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Abstract- In this paper, we are concerned with finding approximate solutions to 

systems of nonlinear PDEs using the Reduced Differential Transform Method 

(RDTM). We examine this method to obtain approximate numerical solutions for two 

different types of systems of nonlinear partial differential equations, such as the two-

component KdV evolutionary system of order two and the Broer-Kaup (BK) system of 

equations. The theoretical analysis of the RDTM is investigated for these systems of 

equations and is calculated in the form of power series with easily computable terms. 

Illustrative examples will be presented to support the proposed analysis.  
 

Keywords and phrases- Reduced Differential Transform Method (RDTM), KdV 

Evolutionary System, Broer-Kaup (BK) equations 

 

 

1. INTRODUCTION 

 

The Reduced Differential Transform Method [1, 2, 3], was first introduced by Keskin to 

solve linear and nonlinear PDEs that appears in many Mathematical Physics and 

engineering applications. The method provides solutions in an infinite series form and 

the obtained series may converge to a closed form solution if the exact solution exists. 

For concrete problems where exact solution does not exist, the truncated series may be 

used for numerical purposes. For nonlinear models, the RDTM [4, 5, 6], has shown 

dependable results and gives analytical approximation that converges very rapidly and 

in some cases gives exact solutions. Many numerical methods were used in the past to 

solve systems of nonlinear partial differential equations, such as, Adomian 

Decomposition Method (ADM) [7, 8], Differential Transform Method (DTM) [9], the 

Tanh-Coth Method [10], and the Variational Iteration Method (VIM) [11] and others. In 

this paper, we find approximate solutions to the following systems of NLPDEs:  

First, the two-component KdV evolutionary system of order two: 
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Second, the Broer-Kaup (BK) system of equations: 

     

0

0

u uu vt x x

v u uv ut x xxxx

  

   
 ,                                                                 (1.3) 

subject to the initial conditions 

                        21 2tanh( ,0) ; 1 2tan( h,0)x vx xu x  .                                          (1.4)                                                                                                 

                                                                  

The goal of our study is to use the RDTM to find approximate solutions to two different 

types of systems of nonlinear partial differential equations and to show how accurate 

and efficient is the method in finding approximate solutions to other complicated 

systems of nonlinear partial differential equations.  

 

Keskin, in his PhD thesis [3], introduced the reduced form of the differential transform 

method (DTM) as a reduced differential transform method (RDTM). Keskin used the 

RDTM to solve the Gas Dynamics Equation, linear and nonlinear Klein-Gordon 

Equations and more. Also, Keskin and Oturanc [1] used the RDTM to solve linear and 

nonlinear wave equations and they showed the effectiveness, and the accuracy of the 

method. Moreover, Alquran, Al-Khaled and Ananbeh [12], gave new Soliton solutions 

for the Broer-Kaup (BK) system of equations using the rational sine-cosine method.  

Finally, M. Abdou and A. Soliman [13] used the RDTM to give numerical simulations 

of nonlinear evolution equations and M. Abdou [14] finds numerical solutions to the 

coupled MKdV system of equations and the coupled Schrodinger-KdV system of 

equations.  

 

2. ANALYSIS OF THE RDTM 

  

In this section, we start with a function of two variables  ,u x t which is analytic and 

k  times continuously differentiable with respect to time t and space x in the domain of 

our interest. Assume we can represent this function as a product of two single-variable 

functions, namely,  , ( ). ( )u x t f x g t . From the definitions of the DTM, the function 

can be represented as follows:  

 

               , ( ) ( ) ( ).

0 0 0

ji ku x t F i x G j t U x t
k

i j k

    
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,                                                    (2.1)                                                    

where ( )kU x is the transformed function of  ,u x t which can be defined as: 

1
( ) ( , )

!
0

k
U x u x tk k kt t

 
 

   
.                                                                       (2.2) 

From equations (2.1) and (2.2) we can deduce  
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Some basic operations of the reduced differential transformation obtained from 

equations (2.1) and (2.2) are given in the table below: 

 

Table 1. Basic operations of the RDTM [3] 
 

Functional Form Transformed form 
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To illustrate the RDTM, we write the two-component KdV evolutionary system of order 

two in standard form 

                        

   

     

( , ) 3 ( , ) 0

( , ) ( , ) 4 ( , ) 0

L u x t L v x tt xx

L v x t L u x t N u x tt xx

 

  
,                                       (2.4)                                                                                

subject to initial conditions 

                         ( ,0) ( )u x f x , ( ,0) ( )v x g x ,                                                          (2.5)                                                                                                                                                                                                    

where L
t t





, 
2

2
L
xx

x





, and  ( , )N u x t is the nonlinear term.  

Now from equation (2.4) and (2.5), we can derive the recursive formulas (using the 

formulas in Table 1) as follows: 
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 ,                                                (2.6)                                                                                   

and  

                                ( ) ( )
0

U x f x ; ( ) ( )
0

V x g x .                                                                  (2.7)                                                                                                                                                    

To find the rest of the iterations, we first substitute equation (2.7) into equation (2.6) 

and then we find the values of ( )kU x ’s and ( )kV x ’s. Finally, we apply the inverse 

transformation to all the values of  ( )
0

n
U x

k k
and  ( )

0

n
V x

k k
 to obtain the approximate 

solutions: 

                   ( , ) ( )
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 
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
; ( , ) ( )

0

n
kv x t V x t

k
k

 



,                                                   (2.8)                                                                                                                                              

where n  is the number of iterations we have used to find the approximate solution.    

Hence, the exact solutions of our problem is given by  

                        ( , ) lim ( , )u x t u x t
n





; ( , ) lim ( , )v x t v x t

n




.                                                     (2.9)     

                                                                                                                                                                                      

3. APPLICATIONS 

 

In this section, we test the RDTM on two numerical examples and then compare our 

approximate solutions to the exact solutions.  

 

3.1. Examples 

 

In this section, we present two examples to show the efficiency of the RDTM. 

 

Example. 3.1.1  

        

We consider the two-component KdV Evolutionary System of order two: 
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subject to the initial conditions 

    
23

4
( , )

4 ( )
0

cos x
u x








 ;

2

( , 0
2

)
3

4

x
tv x an

 



 
 

.                                                        (3.2)                                                       

 

where the exact solutions are, [6] 
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Applying the RDTM to (3.1) and (3.2) with 1  , we obtain the following recursive 

relations:  
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                                                      (3.5)                                                                     

where, the )(kU x , )(kV x  are the transform function of the t dimensional spectrum. 

                                                                                                                                                                                       

Now, substitute Eq. (3.5) into Eq. (3.6) to obtain the following:  
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We continue in this manner and after the sixth iteration, the differential inverse 

transform of  
6
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U x
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6
( )

0
V x

k k
will give the following approximate solutions: 

     

 

      

 

 
 

6
2 3

0 1 2 3

0

2 4 4 2

4
2 3

0 1 2 3

0

3 9
3 3 2 sec ...

4 4 ( ) 2 32 2

3

, ( ) ( ) ( ) ( ) ( ) ...

,

, ( ) ( ) ( ) ( ) ( ) ..

3
3 3

4 2

.

4
,

4

k

k

k

k

k

k

x x
csc x sin t cos x

u x t U x t U x U x t U x t U x t

u x t

v x t V x t V x

t
c

V x

os x

tan
x

tan t
cos x

t V x t V x t

v x t





   

   
      

    

 
  



 



     












 
22

...
8 8

x

t
cos x

 
 
  



      

 

        
 

Figure 1. The approximate, exact solutions and absolute error of u(x, t) respectively for 

example 3.1.1 when -1< x <1 and 0< t <0.01. 
 

Note that figure 1 shows the exact solution, approximate solution and the absolute error 

for ( , )u x t , respectively.  
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Figure 2. The approximate and exact solutions of u(x, t) for example 3.1.1 when  

-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1. 
 

Note that figure 2 shows the exact solution, approximate solution of ( , )u x t for the 

values of { 1, 0.5, 0.5,1}x     and {0.002,0.004,0.006,0.01}t  . 
 

      
Figure 3.The approximate, exact solutions and absolute error of v(x, t), respectively for 

example 3.1.1 v(x, t ) when -1< x <1 and 0< t <0.01. 
 

Note that figure 3 shows the exact solution, approximate solution and the absolute error 

for ( , )v x t , respectively.  
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Figure 4. The approximate and exact solutions of v(x, t) for example 3.1.1 when  

-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1. 

 

Note that figure 4 shows the exact solution, approximate solution of ( , )v x t for the 

values of { 1, 0.5, 0.5,1}x     and {0.002,0.004,0.006,0.01}t  . 

 

Example 3.1.2  
 

We consider the Broer-Kaup (BK) system of equations: 
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 

0

0

t x x

t x xxxx

u uu v

v u uv u

  

   
 ,                                                         (3.7) 

subject to the initial conditions 

 

   21 2tanh( ,0) , 1 2tan( h,0)x vx xu x  .                                                         (3.8)                                                                                                                                                                                                                  

The exact solutions are, [6]  

   21 2tanh( , ) , 1 2ta h, n( )t x vt xx tu x t    .                                                 (3.9)                                                                                                                                      

Applying the RDTM to (3.8) and (3.7), we obtain the recursive relation 
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(
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 ,                                                     (3.10)                                                     

and 

 1 2tanh( )
0

U xx  ,       21 a h) n(
0

2tV xx  .                                                     (3.11)                                                     

                                                    

Now, substitute Eq. (3.11) into Eq. (3.10) to obtain the following:  
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sech x x cosh x sech x V x cosh x sech x x
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(3.12)    

We continue in this manner and after the sixth iteration, the differential inverse 

transform of  
6
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k k
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Figure 5. The approximate, exact solutions and absolute error of u(x, t) respectively for 

example 3.1.2 when -1< x <1 and 0< t <0.01. 
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Note that figure 5 shows the exact solution, approximate solution and the absolute error 

for ( , )u x t , respectively.  
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Figure 6. The approximate and exact solutions of u(x, t) for example 3.1.2 when  

-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1. 
 

Note that figure 6 shows the exact solution, approximate solution of ( , )u x t for the 

values of { 1, 0.5, 0.5,1}x     and {0.002,0.004,0.006,0.01}t  . 

 

     
 

Figure 7. The approximate, exact solutions and absolute error of v(x, t) respectively for 

example 3.1.2 when -1< x <1 and 0< t <0.01. 

 

Note that figure 7 shows the exact solution, approximate solution and the absolute error 

for ( , )v x t , respectively.  
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Figure 8. The approximate and exact solutions of v(x, t) for example 3.1.2 when  

-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1 

 

Note that figure 8 shows the exact solution, approximate solution of ( , )v x t for the 

values of { 1, 0.5, 0.5,1}x     and {0.002,0.004,0.006,0.01}t  . 
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3.2. Tables 

 

In this section, we shall illustrate the accuracy and efficiency of the RDTM by 

comparing the approximate and exact solutions. In Table 2 and 3, we consider the same 

value for x , and t , specifically, { 1, 0.5, 0.5,1}x     and {0.002,0.004,0.006,0.01}t  .  
 
 

Table 2. Comparison of absolute errors of u(x, t) and v(x, t) for the two-component KdV 

evolutionary system of order 2, by RDTM for different values of x, t. 

 

x  t  ( , )u x t Exact 
( , )u x t Approx

. 
( , )v x t Exact ( , )v x t Approx. 

 

Error(RDTM)(n=6) 

( , )v x t  

Error(RDTM)(n=6)

( , )u x t  

-1 .002 
0.4859987017

 

0.4859987017

 

0.2355830020

 
0.2355830020  0  16

1.11022303E


 

 .004 
0.4850855048

 

0.4850855048

 

0.2346119187

 
0.2346119187  0  175.55111512E  

 .006 
0.4841777817

 
0.4841777817  

0.2336426563

 
0.2336426563  0  162.22044605E  

 .01 
0.4823786318

 
0.4823786318  

0.2317095507

 
0.2317095507  168.88178420E  155.82867088E  

-0.5 .002 
0.3990979170

 
0.3990979170  

0.1097677480

 
0.1097677480  171.38777878E  189.59351708E  

 .004 
0.3987488789

 
0.3987488789  

0.1089699016

 
0.1089699016  171.38777878E  174.37629829E  

 .006 
0.3984026879

 
0.3984026879  

0.1081727506

 
0.1081727506  0  171.83433918E  

 .01 
0.3977188108

 
0.3977188108  

0.1065805113

 
0.1065805113  161.80411242E  169.35662399E  

0.5 .002 
0.3998045711

 
0.3998045711  0.1113655491  0.1113655491  0  171.17459666E  

 .004 
0.4001622057

 
0.4001622057  0.1121655154  0.1121655154  172.77555756E  176.96101917E  

 .006 
0.4005227246

 
0.4005227246  0.1129661997  0.1129661997  0  189.57615746E  

 0.01 
0.4012524536

 
0.4012524536  0.1145697464  0.1145697464  161.94289029E  168.50952883E  

1 .002 
0.4878416434

 
0.4878416434  0.2375306753  0.2375306753  172.77555756E  0  

 .004 
0.4887714524

 
0.4887714524  0.2385072875  0.2385072875  175.55111512E  175.55111512E  

 .006 
0.4897068631

 
0.4897068631  0.2394857648  0.2394857648  175.55111512E  161.11022303E  

 0.01 
0.4915946213

 
0.4915946213  0.2414483603  0.2414483603  169.71445147E  156.05071548E  
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Table 3. Comparison of absolute errors of u(x, t) and v(x, t) for the Broer-Kaup (BK) 

system equations, by RDTM for different values of x, t. 

x  t  ( , )u x t Exact ( , )u x t Appr. ( , )v x t Exact ( , )v x t Approx. 
 

Error(RDTM)(n=6)

( , )v x t  

Error (RDTM)(n=6) 

( , )u x t  

-1 .002 
0.5248656521

 
0.5248656521  

0.1626076285

 
0.1626076285  164.44089210E  164.44089210E  

 .004 0.5265378847  0.5265378847  
0.1651589567

 
0.1651589567  0  162.22044605E  

 .006 
0.5282050196

 
0.5282050196  

0.1677052910

 
0.1677052910  162.22044605E  162.22044605E  

 .01 
0.5315240365

 
0.5315240365  

0.1727829372

 
0.1727829372  168.88178420E  0  

-0.5 .002 0.0726228035  0.0726228035  0.5699857677  0.5699857677  175.17342545E  173.16248385E  

 .004 0.0694857454  0.0694857454  0.5670716110  0.5670716110  171.79166394E  184.32816210E  

 .006 0.0663545110  0.0663545110  0.5641530588  0.5641530588  185.96930588E  176.53956485E  

 .01 0.0601096021  0.0601096021  0.5583030199  0.5583030199  151.14439064E  166.86646623E  

0.5 .002 1.9210856177  1.9210856177  0.5758006425  0.5758006425  161.01678014E  179.18898932E  

 .004 1.9179311150  1.9179311150  0.5787012341  0.5787012341  176.94107766E  178.09162501E  

 .006 1.9147708158  1.9147708158  0.5815971773  0.5815971773  173.04420465E  173.27189770E  

 0.01 1.9084328654  1.9084328654  0.5873748646  0.5873748646  151.40966802E  164.85812888E  

1 .002 2.5215058541  2.5215058541  
0.1574900320

 
0.1574900320  0  0  

 .004 2.5198182687  2.5198182687  
0.1549237850

 
0.1549237850  162.22044605E  0  

 .006 2.5181255459  2.5181255459  
0.1523525866

 
0.1523525866  162.22044605E  0  

 0.01 2.5147246484  2.5147246484  0.1471953803  0.1471953803  166.66133815E  0  

 

4. CONCLUSION 

 

In this paper, the Reduced Differential Transform Method (RDTM) was implemented 

for solving the two-component KdV Evolutionary System of order two and the Broer-

Kaup (BK) system of equations. We successfully found approximate solutions for both 

systems of nonlinear PDEs by first applying the RDTM to both physical models. The 

results we obtained were in excellent agreement with the exact solutions. The RDTM 

introduces a significant improvement in the field over existing techniques. Our goal in 

the future is to apply the RDTM to other systems of nonlinear PDEs that arises in other 

fields of science.  
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