
 
 

 

Mathematical and Computational Applications, Vol. 18, No. 2, pp. 103-111, 2013 

 

 

NEW EXACT SOLUTIONS OF THE (2+1)-DIMENSIONAL 

GINZBURG-LANDAU EQUATION 

 

Ye-qiong Shi 
 

              Department of Information and Computing Science, Guangxi Institute of 

Technology, 545006, Liuzhou, P.R. China 

shiyeqiong89@163.com 

 

Abstract- A novel identical reforming of differential equation and the high order 

auxiliary methods are used to construct solitary solutions and periodic solutions of (2 + 

1)-Dimensional Ginzburg-Landau equation. It is shown that the high order auxiliary 

method, with the help of symbolic computation, provides a powerful mathematical tool 

for solving nonlinear equations arising in mathematical physics. 
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1. INTRODUCTION 

 

      The investigation of exact traveling wave solutions to nonlinear evolution 

equations plays an important role in the study of nonlinear physical phenomena. The 

wave phenomena are observed in fluid dynamics, plasma, elastic media, optical fibers, 

etc. Complex Ginzburg-Landau equation (CGLE) is a major subject in nonlinear optics, 

which describes the propagation of optical pulses in optic fibers. 

The solutions of CGLE have been extensively studied in various aspects since it 

was derived [1-4]. A new model was introduced by Sakaguchi and Malomed to describe 

a nonlinear planer waveguide incorporated into a closed optical cavity, a 2D 

cubic-quintic Ginzburg-Landau equation(CQGLE) with an anisotropy of a novel type 

which is diffractive in one direction, and diffusive in the other,. some interesting 

phenomena of this equation at the zero-dispersion point were demonstrated using  

systematic simulation [5]. However, so far it is rarely for seeking the exact solitary 

wave solutions of this equation in addition to the reference [6]. The goal of the present 

work is searching for exact solutions of the cubic-quintic Ginzburg-Landau equation. 

Over the last few decades, directly searching for exact solutions of nonlinear 

partial differential equations (NPDEs) has become more attractive topic in physical 

science and nonlinear science. With the rapid development of nonlinear science based 

on computer algebraic system like Maple package, some new powerful solving methods 

have been developed, such as multi-wave method [7] homogeneous balance principle 

[8-10], F-expansion method [11-12], extended auxiliary equation method [13-14], and 

so on. 

In this work, exact solutions of the CQGLE are considered. The novel identical 
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reforming of differential equation and the high order auxiliary equation method are 

applied to find new generalized exact solutions of the 2D CQGLE. 

 

2. TRANSFORM REFORMING OF CQGL EQUATION WITH 

INDENTICAL-SOLVING  

 

Consider the 2D-CQGL equation with normal dispersion 

          2 4

1 2

1 1
( ) (1 ) | | | | 0,

2 2
z xxiu u i u iu ir u u ir u u             (1) 

where  <0 is a real constant, z and x are the propagation and transverse coordinates, 

respectively. 
0V

z
t   is the so-called reduced time, where t  is the physical time, 

and 0V  is the group velocity of the carrier wave. Since u  is a complex function, we 

can assume that Eq. (1) have solutions in the form 
( , )( , , ) ( , ) ikz i xu x z x e                                        (2)         

where k  and ( , )x   is real to be determined , ( , )x  is a real unknown function. 

Substituting (2) into Eq.（1）and separating the real part and the imaginary part of result 

yield 

2 3 5

1 2

1 1 1 1
0,

2 2 2 2
x x xx r r                                    (3) 

2 2 31 1 1 1 1
0,

2 2 2 2 2
xx xk                                     (4) 

let  

 0 1 0 1( , ) ( ), ( , ) ( ), , ,x x l x l h x h                                   (5) 

where 1010 ,,, hhll are all real constants to be determined. 

Substituting（5）into Eq. (3)- (4) yields    

2 2 2 3 5

0 0 1 1 0 1 1 1 1 2

1 1 1 1
( ) ( 1 ( ) ) 0,

2 2 2 2
l h l h h h h l r r                          (6) 

2 2 2 2 2 2 2 3

0 1 1 0 1 1 1

1 1 1 1
( ( ) ( ) ) ( ) 0,

2 2 2 2
k h h h l l l h                         (7) 

taking  ,
1

,
1

0101 llhh
 




 we have 

,0)(
2

1 2

1

2

0  ll    ,01100  lhlh   ,0)(
2

1 2

1

2
0  hh   

hence Eq.（6）and（7）can be written as follow 

    2 2 2 3 5
1 1 1 2

1 1
( ( ) 1) 0,
2 2

h l r r                                   (8) 

2 3

1 1 1

1
( ) 0,
2

h k l h                                      (9) 

let  
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            0 1( ) .h x h                                     （10） 

Making the identical reforming of Eq.(9), we have from Eq.(9) 
3

1 1

,
k

l h

 



                                      (11) 

hence                          

  
2

1 1

( 3 )
.

k

l h

 



                                 (12) 

Using（11）again we get 
3

2

1 1 1 1

1
( 3 ) ,

k
k

l h l h

 
 


     

 namely 

                   2 3 5 2 2

1 14 3 0.k k l h                            （13） 

Eq.(13) is rewritten as    

          

2

3 5 2

12 2

1 1 1

4 3
0.

k k
l

h h h
   

 
    

 
                       (14) 

Eq.（8）can be written as 

        2 3 5 2

1 1 2 1( 2 ) 2 2 0 .h r r l                              (15) 

Equation (14) and equation (15) must be the same equation, comparing their 

coefficients, we get 

        ,2
2

12

1

2

 h
h

k
,

2
2

1

1
h

k
r  .

3
2

2

1

2
h

r                           (16) 

Solving (16) yields   

              ,
4

3

2

1

r

r
k    ).2(

16

9 2

1

2

12

2

2

1  hh
r

r
 

Taking value of k  and 1h as above, then substitute them into Eq. (14) and (15), 

we can obtain one and the same equation. 

     2 3 2 5 2

1 1 2 2 2 13 1 6 1 6 8 0 ,r r r r r l                             (17) 

 

3. USING HIGHER ORDER AUXILIARY EQUATION FOR SOLVING THE 

EQUATION 

 

In this section, the CQGL equation is solved by using a higher order auxiliary 

equation method. We seek for the solutions of Eq. (17) in the form 

            
0

( ) ( )
n

i

i

i

A F  


 , 0nA  .                                 (18) 

in which ( 0,1,2,..., )iA i n  are constants to be determined, n  is a positive integer 

which determined by balancing the highest order derivative term with the highest power 
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nonlinear term and ( )F  satisfies the following equation 

                 2 2 4 6

0 2 4 6( ' ) ( ) ( ) ( )F d d F d F d F      .                (19)  

Substituting (18) into (17) along with (19), balancing the highest order derivative 

term with the highest power nonlinear term in Eq. (17), we find 1n  . Therefore, the 

solution of Eq. (17) is the form as follows 

                  0 1( ) ( )A A F                                (20) 

where 0 1,A A  are constants to be determined. Substituting Eq. (20) into Eq. (17) to get 

a polynomial with respect to ( )F  . Equating to zero the coefficients of all powers of  

( )F   yields a set of algebraic equations for 1 0 1 1 2, , , ,l A A r r , ( 0,2,4,6)jd j   

2 2 5 3

1 0 2 0 1 2 03 16 16 0r A r A rr A   , 
2 4 2 2 2

2 0 1 2 1 1 2 1 2 0 1 1 180 8 48 3 0r A A r l Ad rr A A r A    , 

2 2 3 2

1 2 0 1 2 0 148 160 0,rr A A r A A    

2 2 3 2 3

2 0 1 2 1 1 4 1 2 1160 16 16 0r A A r l Ad rr A   , 
2 4

2 0 180 0r A A  , 
2 2 5

2 1 6 1 2 124 16 0r l d A r A   . 

Solving these equations with Maple, we get the following results 

      
2 2

4 1 1
0 1 2 2

1 2 1

3
0, ,

8

d l r
A A d

r r l


    ,

2 2

1 1 4
6 1 12

1

2
,

3

rl d
d l l

r
  . 

Substituting these result into Eq.(20)，we can get the general form solutions of 

Eq. (1) along with Eq. (2) as follow 

0 1

2
( )4 1

1

( ) ( )
ikz i h x hd l

u F e
r

   
 

 
where ( )F   is the solution of Eq. (19).  

 

3.1. Solutions to the eq. (19) 

 

By considering the different values of 0 2 4, ,d d d and 6d , we will find that Eq. (19) 

possesses several types of fundamental solutions which are now listed as follows [14]:   

Case 1. Suppose that 0 60, 0d d  and 2

4 2 64 0d d d    . 

ⅰ) If 2 0d   and 4 0d  , Eq. (19) has a bell profile solution  
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1

22

2 2

1
2 2 2

4 2 6 4 2 6 4 2

2 sec ( )
( )

2 4 ( 4 )sec ( )

d h d
F

d d d d d d d h d






  
  

     

, 

and a singular solution  

1

22

2 2

2
2 2 2

4 2 6 4 2 6 4 2

2 csc ( )
( )

2 4 ( 4 )csc ( )

d h d
F

d d d d d d d h d






  
  

      

, 

ⅱ) If 2 0d   and 4 0d  , Eq. (19) has a triangular periodic solution 

1

22

2 2

3
2 2 2

4 2 6 4 2 6 4 2

2 sec ( )
( )

2 4 ( 4 )sec ( )

d d
F

d d d d d d d d






   
  

      

, 

and a singular triangular periodic solution 

1

22

2 2

4
2 2 2

4 2 6 4 2 6 4 2

2 csc ( )
( )

2 4 ( 4 )csc ( )

d d
F

d d d d d h d d






   
  

       

, 

Case 2. Suppose that 
0 20, 0d d  and 2

4 2 64 0d d d    , Eq. (19) has two singular 

triangular periodic solutions 

1

2

2
5

2

4 2 6 2

2
( )

4 cos(2 )

f
F

d d d d




  
  

    

,   

1

2

2
6

2

4 2 6 2

2
( )

4 sin(2 )

d
F

d d d d




  
  

    

,  

Case 3. Suppose that 
2

2
0

4

8

27

d
d

d
 and 

2

4
6

24

d
d

d
 .  

ⅰ) If 2 0d   and 4 0d  , Eq. (19) has a kink profile solution 

1

2
2 2

2

7

2 2
4

8 tanh ( )
3

( )

3 [3 tanh ( )]
3

d
d

F
d

d







 
  

 
  
   
  

,     
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and a singular solution 
1

2
2 2

2

8

2 2
4

8 coth ( )
3

( )

3 [3 coth ( )]
3

d
d

F
d

d







 
  

 
  
   
  

,    

 

ⅱ) If 2 0d   and 4 0d  , Eq. (19) has a triangular periodic solution 

1

2
2 2

2

9

2 2
4

8 tan ( )
3

( )

3 [3 tan ( )]
3

d
d

F
d

d







 
 

 
  
  
  

,       

and a singular triangular periodic solution 
1

2
2 2

2

10

2 2
4

8 cot ( )
3

( )

3 [3 cot ( )]
3

d
d

F
d

d







 
 

 
  
  
  

,     

Case 4. Suppose that 0 0d  and 
2

4
6

24

d
d

d
 . If 2 0d   and 4 0d  , Eq. (19) has a kink 

profile solution  
1

2
2

11 2

4

( ) [1 tanh( )]
d

F d
d

 
 

    
 

,                

and a singular solution 
1

2
2

12 2

4

( ) [1 coth( )]
d

F d
d

 
 

    
 

,               

Case 5. Suppose that 
2

2
0

4

8

25

d
d

d
 and 

2

4
6

2

5

16

d
d

d
 . If 2 0d  , 4 0d  , 6 0d   and 

2

4 2 63 0d d d  , Eq. (19) has a bell profile solution 

1

22

4 4 2 6 4
13

6 6

( 3 ) 1
( ) [1 sech( )]

3 2

d d d d d
F

d d
 

   
    
  

. 

The solutions of Eq. (19) provided above are linearly independent solutions. 
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3.2. Solutions to the CQGL equation 

With the solutions of Eq. (19), the exact solutions of the Eq. (1) are obtained as 

follows 

Case 1. Suppose 
0 0c  ， 2 0r  ,we obtain the envelope wave solutions as follows 

0 1

1
2

2
2 1

1 0 12

( )1 2

1 2
2

1
2 2 0 12

1 2

3
3 sec ( ( ))

8
( , , ) ,

3
8 2 1 tanh ( )

8

ikz i h x h

r
r h l x l

l r
u x z e

r
r r l x l

l r









 

 
 

 
 
   
     

   
   

0 1

1
2

2
2 1

1 0 12

( )1 2

2 2
2

1
2 2 0 12

1 2

3
3 csc ( ( ))

8
( , , ) ,

3
8 2 1 coth ( )

8

ikz i h x h

r
r h l x l

l r
u x z e

r
r r l x l

l r









 

 
 

  
 
   
     

   
   

 

0 1

1
2

2
2 1

1 0 12

( )1 2

3
2

1
2 2 0 12

1 2

3
3 sec ( ( ))

8
( , , ) ,

3
8 8 tanh ( )

8

ikz i h x h

r
r h l x l

l r
u x z e

r
r r l x l

l r









 

 
  
 

  
  

     
  

 

0 1

1
2

2
2 1

1 0 12

( )1 2

4
2

1
2 2 0 12

1 2

3
3 csc ( ( ))

8
( , , )

3
8 8 coth ( )

8

ikz i h x h

r
r h l x l

l r
u x z e

r
r r l x l

l r









 

 
 
 

  
  

     
  

. 

Case 2. Suppose 0 0c   and 
2

4
6

24

d
d

d
 , if 2 0r  and 1 0r  , Eq. (1) has a kink profile 

solution 

  0 1

1
2

2
( )1 1

5 0 12

2 1 2

3 31
, , 1 tanh ( )

8 2 8

ikz i h x hr r
u x z l x l e

r l r

   
   
     

   
   

 

and a singular kink wave solution  

 

1
2

2

1 1
6 0 12

2 1 2

3 31
, , 1 coth ( )

8 2 8

r r
u x z l x l

r l r
 

   
     

   
    )( 10 hxhiikz

e


.  
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Case 3. Suppose 
3

1
0

26

r
c

r
   and 

2

4
6

24

d
d

d
 , 

ⅰ) if 2 0r  ,
1r <0, Eq. (1) has kink wave solutions 

  0 1

1
2

2
2 1

1 0 12

( )1 2

7
2

2 1
2 0 12

1 2

tanh ( ( ))
8

( , , )

3 tanh ( ( ))
8

ikz i h x h

r
r l x l

l r
u x z e

r
r l x l

l r









 

 
   
 

  
  

      
  

, 

  0 1

1
2

2
2 1

1 0 12

( )1 2

8
2

2 1
2 0 12

1 2

coth ( ( ))
8

( , , )

3 coth ( ( ))
8

ikz i h x h

r
r l x l

l r
u x z e

r
r l x l

l r









 

 
   
 

  
  

      
  

. 

ⅱ) if 2 0r  and 1 0r  ,Eq. (1) has a triangular periodic solution 

   0 1

1
2

2
2 1

1 0 12

( )1 2

9
2

2 1
2 0 12

1 2
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and a singular triangular periodic solution 
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. 

 

4. CONCLUSION 

 

In this work, we obtain generalized solitonary solutions and periodic solutions of the 

2D-CQGL equation by using the novel identical reforming of ordinary differential 

equation and high order auxiliary equation method. In particular, the identical reforming 

method of equation is first found and it can be applied to another problem. 
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