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Abstract-The Möbius transform of fractional differential equation (Riccati type) is 

employed to construct new exact solutions for some nonlinear fractional differential 

equations. The fractional operators are taken in sense of the modified Srivastava-Owa 

fractal in the unit disk. Examples are illustrated for problems in biology, economic and 

physics. 
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1.   INTRODUCTION 

 

 Transform method is a mathematical technique that is applied in various fields, 

such as quantum mechanics, nuclear physics and atomic physics. This technique 

generates the solutions of partial differential equations; relates solutions of difficult 

partial differential equations to well known equations and applies to integrable equations. 

For example, Riccati equation is employed to construct generalized solutions for ordinary 

and partial differential equations. Various practical transforms for solving various 

problems were materialized in open literature, such as the Laplace transform, the Fourier 

transform, the traveling wave transform, the Bäcklund transformation, the integral 

transform, the fractional integral transforms, the fractional complex transform and Mellin 

transform. 

  Fractional differential equations are viewed as option models to nonlinear 

differential equations. Varieties of them play important roles and tools, not only in 

mathematics but also in physics, dynamical systems, control systems and engineering, to 

create the mathematical modeling of many physical phenomena. Furthermore, they are 

employed in social science such as food supplement, climate and economics. Fractional 

differential equations concerning the Riemann-Liouville fractional operators or Caputo 

derivative have been recommended by many authors (see [1-6]). Determining 

approximate, numerical and exact solutions for fractional differential equations plays a 

significant role. Numerical solutions or analytic solutions are typically difficult to be 

computed. It is therefore, required to impose a process to solve the problem of nonlinear 

fractional differential equations. Recently, one of the most essential and useful methods 

for fractional calculus appeared as complex fractional transform (integral and derivative) 

[7-11]. Fractional transform is devised to renovate the fractional differential equations 
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into ordinary differential equations, yielding the solution procedure tremendously simple. 

  In this paper we shall use the Möbius transform of fractional differential 

equation (Riccati type) to construct the exact solutions for some nonlinear fractional 

differential equations. The fractional operators are taken in sense of Srivastava-Owa 

fractal in the unit disk. Examples are illustrated to explain the solution procedure 

including problems in complex domain. 

  In [12], Srivastava and Owa, provided the definitions for fractional operators 

(derivative and integral) in the complex z-plane C  as follows: 

 

  Definition 1.1 The fractional derivative of order   is defined, for a function 

)(zf  by  
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where the function )(zf  is analytic in simply-connected region of the complex z-plane 

C  containing the origin and the multiplicity of   )(z  is removed by requiring 

)( zlog  to be real when 0.>)( z  

  Definition 1.2 The fractional integral of order   is defined, for a function 

),(zf  by  
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where the function )(zf  is analytic in simply-connected region of the complex z-plane 

)(C  containing the origin and the multiplicity of 1)(  z  is removed by requiring 
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  In our tex, we shall use the following operator: 

  Definition 1.3 The modified fractional derivative of order   is defined, for a 

function )(zf  by  
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where the function )(zf  is analytic in simply-connected region of the complex z-plane 

C  containing the origin and the multiplicity of   )(z  is removed by requiring 

)( zlog  to be real when 0.>)( z  

  Note that Definition 1.3 satisfies the analytic function of the form 
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This class of analytic functions has wide applications in the geometric function theory 

and univalent function theory when 1.=1a  

  Recently, the authors employed these operators widely in the geometric 

function theory by extending some classes of analytic functions into classes of analytic 

functions of fractional power (see [13-16]).  

 

  Note that the real case of the Srivastava and Owa fractional operators coincides 

with the Riemann-Liouville fractional operator which are given by the following 

definition. 

  Definition 1.4 The fractional (arbitrary) order integral of the function f  of 

order 0>  is defined by  
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00,=)( tt  and )(t   as 0  where )(t  is the delta function. 

  Definition 1.5 The fractional (arbitrary) order derivative of the function f  of 

order 1<0   is defined by  
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  Remark 1.2 From Definition 1.4 and Definition 1.5, 0,=a  we have  
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2.  TRANSFORM METHOD 

 

 The fractional Riccati equation in complex domain takes the form:  

 (0,1]),(=)( 2  D  (1) 

 where   is a real constant and ;: CU  1}.||,{:=  zzU C  It is well known that 

the solution of (1) takes the form in terms of the generalized hyperbolic and trigonometric 

functions (see [1])  
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where   is a constant. We shall assume the complex fractional differential equation with 

independent variable ),...,,( 1 jzzt  and dependent variable u  
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

j
zz DD ,...,

1
 are the modified Srivastava-Owa fractals. 

  Our method can be summarized as follows: 

  Step 1:  Using the complex wave transform  

 ),(=),...,,( 1 uzztu j  
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where )1,...,=(, jii  are constants. Eq.(3) becomes  
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  Step 2:  Assuming that (4) has a solution of the form  
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where )0,...,=( nmam  are constants to be calculated and   computes from the Möbius 

transform  
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where BA   and 0.  

  Step 3:  Substituting (5) in (4) and setting the coefficients of the powers of   

to be zero, we impose a nonlinear algebraic system in ma  and .  

  Step 4:  Solving the system to obtain these values and substituting them into 

Eq.(5) we may receive the exact solutions of (3). 

 

3.  APPLICATIONS 

 

 In this section we shall illustrate two examples to examine our method. 

 

3.1  Example  

 Water as a liquid moves through the vadose region in response to gravity and 
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gradients of pressure. Recall that the vadose region has hole spaces filled with both air 

and liquid water. The water pressure depends on the water saturation and related capillary 

forces. Because the soil is only partially saturated the pressure is negative due to 

capillarity. If the soil is uniform in its properties such as composition, capillary pressures 

are most negative where the soil is dry, and most positive where it is wet. As an FDE it 

can be represented as 

 

 0,=2 uDuuDuD zzt

    (7) 

 where z  is the position in this model and u  is the so-called volumetric water content. 

It denotes the proportion of the space filled by water.   is the so-called soil moisture 

diffusivity and   is the saturation dependent hydraulic conductivity. Equation (7) 

describes the infiltration in the vadose region. The advection is due the gravity and the 

diffusion is due to capillary wicking. 

  Using the complex wave transform  
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and   is the solution of Riccati equation defined in (2). Now for 0,<  we impose the 
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3.2  Example  

 

 In 1973, Fischer Black and Myron Scholes [17] suggested the famous theoretical 

valuation formula for options. The main fictional idea of Black and Scholes excites in the 

texture of a riskless portfolio taking positions in bonds (cash), option and the underlying 

stock. Such an process strengthens the use of the no-arbitrage principle as well. The 

Black-Scholes model for the value of an option can be described by the fractional 

equation  

 )(0,0,=),(),( 2 TtuztruuDuDztuD zzt     (9) 

where ),( ztu  is the European call option price at asset price (z positive real number) 

and at time ;t  ),( ztr  is the risk free interest rate, and ),( zt  represents the volatility 

function of underlying asset.   By employing the wave transform  
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 Now in virtue of the above method, we have  
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where .1 r  For 0,<  we impose the solutions  
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3.3  Example  

 

 A drainage equation is an equation characterizing the relevance between depth 

and spacing of parallel subsurface drains, depth of the water table, depth and hydraulic 

conductivity of the soils. It is employed in drainage design which reads for fractional 

time-space as follows: 
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The foam drainage equation is a pattern of the flow of liquid through channels and nodes 

(intersection of four channels) between the bubbles, driven by gravity and capillarity 

[18]. Now by using the complex transform  

 tzuztu  =),(=),(  (12) 

 where   is constant. Substituting (12) into Eq. (11), we receive the fractional ordinary 

differential equation: 
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By balancing the highest order derivative terms and nonlinear terms in Eq. (13), 

we assume that Eq. (13) have the following formal solution 
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where )(  satisfies Eq. (1). 

Substituting Eq. (14) along with Eq. (1) into Eq. (13) and then setting the 

coefficients of )(  to zero, we can impose a set of algebraic equations about 10 ,aa  

and .  Solving the algebraic equations yielding  
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where   is a linear function in 0.>,  Substituting the above assertion into (14), 

implies new types of exact solutions of Eq. (11) as follows: 
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while for 0> , the solutions  
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4.  CONCLUSION 

 

 From above we conclude that the Möbius transform of fractional differential 

equation (Riccati type) affected on the exact solutions of fractional differential equations 

in complex domain. The fractional operators are taken in senses of the Srivastava-Owa 

fractional operators and the Riemann-Liouville fractional operators. We applied the 

proposed method on different types of fractional differential equations, such as liquid 

movement equation, Black-Scholes fractional differential equation and fractional 

drainage equation in order to create new exact solutions.  
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