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Abstract- In Monte Carlo particle transport, it is important to change the variance of 

calculations of relatively rare events with a technique known as non-analog Monte 

Carlo.  In order to reduce the variance and the computation time, biasing techniques are 

introduced to accelerate the calculation convergence without changing the outcome. 

However these variance reduction techniques are often complex and can only be solved 

by computer codes. In this study, a simplified, analytically solvable model problem is 

introduced for non-analog Monte Carlo methods. A sample problem for neutrons 

passing through a thick shield is simulated. The drawback of this simulation is the 

expensive computation time and large variance for analog Monte Carlo methods. So, 

biasing techniques like implicit capture and splitting are introduced and the problem is 

solved analytically.   
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1. INTRODUCTION 

 

By the increase in the computational power of computers, Monte Carlo methods have 

become more popular and widely useable in several areas of science and technology. 

Today’s applications of Monte Carlo techniques include diagnostic imaging, radiation 

therapy, traffic flow, stock-exchange forecasting, oil well exploration and reactor design 

[1]. In analog Monte Carlo methods, the desired confidence level is achieved by 

increasing the number of particle history and as a result computation time. Thus, the 

performance of the Monte Carlo method is measured by using the figure of merit and 

defined as measure of the efficiency and given by,  
 

21/( )FOM TE         (1) 

 

where T is total computation time and E is relative error and defined as, 
2 2 2/( )xE Nx         (2) 

 

where 2

x  is sample variance, x is sample mean. N is the number of particle history. T 

could be defined as pt N  and pt  is the average computation time per sample history. 

Finally, the figure of merit becomes, 
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2 2/ p xFOM x t          (3) 

 

For a given model problem, the numerical value for the figure of merit could be 

estimated by using true mean and true variance if the average computation time per 

history is known. To increase the efficiency of the Monte Carlo methods, either 

computation time or relative error should be reduced with a given number of particle 

histories. To reduce the relative error without increasing the number of histories, non-

analog Monte Carlo techniques (variance reduction techniques) are introduced. The 

main goal of non-analog Monte Carlo technique is to reduce sample variance so that the 

relative error decreases. Variance reduction (biasing) techniques for Monte Carlo 

simulations can also reduce the amount of computer time required for obtaining results 

of sufficient precision [2]. On the contrary, different types of variance reduction 

techniques may increase the computation time per sample history [3].  

 

Many of the variance reduction techniques produce and/or destroy particles during the 

simulation per history to produce outcomes closer to the solution. In this manuscript, 

implicit capture (survival biasing) and splitting techniques are chosen for variance 

reduction. To solve a non-analog Monte Carlo problem analytically, a simplified 

neutron transport model problem is introduced and analytical expressions for the 

variance are determined. These analytical expressions for variance may be used to 

discuss the improvement in efficiency by means of variance reduction techniques. 

 

2. THE MODEL PROBLEM 

 

In this study, the forward neutron transport through one region and two region 

homogenous slabs are introduced as the model problem. In the modeling, differential 

scattering kernel is chosen in such a way that scattered neutrons are allowed to travel in 

forward direction only, so that, the angular coordinate system will only have the 

component Ωx=cos θ.  

 

2.1. Homogeneous Slab Problem 

 

Let us assume that a neutron beam enter at x=0 into the system (fig. 1). The objective of 

the simulation is to determine the number of neutrons exiting at x=L. The slab is 

characterized by total cross section t and scattering ratio c. 

 
Figure 1. One region homogenous slab 

 

The governing transport equation is written as, 
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where µ= cos θ (θ is the scattering angle at direction x) and ψ is the angular flux. The 

boundary conditions are, 

 

0(0, ) 1)(n      and  ( , ) 0 for 1L         (5) 

 

2.2. Two Regions Homogeneous Slab Problem 

 

 
Figure 2. Two regions homogenous slab 

 

For the two regions slab problem, it is again considered that a neutron beam enter the 

system at x=0. The slab is composed of two different regions of length L1 and L2. The 

objective of the simulation is to determine the number of neutrons exiting at x=L where 

L=L1+L2. In region-I and region-II, the total cross sections are defined as T1 and T2 

and scattering ratios are defined as c1 and c2 respectively.  The governing transport 

equation is written as, 
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   (6) 

with boundary conditions, 

 
(1)

0(0, ) 1)(n     and (2)

2( , ) 0 for 1L          (7) 

 

These equations are not coupled with each other and the solution of the transport 

equation for region-I become the boundary condition for region-II.  

 

 

 

 

3. MULTI-COLLIDED FLUX METHOD 
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since the neutrons scatter in forward direction only, the neutrons which reach to x = L1 

surface are determined by using the multi-collided flux method in region-I. The solution 

of the m-times collided flux equation is as follows; 
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Thus, the angular neutron flux in region-I is given as, 
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The angular flux at the exit of region-I is used as a boundary condition to determine the 

m-times collided angular neutron flux in region-II by using the following transport 

equation; 
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with boundary conditions, 
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 and the multi-collided angular fluxes in region-II are obtained as, 
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      (12) 

Finally, the angular flux at region-II is written as, 
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Since the summation terms are equal to, 

 

 1

0

1

!

k

s

k
k

xs

e
x

k










  and   

 2

0

2

!

m

s

m
m

xs

e
x

m










      (14) 

 

The angular neutron flux at x=L is written as, 
1 2

(2) (1)
1 2
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Thus, the number of neutrons leaked out from the system is determined by using the 

partial current definition as, 
1
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The open form of angular flux could be written as,  
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       (18) 

   

At this point it should be noted that the open form of the angular flux given by Eq.17 

will be utilized in non-analog Monte Carlo games. The term
1 1 2 2( , ) ( , )k mP L P L  is the 

angular flux at x=L due to a neutron undergoing k collisions in region-I and m collisions 

in region-II. Thus, the probability that a neutron will transmit through the system is 

given as, 
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The term 1 1 2 2( ) ( )k mP L P L is the probability that a neutron entering into the system 

succeeds to escape after making k collisions in region-I and m collisions in region-II. If 

the summation is performed, the probability that a neutron transmits through the system 

is given as, 

 

1 2
1 1 2 2( ) ( ) ( )transm transm transm

a aL L
e eP L P L P L
 

       (20) 

 

In analog Monte Carlo game, a neutron entering the system is followed until it is 

absorbed in the system or leaked out from the system. Leaked or absorbed neutron may 

undergo several scattering events and the history is terminated as a result of absorption 

or leakage. Thus, the particle will exit the system with weight unity or the particle will 

be absorbed in the system and will not contribute to the tally. Thus, the probability 

distribution function (PDF) for the weights of neutrons exiting from x= L is given as, 

 

analog ( , ) ( 1) (1 ) ( 0)transm transmn L P P              (21) 

 

and analog ( , )n L d   is the probability that a particle leaks out from the system having a 

weight ω  within dω . The PDF is normalized to unity and given as, 
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Thus, mean of the weights is determined by using the PDF as, 
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The mean of the weight square is,  
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Hence, the variance is determined by using the results given by Eq.23 and Eq.24 as, 
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Since the process is binary, the variance could also be written as, 

 

analog

2 (1 )m m    .         (26) 

 

The derivation also allows determining mean of high order moments and could be used 

to determine variance of variance. Although these results are well known and explicitly 



 

 

140                                       Y. Çeçen and M. Tombakoğlu 

 

 

given in literature, the method developed in this section will be adopted in non-analog 

Monte Carlo methods.   

 

4. IMPLICIT CAPTURE 

 

One of the techniques used in non-analog Monte Carlo methods is the implicit capture 

(survival biasing). Implicit capture is introduced at the interaction point and a neutron 

undergoing collision is survived with the new weight
new oldc   . In neutron transport, 

c is defined as the scattering ratio. Since the neutrons at the interaction points are 

survived, the multi-collided fluxes are determined by using the biased transport equation 

given as, 
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with boundary conditions, 
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Solving biased transport equation in region-I with implicit capture for angular flux, 

 

 1(1) (1)

0

1

( , ) (0, )
!

m

T

IC IC m
m

xT

x e
x

m

  







        (29) 

 

The angular flux at the exit of region-I is used as a boundary condition to determine the 

m-times collided angular neutron flux in region-II by using the following biased 

transport equation; 
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with boundary conditions, 
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 and m-times collided angular fluxes in region-II are obtained as, 
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Hence, for the non-analog Monte Carlo game, the PDF for neutrons exiting at x=L is 

given by, 
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where nIC(L,ω) dω is the probability that a particle having weight between ω and ω+dω 

will leak out from the system. P1i,ICP2j,IC is the probability that a particle entering into 

the system will leak out after undergoing i collisions in region-I and j collisions in 

region-II due to biasing and given as, 
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Since nIC(L,ω) is defined as the PDF, IC

0

(L, )n d 


  is normalized to unity and the 

number of particles exiting from the system will be equal to the number of particles 

entering into the system. The mean of the weights and mean of the square weights are 

determined by using the PDF as, 
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Hence, the variance is determined by using the results given by Eq.35 and Eq.36 as, 
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At this point, it should be noted that in the limiting case where scattering ratios 

converge to zero, implicit capture solution produces analog Monte Carlo results.  

 

5. SPLITTING 

 

In the splitting game, a neutron passing through x=L1 splits into ns neutrons with new 

weights
1

new old

sn
  . For ns equal to two, the PDF for neutrons that pass through x=L 

is given as, 
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,2( , )splitn L   is the probability that a particle having a weight of ω about dω reaches the 

surface at x=L. 
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,2( , ) 1splitn L d           (39) 

 

If a neutron splits into ns neutrons, with each neutron having a weight of 

1/new sn  .
old , the PDF is given as, 
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where ( , )sC n i  is the binomial expansion coefficient. For splitting into ns neutrons the 

mean of the weights is determined as,  
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The mean of the square weights is determined as, 
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Hence, by using the definition of variance with Eq.41 and Eq.42  
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6. CONCLUSIONS 

 

Non-analog Monte Carlo methods are widely used in particle transport; such as, 

transport of radionuclides in a porous medium [4], cross-section biasing [5] and 

convergence acceleration of neutronic calculations [6]. However, these variance 

reduction techniques often require additional computational work. In this study, the 

analytical solutions of implicit capture and splitting games have been introduced for 

non-analog Monte Carlo methods. These methods can be used for educational purposes 

and may provide a better understanding of non-analog Monte Carlo methods. 
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