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Abstract- In this paper, we are concerned with finding approximate solutions to
systems of nonlinear PDEs using the Reduced Differential Transform Method
(RDTM). We examine this method to obtain approximate numerical solutions for two
different types of systems of nonlinear partial differential equations, such as the two-
component KdV evolutionary system of order two and the Broer-Kaup (BK) system of
equations. The theoretical analysis of the RDTM is investigated for these systems of
equations and is calculated in the form of power series with easily computable terms.
Illustrative examples will be presented to support the proposed analysis.
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1. INTRODUCTION

The Reduced Differential Transform Method [1, 2, 3], was first introduced by Keskin to
solve linear and nonlinear PDEs that appears in many Mathematical Physics and
engineering applications. The method provides solutions in an infinite series form and
the obtained series may converge to a closed form solution if the exact solution exists.
For concrete problems where exact solution does not exist, the truncated series may be
used for numerical purposes. For nonlinear models, the RDTM [4, 5, 6], has shown
dependable results and gives analytical approximation that converges very rapidly and
in some cases gives exact solutions. Many numerical methods were used in the past to
solve systems of nonlinear partial differential equations, such as, Adomian
Decomposition Method (ADM) [7, 8], Differential Transform Method (DTM) [9], the
Tanh-Coth Method [10], and the Variational Iteration Method (VIM) [11] and others. In
this paper, we find approximate solutions to the following systems of NLPDEs:

First, the two-component KdV evolutionary system of order two:

Up + 3Vxx =0

, 11
VI_UXX_4u2:0 ( )

subject to the initial conditions

2 2

3 NE)
u(x,0) = W/;(yx) - V(x,0) = 4ﬂ tan [#ZXJ (1.2)



mailto:msalrawashdeh@just.edu.jo

162 M. Rawashdeh

Second, the Broer-Kaup (BK) system of equations:

Up +uuy +v, = 0
Vi + Uy +(uv)x + Uy =0 ' (1.3)
subject to the initial conditions
u(x,0)=1+2tanh(x); v(x,0)=1—2tanh2(x) . (1.4)

The goal of our study is to use the RDTM to find approximate solutions to two different
types of systems of nonlinear partial differential equations and to show how accurate
and efficient is the method in finding approximate solutions to other complicated
systems of nonlinear partial differential equations.

Keskin, in his PhD thesis [3], introduced the reduced form of the differential transform
method (DTM) as a reduced differential transform method (RDTM). Keskin used the
RDTM to solve the Gas Dynamics Equation, linear and nonlinear Klein-Gordon
Equations and more. Also, Keskin and Oturanc [1] used the RDTM to solve linear and
nonlinear wave equations and they showed the effectiveness, and the accuracy of the
method. Moreover, Alquran, Al-Khaled and Ananbeh [12], gave new Soliton solutions
for the Broer-Kaup (BK) system of equations using the rational sine-cosine method.
Finally, M. Abdou and A. Soliman [13] used the RDTM to give numerical simulations
of nonlinear evolution equations and M. Abdou [14] finds numerical solutions to the
coupled MKdV system of equations and the coupled Schrodinger-KdV system of
equations.

2. ANALYSIS OF THE RDTM

In this section, we start with a function of two variablesu (x,t)which is analytic and

k —times continuously differentiable with respect to timet and space x in the domain of
our interest. Assume we can represent this function as a product of two single-variable

functions, namely, u(x,t) = f(x).g(t) . From the definitions of the DTM, the function
can be represented as follows:

u(xi)d 5 F(i)xiJ s et £ U, x).iK
) [io {jo J koo ¥ ’ (2.1)

whereU, (x) is the transformed function of u(x,t)which can be defined as:

U = ! 5k t
k() = gr| i Oen) o (2.2)

From equations (2.1) and (2.2) we can deduce
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L K
u (x,t) = kz::oukt . 2.3)

Some basic operations of the reduced differential transformation obtained from
equations (2.1) and (2.2) are given in the table below:

Table 1. Basic operations of the RDTM [3]

Functional Form Transformed form
k
1|0
u(x,t k!{k“(x‘t)}
(x) &Y
au(X,t)£Lv(x,t) aUy (X)1BY (X) , @ and S are constant.
u(x,t).v(xt kK
(vt 2 Ui () Vi ()
i=0
i
u(x,t).v(xt).w(xt) K in(X)Vi,j(X)Wk,i(X)
i=0j=0
an (k+n)!U .
@U(th) K1 ken(X)
n n
a—u(x,t) a—nUk(X)
oxn OX
m
XMt (x,t) X", (x)
m.n 1, k=
KM A (0=x"5(k-n) | where S(k-m)={g 1|
amtm o" [ (k+m)!

To illustrate the RDTM, we write the two-component KdV evolutionary system of order
two in standard form

L (u(xt)) + 3Ly (v(x,t) = 0

Ly (v(x) = Ly (u(xt)) + 4N (u(xt)) = 0 (2:4)
subject to initial conditions
u(x,0)=f (x) , v(x,0)=g(x) , (2.5)

2
o 0 . .
where L=, foy , and N(u(x.t)) is the nonlinear term.

Now from equation (2.4) and (2.5), we can derive the recursive formulas (using the
formulas in Table 1) as follows:
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22
(k1)U g () = 3 (vk (x))

2 , (2.6)

P
(k42) Vg () = &Z(Uk(x)) + 4N (u(x.t))

and

Up(0)=F (%) ; Vo ()=9(x) . (2.7)
To find the rest of the iterations, we first substitute equation (2.7) into equation (2.6)
and then we find the values ofU, (x) ’s andV, (x) ’s. Finally, we apply the inverse

transformation to all the values of {Uk(x)}Ezo and {Vi (X)}EZO to obtain the approximate
solutions:

_ n K o 4 k
u(x,t):kEOUk(X)t ;v(x,t)=k§0Vk(X)t , (2.8)

where n is the number of iterations we have used to find the approximate solution.
Hence, the exact solutions of our problem is given by

u(xt)=lim aQct) - v(xt)=lim v(xt) (2.9)
n—oo Nn—o

3. APPLICATIONS

In this section, we test the RDTM on two numerical examples and then compare our
approximate solutions to the exact solutions.

3.1. Examples

In this section, we present two examples to show the efficiency of the RDTM.

Example. 3.1.1
We consider the two-component KdV Evolutionary System of order two:
U, +3V,, =0
2 H (3'1)
v,—u,—4u° =0
subject to the initial conditions
_3,2 N
where the exact solutions are, [6]
2
nixt) = a+dcos( {3t V=" ‘an[ 2 : (3.3)

Applying the RDTM to (3.1) and (3.2) with x=1, we obtain the following recursive
relations:
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L\ 2 y : (3.4)
Vi (X) = [(k*'l)] [&(ZUK(X)M_ZOUi(x)Uk_i(x)]
=
and
-3 \ﬁ X
UO(X) = WOS(X) ; Vo(x):Ttan(Ej (35)
where, theU, (x), V, (x) are the transform function of the t —dimensional spectrum.
Now, substitute Eq. (3.5) into Eq. (3.6) to obtain the following:
2 4 _ 3 9 4 x
Uy () = -3Bese” (x)sin (;j : Vl(X)—m; UZ(X)=§(C°5(X)_2)SEC (2) ;
Sﬁtan[gj
V2 (0= 8+8cos(x) (3.6)

We continue in this manner and after the sixth iteration, the differential inverse
6 6
transform of {Uk (><)}k:0 , {Vk(x)}kzo will give the following approximate solutions:

a(xt)= ZG:Uk(x)tk =U,(X) +U,(x)t+U,(x)t* +U, (x)t* +...

3 2 g X 9 af X2
u(x,t)——m—3 3 csc?(x)sin (Ejt+§(cos(x)—2)sec (Ejt

v(xt)= ZA“Vk(x)tk =V, (X) +V, )t +V, (x) 1% +V, (x)t° +...

k=0

Sﬁtan[xj
v(x,t)=£tan(§j+ 544 2) e
4 2) 4+4cos(x)  8+8cos(x)

Figure 1. The approximate, exact solutions and absolute error of u(x, t) respectively for
example 3.1.1 when -1< x <1 and 0< t <0.01.

Note that figure 1 shows the exact solution, approximate solution and the absolute error
for u(x,t), respectively.
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Figure 2. The approximate and exact solutions of u(x, t) for example 3.1.1 when
-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1.

Note that figure 2 shows the exact solution, approximate solution of u(x,t) for the
values of x ={-1,-05,05,1} and t = {0.002,0.004,0.006,0.01} ,

“0 “0 1

Figure 3.The approximate, exact solutions and absolute error of v(x, t), respectively for
example 3.1.1 v(x, t ) when -1< x <1 and 0< t <0.01.

Note that figure 3 shows the exact solution, approximate solution and the absolute error
for v(x,t), respectively.

exact

approximate

015

010

P —005 | —0.05

Figure 4. Tﬁé approximate and exact solutions of v(x, t) for'example 3.1.1 when
-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1.

Note that figure 4 shows the exact solution, approximate solution of v(x,t)for the
values of x ={-1,-05,0.5,1} and t = {0.002,0.004,0.006,0.01} ,

Example 3.1.2

We consider the Broer-Kaup (BK) system of equations:
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u,+uu,+v, =0

V,+u +(uv) +u,, =0" 37)
subject to the initial conditions
u(x,0)=1+2tanh(x), v(x,0)=1—2tanh2(x) . (3.8)
The exact solutions are, [6]
u(x,t)=1-2tanh(t-x), v(x,t)=1—2tanh2(t—x) . (3.9)
Applying the RDTM to (3.8) and (3.7), we obtain the recursive relation
U (x) = (k_+11j (;(VK(X)-’_ilé:OUi(X)aaXUk_i (x)]
Vg () = [k‘lj {%k(x)ﬁ( 5 U (Y, _; (x)]+asuk(x)] | (310
+1)| ox i ox3
and
Ug()=l+2tanh(x) | v (x)=t-2tanh?(x) . (3.11)

Now, substitute Eqg. (3.11) into Eq. (3.10) to obtain the following:

U (x) = 725ech2 (x),Uz(x) = 725ech2 (x) tanh(x), U5 (x) = fé(cosh(ZX)fz) sech4 (x) -

Vi (x) = 4sech2 (x) tanh(x), V, (x) = 2(cosh(2x)—2) sech4 (x) V3 (x) = g(cosh(2x)—5) sech4 (x) tanh(X)y «us
(3.12)

We continue in this manner and after the sixth iteration, the differential inverse
6

6
Y {Vk (X)}k=O will give the following approximate solutions:

transform of {Uk(x)}

a(xt)= ZGZUk(x)tk =U, () +U, ()t +U, ()" +U,(x)t% +...

k=0

u(x,t)=1+2tanh(x)—2sech?(x)t —2sech?(x tanh(x)tz—E cosh(2x)—2)sech* (x)t*+... ,
3

v(xt)= Ze:vk(x)tk =V, () +V, ()t +V, ()t +V, ()% +..

k=0

v(x,t) =1-2tanh?(x) +4sech’ (x) tanh(x)t + 2(cosh(2x) — 2) sech* (x)t? +g(cosh(2x)—5)sech‘1 (x)tanh(x)t* +...

Figure 5. The approximate, exact solutions and absolute error of u(x, t) respectively for
example 3.1.2 when -1< x <1 and 0< t <0.01.
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Note that figure 5 shows the exact solution, approximate solution and the absolute error
for u(x,t), respectively.

U —exact

u —approximate
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Figure 6. The approximate and exact solutions of u(x, t) for example 3.1.2 when
-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1.

Note that figure 6 shows the exact solution, approximate solution of u(x,t) for the
values of x ={-1,-05,0.5,1} and t = {0.002,0.004,0.006,0.01} .
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Figure 7. The approximate, exact solutions and absolute error of v(x, t) respectively for
example 3.1.2 when -1< x <1 and 0< t <0.01.

Note that figure 7 shows the exact solution, approximate solution and the absolute error
for v(x,t), respectively.

V — approximate V —exact

Figure 8. The approximate and exact solutions of v(x, t) for example 3.1.2 when
-0.5< x <0.5 and t =0.02, 0.04, 0.06, 0.08, 0.1

Note that figure 8 shows the exact solution, approximate solution of v(x,t) for the
values of x ={-1,-05,0.5,1} and t = {0.002,0.004,0.006,0.01} ,
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In this section, we shall illustrate the accuracy and efficiency of the RDTM by
comparing the approximate and exact solutions. In Table 2 and 3, we consider the same
value for x, andt, specifically, x ={-1,—-0.5,0.5,1} andt = {0.002,0.004,0.006,0.01}

Table 2. Comparison of absolute errors of u(x, t) and v(x, t) for the two-component KdV
evolutionary system of order 2, by RDTM for different values of x, t.

Error(RDTM)(n=6
X t u(xt) Exact | YOO APPIOX | Bt v(xt) Approx. | Error(RDTM)(n=6) Irror(u(x t))(n )
: v(x,t) '
—0.4859987017 | —0.4859987017 | —0.2355830020 16
-1 .002 -0.2355830020 0 1.11022303E
—0.4850855048 | —0.4850855048 | —0.2346119187
.004 -0.2346119187 0 5.55111512E %/
—0.4841777817 —0.2336426563
.006 -0.4841777817 —0.2336426563 0 22204460516
—0.4823786318 —0.2317095507
.01 -0.4823786318 ~0.2317095507 8.88178420E 16 5.82867088E 12
—0.3990979170 —0.1097677480
-0.5 | .002 —0.3990979170 —0.1097677480 1.38777878 E717 9.59351708 E*]-8
—0.3987488789 —0.1089699016
.004 -0.3987488789 —0.1089699016 1.38777878€ 17 4.37629829E 17
~0.3984026879 ~0.1081727506
.006 -0.3984026879 -0.1081727506 0 1.83433918~ 17
—0.3977188108 —0.1065805113
.01 -0.3977188108 -0.1065805113 | 1.80411242E16 9.35662309E 16
—0.3998045711
0.5 | .002 -0.3998045711 0.1113655491 0.1113655491 0 1.17459666 E~17
—0.4001622057
.004 -0.4001622057 0.1121655154 0.1121655154 277555756 17 6.96101917E~17
—0.4005227246
.006 —0.4005227246 | 0.1129661997 0.1129661997 0 95761574618
—0.4012524536
0.01 —0.4012524536 0.1145697464 0.1145697464 1.94289029E 16 8.50952883E 16
—0.4878416434
1 .002 —0.4878416434 0.2375306753 0.2375306753 277555756 E 17 0
—0.4887714524
.004 —0.4887714524 | 0.2385072875 0.2385072875 555111512 E 17 555111512617
—0.4897068631
.006 -0.4897068631 0.2394857648 0.2394857648 555111512617 1.11022303E 16
—0.4915946213
0.01 —0.4915946213 0.2414483603 0.2414483603 9.71445147E~16 6.05071548E 15
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Table 3. Comparison of absolute errors of u(x, t) and v(x, t) for the Broer-Kaup (BK)

system equations, by RDTM for different values of x, t.

X t u(x,t) Exact u(x,t) Appr. v(x,t) Exact v(x,t) Approx. | Error(RDTM)(n=6) Etror (RDTIM)(n:G)
v(x,t) u(xt)
—0.5248656521 —0.1626076285
-1 .002 —0.5248656521 —0.1626076285 4.44089210 E*16 4.44089210 E*]-6
~0.1651589567
.004 | -05265378847 | -0.5265378847 —0.1651589567 0 2.22044605E 16
—0.5282050196 —0.1677052910
.006 ~0.5282050196 —0.1677052910 222044605E 16 2.22044605E 16
—0.5315240365 —0.1727829372
.01 —0.5315240365 —0.1727829372 8.88178420E 16 0
-0.5 | .002 0.0726228035 0.0726228035 0.5699857677 0.5699857677 51734254517 3.16248385E 17
.004 00694857454 00694857454 0.5670716110 0.5670716110 1.79166394E 17 43281621018
.006 0.0663545110 0.0663545110 0.5641530588 0.5641530588 5.96930588E 18 6.53956485E 17
.01 0.0601096021 0.0601096021 0.5583030199 0.5583030199 1.14439064E 15 6.86646623E 16
0.5 | .002 | 19210856177 | 1.9210856177 | 0.5758006425 0.5758006425 1.01678014E 16 0.18898932E L7
.004 1.9179311150 1.9179311150 0.5787012341 05787012341 6.94107766E~L7 8.09162501E 17
.006 19147708158 1.9147708158 05815971773 05815971773 3.04420465E 17 30718977017
0.01 1.9084328654 1.9084328654 0.5873748646 0.5873748646 1.40966802E 15 4.85812888E 16
—0.1574900320
1 .002 25215058541 2.5215058541 —0.1574900320 0 0
—0.1549237850
.004 2.5198182687 2.5198182687 —0.1549237850 | 2.22044605E 16 0
—0.1523525866
.006 25181255459 2.5181255459 —0.1523525866 2.22044605E 16 0
0.01 2.5147246484 25147246484 | 01471953803 01471953803 6.66133815E 16 0

4. CONCLUSION

In this paper, the Reduced Differential Transform Method (RDTM) was implemented
for solving the two-component KdV Evolutionary System of order two and the Broer-
Kaup (BK) system of equations. We successfully found approximate solutions for both
systems of nonlinear PDEs by first applying the RDTM to both physical models. The
results we obtained were in excellent agreement with the exact solutions. The RDTM
introduces a significant improvement in the field over existing techniques. Our goal in
the future is to apply the RDTM to other systems of nonlinear PDEs that arises in other
fields of science.
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