known that the probability density function and survival function of a 

random variable T are given by  
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and  
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respectively. Note that f(t) and S(t) have a jump point at  [8,9,10]. 

This article is organized as follows. Section 2 introduces the available traditional 

estimates of . In Section 3, my proposed estimator is presented. A simulation study is 
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performed and the results of this simulation are discussed in Section 4. In Section 5, I 

present a numerical example to demonstrate the application of my proposed estimator.  

 

2. TRADITIONAL ESTIMATORS 

 

Let T1, …, Tn be a random sample from (1). From this point onwards, without loss 

of generality, assume that T1 … Tn, in other words, after making suitable 

rearrangement the order statistics, T1, …, Tn, can always be observed.  

Nguyen et al. [11] obtained a consistent estimator of  in the model (1) as follows: 
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and variance of the righ-hand portion of the sample, respectively. Here I is an indicator 

function and the survival times, T1,…,Tn, are ordered as T1…Tn. A value of t for 

which Xn(t) is close to 0 is a candidate for an estimate of . This method will be 

abbreviated as NRW in the rest of the article.   

Basu et al. [12] presented two estimators for the change point, namely 

 1BGJ̂  = inf{t0: yn(t + hn) –  yn (t )   hn ̂  + n},                    (4) 

 2BGJ̂ = inf{t0: – yn (t)  – log(1 – p0)   ̂  (
0p̂  –  t) +  n },            

where ̂  and 
0

ˆ
p  are the estimates of  and 

0p , respectively; 10 p ; 

    tSty nn log ;  n
n

c
n log ; 

4

1

n
hn  . Here 

0p  is the p0-th population 

quartile and c is a constant. Note that   in (1) for this method, which is abbreviated 

as BGJ in the rest of this article. 

 The motivation for these estimates are as follows. Consider the hypothesis testing 

problem: 

 H0: h(t) =  

 H1: h(t) >  

If )(ˆ thn  is a consistent estimator of h(t) then one can construct tests by accepting H0 if 

nn th  β̂)(ˆ . Then the smallest t for which H0 is accepted would be a candidate for an 
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estimate of . For 1BGJ̂ , take 
n
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In addition, Basu et al. [12] found 1BGJ̂  to be more efficient than 2BGJ̂  by simulation, 

so I take only 1BGJ̂  for the simulation study in this article. 

Ghosh and Joshi [13] also investigated the asymptotic distributions of BGJ1 and 

BGJ2 . 

Ghosh et al. [14] considered the following likelihood function: 

 L(, , t \ D) =          tQTtRntQtR totee
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where D denotes the data {T1,…,Tn} with T0 = 0 and Tn+1 = ; A(t) =  
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. This method will be abbreviated as GJM in the rest of the article. 

In GJM, the non-informative prior distribution is given by 

 (, , t) = 
1


 .                     (6) 

Multiplying (5) and (6), the posterior distribution is obtained as 

(, , t \ D)           tQTtRntQtR totee
  11                   (7) 

and using (7), the marginal posterior distribution for the change point was given by 
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A value of t which maximizes (8) is a candidate for the estimate of . Note that > 

in (1) for this method. Ghosh et al. [15] proved that the posterior distribution of ,  

and t were asymptotically independent of each other. 

Achcar and Loibel [8] defined a uniform prior distribution for  and  in (6) as 

 (, , t) = 
αβ

1

n

1
,                    (9) 

and showed that the choice of informative prior densities gave very accurate inference 

results on the data set for a medical research study. 
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Karasoy and Kadilar [16] used the least square estimates of  and  given by Gijbels 

and Gurler [4] in place of  and  in (6). They obtained the posterior distribution using 

  ,,itL  function given by Gijbels and Gurler [4]. Similar to the estimator in GJM, a 

value of t, which maximizes the posterior distribution, is a candidate for the estimate of 

. This method will be abbreviated as KK in the rest of the article.   

 

3. PROPOSED ESTIMATOR 

 

Considering the definition of the prior distribution, (6), as in GJM, and another prior 

distribution, (9), as suggested by Achcar and Loibel [8], I decide to use a prior 

distribution defined in KK with the least square estimates of  and  given by Gijbels 

and Gurler [4] in place of  and  in (6) as follows:   
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(for details, see Gijbels and Gurler [4]). 

It is clear that  it̂  and  it̂  are the least squares estimates of  and , 

respectively, for each ti; tij = ti / tj for tj > ti , j = 1,2,…,n. 

I obtain the posterior distribution for the change point in (1) by following the path 

described in Section 2, as follows:  

 (t D)  
   
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ii
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1
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where  itL  is a likelihood function in (5). Note that Karasoy and Kadilar [16] used 

  ,,itL  function given by Gijbels and Gurler [4] for the posterior distribution in (13).  
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Similar to the GJM and KK methods, a value of t, which maximizes (13), is a 

candidate for the estimate of .  However, the condition   in (1) is not required for 

this method.  

 

4. SIMULATION 

 

In this section, I try to find out which estimator has the smallest mean square error 

(MSE) under different conditions. In this simulation study, I take 1000 samples of sizes 

n = 25, 50, 100 and various values for the parameters in (1), as shown in Table 1, by 

coding a program in Visual Basic 6.0. The computed mean and MSE values of the 

traditional estimators and the proposed estimator are also given in Table 1. From Table 

1, I observe that the proposed estimator generally has a smaller MSE than the other 

estimators, except for a few cases. Therefore, I can infer that the proposed estimator is 

generally more efficient than the traditional estimators. For all cases, the proposed 

estimator is more efficient than the NRW estimator, and gives more accurate estimates 

considering mean values. For all cases where α is bigger than , the proposed estimator 

is more efficient than the KK estimator. Also, the proposed estimator is more efficient 

than the GJM estimator, except for the case n = 100, α = 2,  = 0.5,  = 1. In addition, 

when the difference between  and  gets higher for the large sample sizes, the 

proposed estimator is more efficient than the BGJ estimator. I can claim that the 

proposed estimator is more efficient than the BGJ estimator when  α gets bigger for the 

invariants of  and . Note that the BGJ estimator is unable to find a suitable t satisfying 

the condition (4) in some cases. Also, the BGJ and the GJM estimators can not be 

applied for < in the hazard function. These cases are shown by a dash in Table 1.  
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Table 1. Estimates of  the Change Point and Their MSE Values. 

   n NRW BGJ GJM KK Proposed 

1 0.5 2.5 25 

 

50 

 

100 

 

0.0413 

(6.0465) 

0.0202 

(6.1497) 

0.0097 

(6.2018) 

 

3.3709 

(2.8313) 

3.1541 

(1.1561)  

2.7894 

(0.1989) 

1.1317 

(1.9628) 

1.1737 

(1.8051) 

1.3710 

(1.3042) 

1.4755 

(1.8473) 

1.6625 

(1.6493) 

1.7044 

(1.6102) 

2.0179 

(0.8969) 

2.5326 

(0.5939) 

2.9615 

(0.6809) 

1 0.5 3 25 

 

50 

 

100 

 

0.0414 

(8.7551) 

0.0202 

(8.8795) 

0.0097 

(8.9421) 

 

 

3.7629 

(3.4582) 

3.8526 

(2.4368) 

3.5310 

(0.8929) 

1.1081 

(3.6649) 

1.1737 

(3.3814) 

1.3710 

(2.6832) 

1.5559 

(2.8597) 

1.8298 

(2.3346) 

1.9403 

(2.2485) 

2.1018 

(1.5142) 

2.7247 

(0.7169) 

3.2226 

(0.5622) 

1 2 1 25 

 

50 

 

100 

 

0.0414 

(0.9207) 

0.0202 

(0.9604) 

0.0097 

(0.9808) 

 

 

─ 

(─) 

─ 

(─) 

─ 

(─) 

 

─ 

(─) 

─ 

(─) 

─ 

(─) 

 

1.6759 

(0.7833) 

2.068 

(1.4207) 

2.4454 

(2.3687) 

1.7234 

(0.9186) 

0.8224 

(0.9566) 

0.6332 

(0.9790) 

2 0.5 1 25 

 

50 

 

100 

 

0.0207 

(0.9595) 

0.0107 

(0.9792) 

0.0055 

(0.9895) 

1.7257 

(1.4249) 

1.3679 

(0.3371) 

1.1690 

(0.0607) 

0.5428 

(0.2258) 

0.5868 

(0.1822) 

0.7966 

(0.0529) 

0.5046 

(0.3579) 

0.5011 

(0.3149) 

0.4908 

(0.2826) 

0.8831 

(0.1422) 

1.0719 

(0.1199) 

1.2333 

(0.1437) 

2 0.5 1.5 25 

 

50 

 

100 

 

0,0207 

(2.1888) 

 0.0116 

(2.2166)  

0.0089 

(2.2276) 

 

2.3709 

(3.2920) 

2.3758 

(2.4097) 

2.0317 

(0.8922) 

0.5665 

(0.8952) 

0.5868 

(0.8454) 

0.6855 

(0.6708) 

0.6912 

(0.8122) 

0.7206 

(0.7569) 

0.6977 

(0.7412) 

1.0506 

(0.3715) 

1.3217 

(0.1746) 

1.5492 

(0.1172) 

2 1 1 25 

 

50 

 

100 

 

0.0207 

(0.9595) 

0.0101 

(0.9799) 

0.0048 

(0.9904) 

1.3581 

(0.3589) 

1.1839 

(0.0843) 

1.0845 

(0.0152) 

0.5798 

(0.1989) 

0.5868 

(0.1822) 

0.7896 

(0.0534) 

0.6898 

(0.3032) 

0.7681 

(0.3084) 

0.7564 

(0.2710) 

0.9354 

(0.1583) 

1.1551 

(0.1602) 

1.3206 

(0.1865) 
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   Table 1 (continued)      

   n NRW BGJ GJM KK Proposed 

2 1 1.5 25 

 

50 

 

100 

 

 

0.0207 

(2.1888) 

0.0101 

(2.2199) 

0.0048 

(2.236) 

  

1.8815 

(0.8646) 

1.9263 

(0.6092) 

1.7655 

(0.2232) 

0.5540 

(0.9162) 

0.5868 

(0.8454) 

0.7826 

(0.5253) 

0.7779 

(0.7149) 

0.9149 

(0.5836) 

0.9702 

(0.5621) 

1.0509 

(0.3786) 

1.3624 

(0.1792) 

1.6113 

(0.1406) 

2 3 1.5 

 

 

25 

 

50 

 

100 

 

0.0207 

(2.1888) 

0.0101 

(2.2199) 

0.0048 

(0.236) 

 

 

─ 

(─) 

─ 

(─) 

─ 

(─) 

 

─ 

(─) 

─ 

(─) 

─ 

(─) 

 

0.9471 

(0.5564) 

1.2592 

(0.3361) 

1.6072 

(0.2531) 

1.0891 

(2.1882) 

1.0398 

(2.2190) 

1.0095 

(0.2350) 

3 0.5 1 25 

 

50 

 

100 

 

0.0146 

(0.9716) 

0.0124 

(0.9787) 

0.0199 

(0.9726) 

1.9069 

(3.2612) 

1.8836 

(2.4047) 

1.5319 

(0.8921) 

0.3811 

(0.3941) 

0.3912 

(0.3757) 

0.5278 

(0.2276) 

0.4299 

(0.3885) 

0.4292 

(0.3746) 

0.4048 

(0.3776) 

0.6962 

(0.1670) 

0.8655 

(0.0785) 

0.9994 

(0.0460) 

3 0.5 1.5 25 

 

50 

 

100 

 

0.0146 

(2.2070) 

0.0101 

(2.2216) 

0.0183 

(2.2074) 

1.5867 

(1.8467) 

2.0294 

(2.7213) 

2.4475 

(3.6855) 

0.3633 

(1.3007) 

0.3912 

(1.2344) 

0.5152 

(0.9742) 

0.5660 

(0.9747) 

0.6896 

(0.7829) 

0.7320 

(0.7234) 

1.5459 

(0.6616) 

1.9827 

(0.3516) 

1.2160 

(0.1456) 

3 1 1 25 

 

50 

 

100 

 

0.0138 

(0.9728) 

0.0072 

(0.9859) 

 0.0037 

(0.9928) 

 

1.4175 

(0.8338) 

1.4341 

(0.6042) 

1.2657 

(0.2231) 

0.3739 

(0.4020) 

0.3912 

(0.3757) 

0.4570 

(0.2981) 

0.4862 

(0.3427) 

0.5252 

(0.3059) 

0.5152 

(0.2969) 

0.7026 

(0.1645) 

0.8952 

(0.0783) 

1.0518 

(0.0559) 

3 1 1.5 25 

 

50 

 

100 

0.0138 

(2.2089) 

0.0067 

(2.2299) 

0.0032 

(2.240) 

1.3728 

(0.6115) 

1.6690 

(0.7453) 

1.9346 

(0.9419) 

0.3617 

(1.3042) 

0.3912 

(1.2345) 

0.5144 

(0.9757) 

0.5773 

(0.9566) 

0.7159 

(0.7398) 

0.8017 

(0.6302) 

0.7449 

(0.6622) 

1.1803 

(0.3531) 

1,2179 

(0.1452) 
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Table 1 (continued)   Table 1 (continued)      

   n NRW BGJ GJM KK Proposed 

3 2 1 25 

 

50 

 

100 

0.0138 

(0.9728) 

0.0067 

(0.9866) 

0.0032 

(0.994) 

1.1727 

(0.2269) 

1.2093 

(0.1541) 

1.1326 

(0.0559) 

0.3667 

(0.4103) 

0.3912 

(0.3757) 

0.5196 

(0.2355) 

0.5558 

(0.2968) 

0.6813 

(0.2302) 

0.7656 

(0.2129) 

 

1.1974 

(0.1744) 

0.9110 

(0.0855) 

1.0942 

(0.0545) 

3.5 1 1.5 25 

 

50 

 

100 

 

 

0.0118 

(2.2148) 

0.0061 

(2.2318) 

0.0028 

(2.2417) 

 

1.1381 

(0.5058) 

1.3839 

(0.5087) 

1.6456 

(0.6774) 

0.3094 

(1.4238) 

0.3353 

(1.3602) 

0.3917 

(1.2307) 

0.5055 

(1.0686) 

0.6422 

(0.8345) 

0.7654 

(0.6603) 

0.6419 

(0.8052) 

0.8490 

(0.4880) 

1.0644 

(0.2435) 

4 0.5 1 25 

 

50 

 

100 

0.0112 

(0.9781) 

0.0137 

(0.9770) 

0.0382 

(0.9453) 

1.4556 

(2.4423) 

1.8126 

(3.1172) 

2.0062 

(3.2135) 

0.2764 

(0.5291) 

0.2934 

(0.5021) 

0.3885 

(0.3765) 

0.3985 

(0.4149) 

0.4571 

(0.3544) 

0.4396 

(0.3634) 

0.8535 

(0.2491) 

0.7209 

(0.1217) 

0.8622 

(0.0482) 

4 0.5 1.5 25 

 

50 

 

100 

0.0109 

(2.2177) 

0.0067 

(2.2307) 

0.0134 

(2.2167) 

1.0305 

(0.9101) 

1.2916 

(1.1129) 

1.6114 

(1.7733) 

0.2709 

(1.5153) 

0.2934 

(1.4587) 

0.3858 

(1.2439) 

0.4437 

(1.1769) 

0.5663 

(0.9482) 

0.6956 

0.7478 

0.5627 

(0.9315) 

1.3458 

(0.6191) 

0.9359 

(0.3608) 

4 0.5 3 25 

 

50 

 

100 

0.0103 

(8.9381) 

0.0051 

(8.969) 

0.0024 

(8.986) 

─ 

(─) 

─ 

(─) 

─ 

(─) 

 

0.2705 

(7.4547) 

0.2934 

(7.3285) 

0.3857 

(6.8368) 

0.4463 

(6.5820) 

0.5727 

(5.9659) 

0.7115 

(5.3287) 

 

2.5638 

(5.9883) 

1.7472 

(5.1260) 

1.9560 

(4.2142) 

4 1 1 25 

 

50 

 

100 

0.0103 

(0.9795) 

0.0058 

(0.9888) 

0.0047 

(0.9919) 

1.1393 

(0.6597) 

1.3648 

(0.7972) 

1.4905 

(0.8074) 

0.2732 

(0.5333) 

0.2934 

(0.5021) 

0.3866 

(0.3787) 

0.4110 

(0.4010) 

0.4867 

(0.3264) 

0.4955 

(0.3109) 

0.5538 

(0.2489) 

0.7237 

(0.1196) 

0.8766 

(0.0471)  

*
 Estimated value for the change point (mean of the estimates for the change point). 

The value in parenthesis is the MSE value of the estimation.  

The bold number represents the smallest MSE value. 
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5. APPLICATION 

 

In this section I apply the proposed estimator to data set about the survival times for 

124 breast-cancer patients (44 of which are censored) obtained from the Oncology 

Department in Hacettepe University Hospital [17]. The data are reported in Karasoy and 

Kadilar [16]. 

Applying the proposed method to this data set, I obtain the following estimator of 

the hazard function 

 









53  00637.0

5300012.0

t

t
th  

where, of course, 53 is an estimate of the change point. Note that Karasoy and Kadilar 

[16] estimated the change point as 48 for this data set. 

 

6. CONCLUSION 

 

In this article, I have developed a new Bayesian estimator for the change point in the 

hazard function. This estimator has been compared with the existing estimators. 

Simulation results show that the proposed estimator can be used to obtain the most 

accurate estimate of the change point in the hazard function. 
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