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Abstract-  In this paper, a general algebraic method based on the generalized Jacobi 

elliptic functions expansion method, the improved general mapping deformation 

method and the extended auxiliary function method with computerized symbolic 

computation is proposed to construct more new exact solutions of a generalized KdV 

equation with variable coefficients. As a result, eight families of new generalized Jacobi 

elliptic function wave solutions and Weierstrass elliptic function solutions of the 

equation are obtained by using this method, some of these solutions are degenerated to 

soliton-like solutions, trigonometric function solutions in the limit cases when the 

modulus of the Jacobi elliptic functions 1m  or 0, which shows that the general 

method is more powerful and will be used in further works to establish more entirely 

new solutions for other kinds of nonlinear partial differential equations arising in 

mathematical physics. 

 

Key words-  Generalized KdV equation with variable coefficients; general algebraic 

method; exact solutions; generalized Jacobi elliptic function wave-like solutions  

 

1. INTRODUCTION 

 

Nonlinear partial differential equations (NLPDEs) are widely used to describe 

complex physical phenomena arising in the world around us and various fields of 

science. The investigation of exact solutions of NLPDEs plays an important role in the 

study of these phenomena such as the nonlinear dynamics and the mechanism behind 

the phenomena. With the development of soliton theory, many powerful methods for 

obtaining exact solutions of NLPDEs have been presented, such as inverse scattering 

transformation [1], Hirota bilinear method [2], Bäcklund transformation [3], Darboux 

transformation [4], homotopy perturbation method [5], extended Riccati equation 

rational expansion method [6], asymptotic methods [7], extended auxiliary function 

method [8], algebraic method [9], Jacobi elliptic function expansion method [10],and so 

on [11-13]. 

In [14][15], Hong proposed a generalized Jacobi elliptic functions expansion method 

to obtain generalized exact solutions of NLPDEs. In [16], Hong et al. proposed an 
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improved general mapping deformation method to obtain generalized exact solutions of 

the general KdV equation with variable coefficients (GVKDV). Which is more general 

than many other algebra expansion methods [6,8-15] etc. The solution procedure of this 

method, by the help of Matlab or Mathematica, is of the utmost simplicity, and this 

method can be easily extended to all kinds of NLPDEs. 

In this work, we will proposed the general algebraic method to obtain several new 

families of exact solutions for the GVKDV equations. 

The rest of this paper is organized as follows. In section 2,we briey describe the new 

general algebraic method. In section 3, several families of solutions for the GVKdV 

equation are obtained, some of which are degenerated to new solitary-like solutions and 

new triangular-like functions solutions in the limit case. In section 4, some conclusions 

are given. 

 

2. SUMMARY OF THE GENERAL ALGEBRAIC METHOD 

Consider a given nonlinear evolution equation with one physical field ( , )u x t in two 

variables x and t 

( , , , , ) 0t x xxP u u u u  .                                                  (1)     

We seek the following formal solutions of the given system by a new intermediate 

transformation: 

1

0

( ) ( ) ( ) ( ) ( )
n

i i

i n i

i i n

u A t A t    




 

   .                                       (2) 

Where ( )iA t , ( )n iA t are functions of t to be determined later. ( , )x t  are arbitrary 

functions with the variables x and t. The parameter n  can be determined by balancing 

the highest order derivative terms with the nonlinear terms in Eq.(1). And ( )   is a 

solution of the following ordinary differential equation (ODE) 

4
2

0

' ( ) ( ) ( )i

i

i

a t   


 .                                                (3) 

Substituting Eqs. (3) and (2) into Eq. (1), and setting the coefficients of 

( )( 0,1,2, )i i     and  

4

0

( ) ( ) ( )( 0,1; , 2, 1,0,1,2, )s j i

i

i

x a t s j   


      to zero yield a set of algebraic 

equations for ( )iA t , ( )n iA t  and  . Using the Mathematica to solve the algebraic 
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equations and substituting each of the solutions of the set, i.e. each of the expressions of 

( )   into Eq. (2), we can get the solutions of Eq. (1). In order to obtain some new 

general solutions of Eq.(3),we assume that (3) have the following solutions: 

0 1 2 3 4( ) ( ) ( ) ( ) ( )c c e c f c g c h          .                                (4) 

Where ( )( 0, ,4)i ic c t i    are functions of t to be determined later, the four functions 

( ), ( ), ( ), ( )e e f f g g h h        are expressed as the follows: 

2

2 2 2 2

1 '
, , ,

' ' ' '

F F F
e f g h

p qF rF lF p qF rF lF p qF rF lF p qF rF lF
   

           
.(5) 

Where , , ,p q r l  are arbitrary constants which ensure denominator unequal to zero, so 

do the following situations, and ( )F F   is a solution of the following ODE 

'2 2 4 32 2F A BF CF DF EF     ， '' 3 22 3F BF CF D EF    .                    (6) 

Where “ ' ” denotes 
d

d
,  “ '' ” denotes 

2

2

d

d
, , , , ,A B C D E  are arbitrary constants, 

so do the following situations, the four functions , , ,e f g h  satisfy the following  

relations: 

2 2

2 2

2 2

2 2 2

2 2 2 2 2

' 2 ( 2 3 ),

' ( ),

' 2 (2 3 ),

' ( ) ( 2 ) (2 ) 3( ) ( )

, 2 2 ,

e qeh rfh l De Bef Cfg Ef

f peh rgh l Ae Def Cg Efg

g qgh pfh l Aef Df Bfg Eg

h Dp Aq e Bp Dq Ar ef Cp Eq Br fg Ep Dr f Cq Er g

f eg h Ae Bf Cg Def Efg pe qf rg lh

      

     

     

           

         1








 

.(7)                                 

And , , ,e f g h  satisfy one of the following relations at the same time. 

Family 1:When 0p   

2 2 2 2 2 2 2 2( ) 2 (1 ) 2 (2 2 ) (2 2 ) (2 )Cl r h C Clh Br lh qf e Ae r Dr ef Cq Er f lEr Clq fh Eqr Cq f               .(7a) 

Family 2:When 0q   
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2 2 2 2 2 2 2( ) 2 ( ) 2 ( 1) (1 ) ( ) (2 2 )Cl r h C lh pe pleh Er lh f Br lh pe e Cp Ar e Epr Dr ef C              .  (7b) 

Family 3:When 0r   

2 2 2 2 2 2 2 2 21 2 2 ( ) 2 2( ) ( )Cl g El fg pe p Al e qf pq Dl ef q Bl eg          .         (7c) 

Family 4:When 0l   

2 2 2 2 2 2 2 22 (2 2 ) ( ) ( 2 ) (2 2 2 )r h C Cpe Er Cq f Cp Ar e Cq Eqr Br eg Cpq Epr Dr ef            .     (7d) 

Substituting (4),(5),(6),(7) along with (7a)-(7d) into Eq.(3) separately yields four 

families of polynomial equations for , , ,e f g h .Setting the coefficients of 

, , , , , ,i i i i i ie e f e g e h e fg e fh  

ie gh ( 0,1,2, )i    to zero yields a set of over-determined differential equations(ODEs) 

in 

, , , , ( 0,1,2,3,4), , , , ,i ip q r l a c i A B C D E、  and ( , )x t ,solving the ODEs by 

Mathematica and Wu elimination, we can obtain many exact solutions of Eq.(1) 

accroding to (2),(3),(4),(5),(6). 

If we let 0 1 3 4 2 0 1 2 30, 1, 1, 0, , 2 , , 2 ,c c c c c p q r l a A a D a B a E              

4a C , we have ( ) ( )F   , our method contain the improved general mapping 

deformation method[16]etc. 

 

Remark 1. Our method proposed here is more general than the extended Riccati 

equation rational expansion method[6], the extended auxiliary function method [8], the 

generalized F-expansion method[13], the generalized Jacobi elliptic functions expansion 

method[14,15], and many other algebra expansion methods[9,10,12] [16,17,18,19] etc. 

Remark 2. Eq.(2) and Eq.(3) can be extended to the following forms 

1

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) '( )
n n

i i i

i n i i

i i n i n

u A t A t B t        




  

     ,
4

2

0

' ( ) ( ) ( )i

i

i

a t   


 . 

Where n  is usually a positive integer. If n  is a fraction or a negative integer, we 

make the following transformation: 

(a) when /n d c  is a fraction, we let /( ) ( )d cu v  , then return to determine the 

balance constant n  again; 

(b) when n  is a negative integer, we suppose ( ) ( )nu v  , then return to determine 
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the balance constant n  again. 

Remark 3. Noticed that 

1 1 2

0 1 2 3 4 11 2

2 3

0 1 2 3 4 2 3

( ) ( ) ( )
( , , , , )( , , , , ) ( , , , , )

( ) ( )
( , , , , ) ( , , , , )

F F
a a a a aA B C D E A B C D E

F
a a a a a A B C D E

   

  

 

  

  

We find a meanful conclusion that this general method imply a BT of Eq.(1) with the 

compatible conditions (4),(5),(6),(7) and (7a)-(7d). 

 

In the following, we will use this method to solve the GVKdV equation 

 

3. EXACT SOLUTIONS TO THE GVKDV EQUATION 

 

 We consider the following GVKdV equation [16-20]. 

2 ( ) [ ( ) ( ) ] 3 ( ) ( ) 0t x x xxxu t u t t x u M t uu t u                                 (8) 

Where ( )t , ( )t  and ( )t  are arbitrary functions of t . Equation (8) can be reduced 

to other more physical forms [21-26] which has been discussed in Ref. [16]. 

 

 By balancing the highest-order linear term xxxu  and the nonlinear xuu  in (8), we 

obtain 2n  , thus we assume that (8)  have the following solutions： 

2 1 2

0 1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u A t A t A t A t A t              ,                 (9) 

( , ) ( ) ( )x t k t x t    .                                               (10) 

Where ( )k t , ( )t , ( )( 0,1,2,3,4)iA t i  are functions of t  to be determined later.  

Substituting (3) (12) and (13) into (8) and setting the coefficients of ( )( 0,1,2, )i i     

and  

4

0

( ) ( ) ( )( 0,1; , 2, 1,0,1,2, )s j i

i

i

x a t s j   


      to zero yield a set of 

over-determined equations (ODEs) for ( )iA t , ( )n iA t , ( ), ( )k t t  and ( )ia t . After 

solving the ODEs by Mathematica we could determine the following solutions: 
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Family 1  

2

3 1 4
2

4 3

2

4

a a a
a

a a
  ,                                                     (11) 

'

2 2

1 3 2 4 3 4

2
2 31 4

0

3 4

2 ,( 0,1,2,3,4), ' ,

2 / , 4 / , 0, 0,

8
' [ 3 ( )].

4

i iA A i k k

A a k M A a k M A A

aa a
k MA k

a a

 

   

    

   

    

          (12) 

Family 2  

2

0 31
2

0 1

2

4

a aa
a

a a
  ,                                                     (13) 

'

2 2

1 2 3 1 4 0

2
2 0 3 1

0

1 0

2 ,( 0,1,2,3,4), ' ,

0, 0, 2 / , 4 / ,

8
' [ 3 ( )].

4

i iA A i k k

A A A a k M A a k M

a a a
k MA k

a a

 

   

    

   

    

          (14) 

Substituting (4),(5),(6),(7) along with (7a)-(7d) and (11) into Eq.(3) separately yields an 

ODEs, after solving the ODEs by Mathematica and Wu elimination, we can obtain the 

following solutions of Eq.(3) and Eq.(8) according to (4),(5),(6) and (12).  

 

Case 1 

2 2

2

0 1 3

2 2 2

2 4

0 1 3 4 2

1, 1, , 0, ,0 1,

1, 4 2(1 ) , 2 2(1 ) (1 6 4(1 ) ),

12(1 ) 6 1, 8 ( 1) 2(1 )(1 6 ) ,

1, 2(1 ) , , 0, 0, 1,

A B m C m D E F sn m

a a m m a m m m m m m

a m m m m a m m m m m m

p q m m r m l c c c c c

         

         

          

         





 

1
1 1

2

1 1

( ) ( ) 2 ( )2 2

1 5 5 0 5

( ) ,
1 2(1 )

[ ( ) (3 (36(1 ) 6 1)) ( )] ,
t dt t dt t dt

sn

m msn msn

k e x k e t Mk k m m m m e t dt
  


 

 

  
  


 

          

  

2 ( )2 2
2 ( ) 5 1

1 0
2

1 1

2 ( )2 2 2 2

5 1

2 2

1 1

4 2(1 ) (1 6 4(1 ) )

(1 2(1 ) )

(32 ( 1) 8(1 )(1 6 ) )
.

(1 2(1 ) )

t dt

t dt

t dt

m m m m m m k e sn
u k e

M m msn msn

m m m m m m k e sn

M m msn msn
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Case 2 
2 2

2 2 2 2

0 1 2 3 4

2

0 1 3 4 2

1, 1, , 0,0 1, ,

1, 4 1 , 8 4 , 8 1 , 4 4 ,

0, 1 , 0, 1, 0, 1,

A B m C m D E m F sn

a a m a m a m a m

p q m r l c c c c c

         

        

          

   

2
2 2

2

2 2 2

( ) ( ) 2 ( )2 2

2 5 5 0 5

( ) ,
1

[ ( ) (3 (20 16 )) ( )] ,
t dt t dt t dt

sn

m sn cn dn

k e x k e t Mk k m e t dt
  


 

  

  
  


  

       
2 ( ) 2 ( )2 2 2 2 2

2 ( )
5 2 5 2

2 0
2 2 2

2 2 2 2 2 2

16 1 16(1 )

( 1 ) ( 1 )

t dt t dt
t dt m k e sn m k e sn

u k e
M m sn cn dn M m sn cn dn

 
  

     

 


   
     

 . 

Case 3 

2 2 2

2 2 2

0 1 2 3 4

0 1 3 4 2

1 , 2 1, , 0,0 1, ,

1, 4, 8 4 , 8 8, 4 4 ,

0, 1, 0, 1, 0, 1,

A m B m C m D E m F cn

a a a m a m a m

p q r l c c c c c

          

        

         

 

3
3 3

3 3 3

( ) ( ) 2 ( )2 2

3 5 5 0 5

( ) ,

[ ( ) (3 (20 4 )) ( )] ,
t dt t dt t dt

cn

cn sn dn

k e x k e t Mk k m e t dt
  


 

  

  
  



       



2 ( ) 2 ( )2 2 2 2 2
2 ( )

5 3 5 3
3 0 2

3 3 3 3 3 3

16( 1) 16(1 )

( ) ( )

t dt t dt
t dt m k e cn m k e cn

u k e
M cn sn dn M cn sn dn

 
  

     

 


    
 

. 

Case 4 

2 2 2

2 2 2 2 3 2 2 2 2

0 0 0 1 0 0 0 2 0

2 2

3 0 4 1 2 4 3

1 , 2 1, , 0,0 1, ,

(1 )[1 ( 1) ], 2( 2 2 ), 2 6 1,

4 , , 1, 0, 0, 0, 0, 1,

A m B m C m D E m F cn

a c c m a c c m c m a m c m

a c m a m p q r l c c c c

          

         

          

 

4 4 0 4

( ) ( ) 2 ( )2 2 2 2

4 5 5 0 5 0

( ) ,

[ ( ) (3 4 (2 3 1))) ( )] ,
t dt t dt t dt

c cn

k e x k e t Mk k m c m e t dt
  

  

  
  

 

        
 

2 2 2 2
2 ( )20 5 5

4 0 0 4 0 4

8 4
[ ( ) ( ) ]

t dtc m k m k
u k c cn c cn e

M M


 

      . 

Remark 4: 4u  are in full agreement with the results in Ref.[16],which contain the 

results (19) constructed by Zhao in Ref. [17] and 3u  obtained by Zhu in Ref. [18]. 
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Case 5 

2 2

2 3 4 2

0 1 2 3 4

0 1 3 4 2

1, 2 , 1, 0,0 1, ,

1, 4 , 8 4, 8 8 , 4 4 ,

0, , 0, 1, 0, 1,

A m B m C D E m F dn

a a m a m a m m a m m

p q m r l c c c c c

          

        

         

 

5
5 5 2

5 5 5

( ) ( ) 2 ( )2 2

5 5 5 0 5

( ) ,

[ ( ) (3 (20 4)) ( )] ,
t dt t dt t dt

dn

dn m sn cn

k e x k e t Mk k m e t dt
  


 

  

  
  



       



2 ( ) 2 ( )2 2 2 2 2 2
2 ( )

5 5 5 5
5 0 2 2 2

5 5 5 5 5 5

16 (1 ) 16 ( 1)

( ) ( )

t dt t dt
t dt m m k e dn m m k e dn

u k e
M dn m sn cn M dn m sn cn

 
  

     

 


    
 

. 

Case 6 

2 3 2 2

1 3 3 1 3 3 3 1

1 3

3

3 21
0 1 3 2 3 3 1 3

3 3

2 3 2 2

1 3 3 1 3 3 3 1 2

4 1 3

3

5 ( 3 ) (3 2 )
, 0, 0,2 ,2 ,

4

4 4
( , , ), 0, , 3 , 3 ,

2

3 9 ( 3 ) (3 2 )
, sgn[ 3 ],

4

0, , 1, 0,

C C q C q C C q C C q C
A B C D C E C

C

C C M
F a a C a C q a C C q

C C

C C q C q C C q C C q C
a C C q

C

p q const r l








   
    

 
      

    
  

    0 1 3 4 20, 1,c c c c c    

6 6

3 1
5

3 3

( ) ( ) 2 ( )2 2

6 5 5 0 3 3 1 3 5

1
( ) ,

4 4
( , , )

2

3
[ ( ) (3 ( (3 2 ) 5 ) ) ( )] ,

2

t dt t dt t dt

C C M
q

C C

k e x k e t Mk C C q C C q k e t dt
  

 



   
  


 



        

2 2 22 2
2 ( )1 3 3 3 1 3 5 21 3 5

6 0 6 6 6 6

3

( 3 )( (3 2 ) 3 )2( 3 )
[ ( ) ( )]

t dtC C q C C q C C q kC C q k
u k e

M MC


   

      . 

Substituting (4),(5),(6),(7) along with (7a)-(7d) and (13) into Eq.(3) separately yields an 

ODEs, after solving the ODEs by Mathematica and Wu elimination, we can obtain the 

following solutions of Eq.(3) and Eq.(8) according to (4),(5),(6) and (14). 

Case 7 

2 2

0 1

2 2 2 2 2 2 2

2 3 4

0 1 3 4 2

1, 1, , 0,0 1, , 1, 4 0,

6 6 1, 2 (1 6 2 ), ((1 ) )(4 ),

0, , 0, 1, 0, 1,

A B m C m D E m F sn a a q

a q m m a q m m q a m q m q

p q m r l c c c c c
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7
7 7 2

7 7

( ) ( ) 2 ( )2 2 2

7 5 5 0 5

( ) ,
1

[ ( ) (3 4 (1 6 3 )) ( )] ,
t dt t dt t dt

sn

qsn msn

k e x k e t Mk k m m q e t dt
  


 

 

  
  


 

         

 

2 2
2 ( )25 5

7 0 7 7 7 7

8 4
[ ( ) ( ) ]

t dtqk k
u k ns q msn ns q msn e

M M


   

        . 

Case 8 
2 2

2 2 2 2

0 1 2 3 4

2

0 1 3 4 2

1, 1, , 0,0 1, ,

1, 4 1 , 8 4 , 8 1 , 4 4 ,

0, 1 , 0, 1, 0, 1,

A B m C m D E m F sn

a a m a m a m a m

p q m r l c c c c c

         

         

         

 

8
8 8

2

8 8 8

( ) ( ) 2 ( )2 2

8 5 5 0 5

( ) ,
1

[ ( ) (3 (20 4 )) ( )] ,
t dt t dt t dt

sn

m sn cn dn

k e x k e t Mk k m e t dt
  


 

  

  
  


 

       

  

2 2 2
2 ( )2 2 25 5

8 0 8 8 8 8

8 1 4
[ ( 1 ) ( 1 ) ]

t dtm k k
u k cs ds m cs ds m e

M M


   

       . 

Case 9 

2 2

2 3 4 2

0 1 2 3 4

0 1 3 4 2

1, 2 , 1, 0,0 1, ,

1, 4 , 8 4, 8 8 , 4 4 ,

0, , 0, 1, 0, 1,

A m B m C D E m F dn

a a m a m a m m a m m

p q m r l c c c c c

          

        

         

 

9
9 9 2

9 9 9

( ) ( ) 2 ( )2 2

9 5 5 0 5

( ) ,

[ ( ) (3 (20 16)) ( )] ,
t dt t dt t dt

dn

dn m sn cn

k e x k e t Mk k m e t dt
  


 

  

  
  



       

  

2 2
2 ( )2 2 25 5

9 0 9 9 9 9

8 4
[ (1 ) (1 ) ]

t dtmk k
u k m sd cd m sd cd e

M M


   

     . 

We can give the numerical simulation of 2u  and 7u  (see Figs. 1-2). 
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(a) 

 

(b) 

Figure 1. (a) Simulation of 2u  when 0 50, ( ) ( ) ( ) 1, 0.1k k M t t t m         .  

(b) Plane graph when t=0. 
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(a) 

 
(b) 

Figure 2. (a) Simulation of 7u  when 0 50, ( ) ( ) ( ) 1, 0.1k k M t t t m         .  

(b) Plane graph when t=0. 
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Remark 5: The eight types of explicit solutions except 
4u  we obtained here to Eq. (8) 

are not shown in the previous literature to our knowledge. They are new exact solutions 

of Eq.(8). Solutions 
( 1,4,7,9)i iu 

 are degenerated to solitary-like solutions when the 

modulus 1m , and solutions 
( 1,2,3,7,8)i iu 

 are degenerated to triangular functions 

solutions when the modulus 0m . 0k  and 5k  are arbitrary constants in all above 

cases. 

 

4．CONCLUSION 

 

In this paper, we succeed to propose a general algebraic method for finding new 

exact solutions of the GVKdV equation (8). More importantly, our method is much 

simple and powerful to find new solutions to various kinds of nonlinear evolution 

equations, such as KdV equation, Boussinesq equation, zakharov equation, etc. we 

believe that this method should play an important role for finding exact solutions in the 

mathematical physics.  
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