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Abstract- The flow of an incompressible fluid of modified second grade past an infinite 

porous plate subject to either suction or blowing at the plate is studied. The model is a 

combination of power-law and second grade fluid in which the fluid may exhibit normal 

stresses, shear thinning or shear thickening behaviors. Equations of motion in 

dimensionless form are derived. Analytical solutions of the outcoming non-linear 

differential equations are found by using the homotopy analysis method (HAM), which 

is a powerful semi-analytical method. Effects of power-law index and second grade 

coefficient on the boundary layers are shown and solutions are contrasted with the usual 

second grade fluid solutions. 
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1.INTRODUCTION 

 

 The flow of an incompressible non-Newtonian fluid has important industrial 

applications, for example in the extrusion of a polymer sheet from a die or in the 

drawing of plastic films. During the manufacture of these sheets, the melt issues from a 

slit and is subsequently stretched to achieve the desired thickness. Material 

manufactured by extrusion processes and heat-treated materials traveling between a feed 

roll and wind-up roll or on conveyor belts possesses the characteristics of a moving 

continuous surface. The mechanical properties of the final product strictly depend on 

the stretching rate and on the rate of cooling in this process. Non-Newtonian fluid 

mechanics afford an excellent opportunity for studying many of the mathematical 

techniques which have been developed to solutions of non-linear equations. Several 

models have been proposed to explain the non-Newtonian behavior of fluids. Among 

these, the power-law, differential-type and rate-type models gained much acceptance. 

Boundary layer assumptions were successfully applied to these models and much work 

has been done on them. Power-law fluids are by far the most widely used model to 

express non-Newtonian behavior in fluids. The model predicts shear thinning and shear 

thickening behavior. Normal stress effects can be expressed in second grade fluid 

model, a special type of Rivlin-Ericksen fluids, but this model is incapable in 

representing shear thinning/thickening behavior. A fluid model which exhibits all 

behaviors is deserved and [1] and [2] proposed two models which they called “the 

power law fluid of grade 2” and “modified second order (grade) fluid”. These models 
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were actually slight modifications of a usual second grade fluid.  The below power-law 

fluid of second grade model is considered in this work  
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The other model proposed is the modified second grade fluid 
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where T
*
 is the Cauchy stress tensor, p

*
 is the pressure, I is the identity matrix, A1

*
 and  

A2
*
are the first and second Rivlin-Ericksen tensors respectively, , m, 1 and 2 are 

material moduli that may be constants or depend on temperature. For both models, 

when m=0, 1=2=0, the fluid is Newtonian and hence  represents the usual viscosity. 

m=0 corresponds to the second grade fluid, 1=2=0 corresponds to the power-law 

fluid. The tensors are defined as 
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where v
*
is the velocity vector. The stars over the symbols indicate that the quantities are 

dimensional. Models (1) and (2) satisfy the principle of material frame-indifference. 

Man and Sun [1] first proposed the constitutive relations (1) and (2). Later Man [2] 

considered the unsteady channel flow of model (2) and existence, uniqueness and 

asymptotic stability of the solutions are exploited. Franchi and Straughan [3] presented 

a stability analysis of the modified model for a special viscosity function which depends 

linearly on the temperature. Gupta and Massoudi [4]  investigated the flow of this fluid 

with temperature dependent viscosity between heated plates. Massoudi and Phuoc [5] 

studied the flow down a heated inclined plane. Massoudi and Phuoc [6] analyzed the 

pipe flow with Reynolds temperature dependent viscosity model.  Aksoy et al. [7]  

derived the two dimensional equations of motion as well as boundary layer equations 

for the model. Stretching sheet problem is considered for the boundary layer equations.  

Detailed thermodynamic and stability analysis exist for second grade [8] and third grade 

[9] fluids. Dunn and Rajagopal [10] presented a critical review and thermodynamic 

analysis for fluids of differential type including the model considered here.  Many 

issues regarding the applicability of such non-Newtonian models to real fluids, 

thermodynamic restrictions imposed on the constitutive equations and doubts raised in 

the previous literature on these models were addressed in detail. Flow over a porous 

plate was considered previously for closely related models. Contrary to the Newtonian 

flow which does not permit solutions for the blowing case, [11] showed that solutions 

exist both for the suction and blowing case for a second grade fluid if material 

parameters meet certain criteria. Rajagopal and Szeri [12] studied a third grade fluid 

past a porous plate. Regular perturbation solutions up to arbitrary orders of 

approximation, as well as numerical solutions were presented for the problem. 

Maneschy et al. [13] extended the numerical solutions of [12] by considering heat 

transfer also. A close study to this work is due to [14]. They solved the porous plate 
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problem using homotopy analysis method and presented analytical solutions for the 

integer values of power law index (i.e. m=1,2,3).  Symmetry analysis for the boundary 

layer equations of the modified second grade fluid has been presented much recently 

[15]. Pakdemirli et al. [16] solved the porous plate problem using perturbation method 

and presented analytical and numerical solutions of model (2).  

In this study, the flow of an incompressible fluid of modified second grade fluid past 

a porous plate is governed by a non-linear ordinary differential equation in a reasonably 

simple structure. The analytical solution of the ordinary differential equation has been 

found by HAM [17,18]. It is shown that HAM solutions agree very well with the 

numerical solutions.  Effect of power- law index m, suction and injection parameter v0, 

power-law parameter 𝜀, and the second grade coefficient 1  on the solutions are 

investigated. The numerical solutions of the ordinary differential equations have been 

computed by a collocation method, yielding a high degree of accuracy. In numerical 

computations, Matlab package sbvp4c, which uses the three-stage Lobatto formula, is 

employed. The formula is implemented as an implicit Runge-Kutta formula.  

 

2. EQUATIONS OF MOTION 

 

 The non-dimensional form of the equations of motion of a modified second 

grade fluid over an infinite porous plate was derived by [7] and [16] 
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The boundary conditions for the problem are 
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The last condition implies that there is no shear stress at infinity. Detailed discussions of 

the boundary conditions can be seen at reference [12]. The equation of the flow of 

power-law fluid of second grade over an infinite porous plate is derived first in this 

paper. This non-linear equation is original, both analytical and numerical solutions will 

be given in this paper.  

 

3. ANALYTIC SOLUTIONS BY THE HOMOTOPY ANALYSIS METHOD  

 

 For real power-law index  1mm  , the function u(y) can be expressed by a set of 

base functions 
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in the form  
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where uk,n are the coefficients to be determined and we have freedom to choose a 

positive value for . Now from the above expression and the boundary conditions (5), it 

is straightforward to choose )yexp(1)y(u0   as the initial guess of u(y). According 

to (7) and the governing equation (4), we choose the auxiliary linear operator  
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with the property,  )yexp(C)yexp(CCL 321   and where p is an embedding 

parameter. From (4), we define the nonlinear operator 
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Like in [19,20].  Using the above definition, we construct the zero-order deformation 

equation 
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subject to the boundary conditions 
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Therefore, as the embedding parameter 𝑝 increases from 0 to 1, (y;p) varies from the 

initial guess u0(y) to the solution u(y). Expanding (y;p) in Taylor series with respect to 

p, one has  
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which must be one of the solutions of the original nonlinear equation (4), as proved by 

Liao [16]. 

Differentiating the zero-order deformation equation and boundary conditions (9) n times 

with respect to p and dividing them by 𝑛! and finally setting 𝑝 = 0, we have the nth-order 

deformation equation 
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It can be found that 
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It can be verified that  
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and so on, where y)ln())y(uln( 0   Now, the solution of the deformation Eq. (11) 

for n1 becomes 
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y

21nn    

where )y(ûn
 is a special solution of Eq. (11) and the coefficients 

1 2,C C  and 
3C  are 

determined by the boundary conditions (12). Obviously, 0C3   and the unknowns C1 

and C2 are obtained by 
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and so on. In this work, we find the best values of  and  by minimizing the exact 

square residual error of Eq. (4) at the Nth-order. This quantity is given by 
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In practice the evaluation of ),(ÊN   tends to be time-consuming. A simpler way is 

calculating the averaged square residual error, which is the discretization of Eq. (13), 

i.e., 
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Figure 1. Effect of second grade parameter on the 

velocity profiles (=0.1, v0=1, m=0.2) 

 

 

 
 

Figure 3. Effect of power-law index (m>0) on the 

velocity profiles (=0.5,1=0.5, v0=1) 

 

 

 
Figure 5. Effect of suction on the velocity profiles 

(=0.5,1=0.5, m=0.2) 

 

 
Figure 2. Effect of power-law parameter on the 

velocity profiles (1=0.1, v0=1, m=0.2) 

 

 

 
 

Figure 4. Effect of power-law index (m<0) on the 

velocity profiles (=0.5,1=0.5, v0=1) 

 

 

 

 
 

Figure 6. Effect of injection on the velocity 

profiles (=0.5,1=0.5, m=0.2) 
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Figure 7. Comparison of effect of suction with 

effect of injection (1=0.5,=0.5, m=0.2) 

 

 
Figure 8. Curve of u(y) function versus y solid curve 

10th order approximation by the HAM; dotted curve, 

numerical solution. (1=0.5,=0.5, m=0.2, v0=1) 

 

Table 1. Numerical values of )0(u  various values of m for 1v,5.0,5.0 01  for 10
th

-order of HAM 

and numerical solutions (NS). 

m u(0) (HAM) u(0) (NS) ℏ 𝜆 𝐸10(ℏ, 𝜆) 

0 0 1.000068104928405 1 1 0 

0.2 1.038041914561423 1.03718602225475 0.779142016163386 0.9 0.0000209693 

0.4 1.079056757660077 1.063032519144386 0.477351325409284 1.0 0.000466182 

-0.1 0.976527350140495 0.97652069624041 3.525371697615499 0.8 0.0000404276 

-0.2 0.947327019989428 0.95094176915943 2.8518296424699128 0.6 0.0000678953 

 

Table 2. Numerical values of )0(u  various values of v0 for 2.0m,5.0,5.0 1  for 10
th
-order of 

HAM and numerical solutions (NS). 

𝑣0 u(0) (HAM) u(0) (NS) ℏ 𝜆 𝐸10(ℏ, 𝜆) 

1 1.038041914561423 1.037186022254751 0.779142016163386 0.9 0.0000209693 

2 1.2144122253521075 1.213581607070671 0.4139964141665231 1.0 0.000029861 

-1 1.9955806355423007 1.995516150900364 -0.955595591158211 1.9 0.0000046345 

-2 1.6924298093780985 1.692076455206649 -0.44670043958587 1.5 0.0000116429 

 

Table 3. Numerical values of )0(u  various values of for 2.0m,1.0,1v 10  for 10
th

-order of HAM 

and numerical solutions (NS). 

𝜀 u(0) (HAM) u(0) (NS) ℏ 𝜆 𝐸10(ℏ, 𝜆) 

0 2.9747911333495445 2.974134198386145 4.34017164092326 1.6 0.0000126613 

0.5 1.4762408475845579 1.476246655151934 2.28956699726366 1.3 0.0000445683 

1 0.9395121585016436 0.938516553007344 1.484524892746743 1.2 0.0000747265 

 

Table 4. Numerical values of )0(u  various values of 1 for 2.0m,1.0,1v0  for 10
th
-order of HAM 

and numerical solutions (NS). 

𝜀1 u(0) (HAM) u(0) (NS) ℏ 𝜆 𝐸10(ℏ, 𝜆) 

1 0.9987352577608877 0.997646830829734 0.5971944235837703 0.9 0.0000191029 

2 0.7394190129269838 0.738555386449868 0.2523587244495018 0.7 0.0000208333 

3 0.6189382568222634 0.618170243930872 0.1652479590863146 0.55 0.0000220588 
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Effect of second grade parameter on the velocity profiles is depicted in Figure 1. As the 

second grade effect increases, the boundary layer thickens. A similar trend, as dominant 

in the previous case, is also observed for the power-law parameter () in Figure 2. An 

increase in this coefficient results in a decrease in velocity. The boundary layer thickens 

as  increases. In Figure 3, power law index m has an appreciable influence on the 

velocity profiles (i.e. m > 0). The velocity is observed to increase with increasing m. In 

the Figures, the data is contrasted with the usual second grade fluid (i.e. m = 0). For the 

shear thinning values (i.e. m < 0), the velocity profiles are given in Figure 4. The 

velocity is observed to decrease with decreasing m. The boundary layer thickness 

decreases a big amount when suction increases (See Fig. 5). A reverse effect is observed 

when injection increases (See Fig. 6). For m = 0.2, v0 =1 that means suction boundary 

condition and v0 =-1 that means injection are contrasted in Figure 7. It is observed that 

the boundary layer thickness for v0 =1 is much thicker than the boundary layer thickness 

for v0 =-1. Figure 8 shows finite difference solution and HAM solution obtained for 

1=0.5,=0.5, m=0.2, v0=1. A good agreement is observed between the methods. 

Tables 1- 4 show the HAM solutions and numerical solutions of  𝑢′(0) for various 

values of 𝑚, 𝜖, 𝑣0  and 1. In these numerical computations, Matlab package sbvp4c, 

which uses the three-stage Lobatto formula, is employed. 

 

4. CONCLUDING REMARKS 

 

 In this paper, HAM is employed to obtain the approximate analytic solutions for 

non-linear differential equations in engineering. The behavior of a non-Newtonian 

modified second-grade fluid past a porous plate was examined. Two dimensional 

equations of motion are derived for a power-law fluid of second grade which can exhibit 

shear thinning/thickening behavior as well as normal stresses. For m=0, the equations 

reduce to those of second grade fluid and for 1= 2=0, the equations reduce to those of 

power-law fluid. For the special case of flow over a porous plate, the velocity 

components are assumed to be dependent only on y coordinate. With this assumption, 

equation of motion is obtained. An analytical method (HAM) is employed which is 

particularly suited for the problem under consideration. The increase in power-law 

parameter and second grade parameter results in a thicker boundary layer. For shear-

thickening case (i.e. m > 0), the velocity is observed to increase with increasing m. For 

the shear thinning values (i.e. m < 0), the velocity is observed to decrease with 

decreasing m.  
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