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Abstract- The RLC circuit is a basic building block of the more complicated electrical 

circuits and networks. The present study introduces a novel and simple numerical 

method for the solution this problem in terms of Taylor polynomials in the matrix form. 

Particular and general solutions of the related differential equation can be determined by 

this method. The method is illustrated by a numerical application and a quite good 

agreement is observed between the results of the present method and those of the exact 

method.   
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1. INTRODUCTION 

 

The RLC circuit is a basic building block of the more complicated electrical 

circuits and networks. As shown in Fig. 1, it consists of a resistor with a resistance of R 

ohms, an inductor with an inductance of L henries, and a capacitor with a capacitance 

of C farads, in series with a source of electromotive  force 

(such as a battery or a generator) that supplies a voltage of 

 tE  volts at time t . If the switch of the circuit shown in 

Fig. 1 is closed, this results in a current of  tI  amperes in 

the circuit and a charge of  tQ  coulombs on the capacitor 

at time t . The relation between the functions  tQ  and 

 tI is  

       Figure 1. The series RLC circuit 

 tItQ
dt
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The second order linear differential equation of this simple RLC circuit is [1] 

 

       tEtQ
C

tQRtQL 
1

           (1) 

for the charge  tQ  , under the assumption that the voltage  tE  is known.  

 

 In this study we introduce a novel and simple method in terms of Taylor 

polynomials in matrix form. These polynomials have been used for the solution of 
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differential and integral equations by many researchers. Sezer [2] used this method to 

find the approximate solution of the second-order linear differential equation with 

specified associated conditions in terms of Taylor polynomials about any point. Sezer, 

Karamete and Gülsu [3] gave Taylor polynomial solutions of the systems of linear 

differential equations with variable coefficients. Gülsu and Sezer [4] expanded this 

method for solving differential-difference equations. Yalçınbaş and Sezer [5] developed 

a Taylor method to find the approximate solution of high order linear Volterra-

Fredholm integro differential equations under the mixed conditions in terms of Taylor 

polynomials about any point. Sezer and Akyüz-Daşcıoğlu [6] developed a similar 

Taylor polynomial method to find an approximate solution of high order linear 

Volterra-Fredholm integro differential equations with variable coefficients under the 

mixed conditions. Kurt and Çevik [7] gave an example of a mechanical vibration 

problem for solving single degree of freedom system by this method. Çevik [8] 

expanded the method for the longitudinal vibration analysis of rods. Wang and Li [9] 

established a reliable algorithm for solving ordinary differential equations by using the 

theories and method of mathematics analysis and computer algebra. They also 

established a Maple procedure based on Taylor polynomial method. 

 

The following steps are used in this work. First the governing differential 

equation of the RLC circuit is represented in matrix form. The initial conditions are also 

written in matrix form. Then the steady periodic and general solutions of the problem 

are obtained. Next, the method is illustrated by a numerical example. Finally, the results 

are discussed.   

 

2. MATRIX REPRESENTATION OF THE PROBLEM 

 

In most practical problems, it is the current  tI  rather than the charge  tQ  that 

is of primary interest, so we differentiate both sides of Eq. (1) and substitute   tI  for 

)(tQ  to obtain the system differential equation. 

 

        tEtI
C

tIRtIL 
1

             (2)      

with initial values  

 

   00 II                (3a) 

   00 qQ                (3b) 

The solution of Eq. (2) is expressed in the Taylor polynomial form as  

 

   
  

,
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xctxtI
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            (4) 

and obtained by determining the Taylor coefficients .,,2,1, Nnxn   We may put Eq. 

(4) into the following matrix form 

 

    XT ttI                  (5) 
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where 

 

      N
ctctctt  

2
)(1T              (6) 

  

  TX Nxxxx 210               (7) 

The relation between the matrix  tT  and its first derivative  tT  can be 

expressed as [4] 

 

    BTT tt                  (8) 

where 
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The second derivative can be written similarly, 

 

       2
BTBTT ttt              (10) 

and the matrix representation of the right-hand side term of Eq. (2) can be written in the 

form 

 

       
 
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  ET          (11) 

where 

 

  TE neeee 210             (12) 

The matrix form for the initial conditions (3a, 3b) can be obtained using (5) and (8) 

 

  XT 0][ 0 I                          (13) 

 

  BXT 0
/)0( 00 







 

L

CqRIE
           (14) 

where we can write equation (14) due from RLC model which satisfy the basic circuit 

equation  

 

  tEQ
C

RIIL 
1

              (15) 

Finally, we can obtain the matrix representation of the problem using Eqs. (5), (8), (10) 

and (11) as 
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 EXIBB
2 
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







C

R
1

L             (16) 

where I  is the identity matrix. 

 

3. MATRIX SOLUTION OF THE PROBLEM 

 

 The general solution of Eq. (2) is the sum of transient current trI  that approaches 

zero as t  (under the assumption that the coefficients in Eq. (2) are all positive, so 

roots of characteristic equation have negative real part), and a steady periodic current 

spI ; thus 

 

 trsp III                (17) 

Therefore we can easily obtain transient current solution by taking the difference of 

general and steady periodic solutions. 

   

 3.1. The steady periodic solution 

 In order to determine the steady periodic solution spI  of the problem, (16) is 

written briefly in the form 

 

 EWX  or  EW;              (18) 

where 

 

   Nji
C

RLwij ,,1,0,,
1

 IBBW
2                 (19) 

By consequence, 

 

 EWX
1                          (20) 

which yields the desired Taylor coefficients Nnxn ,,1,0,   of the steady periodic 

current spI . 

 

 3.2. General Solution 

 To determine the general solution, the matrix form (16) of the boundary 

conditions [2] is written as  

 

   









1

0
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;0001








λU;            (21) 

The first row of matrix (21) is derived from equation (13) and the second row from 

equation (14). 

 

Now, to solve the problem, the following augmented matrix [7] is constructed by 

replacing the last 2 rows of  EW;  of (18) by the 2-row matrix λ][U;    
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If  0)
~

(det W , then one can write 

 

 EWX
1 ~

)
~

(
~                (23) 

which yields the Taylor coefficients of the general solution; that is, the fundamental Eq. 

(2) with initial conditions (3a) and (3b) has a unique solution. 

 In case det( W
~

)= 0, any other two rows of   EW;  of (18) are replaced by the 2-

row matrix λ][U;  of (21) until the Taylor coefficients matrix X
~

 is yielded. 

 

4. NUMERICAL APLICATION 

 

 Consider an RLC circuit with R=30 , L=10 H, and C=0.02 F. At time t =0, 

    000 QI and the circuit is connected to input voltage   ttE 2sin50 V [1]. The 

matrix operations in this section are performed by using MAPLE 13 software package 

[10]. 

 

Substituting the numerical values yields 

 

       ttItItI 2cos100503010   

with initial conditions 

 

   

 

 
0

/0
)0(
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L

CqRIE
I

I

 

First, we find a polynomial solution around the origin (t=0)  

 

According to (12), taking N=6 

 

  TE 8889.806667.6602000100    

and according to (19)   
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One may also write (21) for the given boundary conditions 

 

   
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Therefore, the augmented matrix (22) becomes  
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Performing the necessary matrix operations, the general solution is determined as  

 
6532 42778.025.155)( tttttI   

in polynomial form. 

 

The steady periodic solution is determined without inserting the initial conditions, as 

 
65432 17778.064.047999.0712.35926.161888.218317.0)( tttttttIsp    

In order to obtain a solution in a interval sufficiently large to observe the solutions, 

N=80 is taken. The matrix operations are performed by Maple13 [10]. 

 

 The exact solution of the problem is given as [1] 
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 Fig. 2 illustrated both the Taylor matrix solution and exact solution of the 

problem in the interval 90  t , comparatively. 
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(a) General solution 

 

 
(b) The steady periodic solution  

 

 
 

(c) Transient solution  

 

Figure 2. Time response of the system obtained by the Taylor matrix method and by the 

method of undetermined coefficients. 
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 Polynomial solutions by Taylor matrix method diverges for values of t (time) 

greater than 9. The truncation limit should be increased to expand the solution interval 

and to have a better approximation. 

  

 In order to determine the value of the solution function at any arbitrary point 

other than zero, a very low truncation limit would be sufficient; that is, the result would 

be obtained with great ease. Table 1 shows the convergence of the results of Taylor 

solution to those of the exact solution, as N increases. 

 

Table.1 Convergence of the Taylor results (N=20, 40, 50 and 100) to those of exact 

solution around t =10 (chosen arbitrarily) 

Time (s) 
Exact 

Solution 

Taylor 

N=20 

Taylor 

N=40 

Taylor 

N=50 

Taylor 

N=100 

9.6 0.8105706 0.9495388 0.8127466 0.8105704 0.8105709 

10.0 1.5907448 1.6687802 1.5896402 1.5907451 1.5907446 

10.4 1.4059944 1.4316286 1.4043838 1.4059948 1.4059943 

10.8 0.3683869 0.3670531 0.3673268 0.3683876 0.3683868 

11.2 -0.8926788 -0.9015528 -0.8931118 -0.8926788 -0.8926790 

11.6 -1.6122576 -1.6195311 -1.6123122 -1.6122578 -1.6122578 

12.0 -1.3538624 -1.3574805 -1.3537801 -1.3538640 -1.3538628 

12.4 -0.2742324 -0.2751778 -0.2741208 -0.2742562 -0.2742502 

12.8 0.9717432 0.9720105 0.9718382 0.9716978 0.9717544 
 

 

5. CONCLUSIONS 

 

 This paper presented a Taylor matrix method for solving the mathematical 

equation of the RLC circuits. This method uses orthogonal Taylor polynomials as basis 

functions and employs matrices to increase its competency by expanding up to any 

number of desired terms. Both steady periodic and general solutions of the system 

differential equation can be determined by this method. The results show a very good 

agreement with those of the exact solution. The main advantage of this method is that 

the solution can be obtained easily with symbolic computation software after writing an 

algorithm. 
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