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Abstract- A new six-step block method for solving second order initial value problems 

of ordinary differential equations is proposed using interpolation and collocation 

strategies. In developing this method, the power series adopted as an approximate 

solution is employed as interpolation equation while its second derivative is used as 

collocation equation. In addition, the stability properties of the developed method are 

also established. The numerical results reveal that the new method produces better 

accuracy if compared to existing methods when solving the same problems. 
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1. INTRODUCTION 

 

 This paper considers the development of numerical method for the direct 

solution of second order initial value problems of ordinary differential equations 

(ODEs) of the form 

],[)(,)(),,( 10 baxyayyayyyxfy                               (1) 

where f  is continuous in the given interval of integration. Direct solution of higher 

order ODEs has been found to be more accurate than when they are reduced to their 

equivalent system of first order ODEs (see [4], [8], [3], [9]). A lot of scholars such as 

Awoyemi [4-5] and Omar & Suleiman [11-13] amongst others have worked on the 

derivation of direct method for solving higher order ordinary differential equations. 

 Adesanya et. al. [2] proposed two steps block method for the direct solution of 

(1). An improved parallel method with a step-length of three was developed by Yayaha 

[10] for solving (1) directly. Osilagun et. al.[6] increased the step-length by developing 

four-step implicit method for solving (1) without reduction process. Furthermore, 

Yahaya and Badmus [1] developed an accurate uniform order six block method for the 

direct solution of (1) where the step-length of five was considered but the accuracy of 

the method is low. 

 In order to improve the accuracy of the existing methods, a new block method of 

six step-length for direct solution of second order ordinary differential equations is 

proposed. 
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2. DERIVATION OF THE METHOD 

  

  Power series approximate solution of the form 
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is considered as an interpolation polynomial where r and s are the number of 

interpolation and collocation points respectively. Differentiating (2) once and twice 

gives   
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Interpolating equation (2) 4)1(3, 


ixx
in  and collocating equation (4) 

at 6)1(0, 
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 produces nonlinear system of equations of the form   
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 In order to determine the values of
j

a , Gaussian elimination method is employed. 

The values of
j

a are then substituted into the interpolation polynomial (2) which yields a 

continuous linear multistep method of the form. 
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where the step-length 6k . The coefficients of )()( zandz
jj

  are given as 
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where
h

xx
zC kn 1  , 120960 
 . 

 Evaluating (7) at the non-interpolation points gives the discrete schemes. 

Similarly, evaluating the first derivative of (7) at all the grid points produces the 

derivative of discrete schemes. Combining the discrete schemes with its derivative in a 

matrix finite difference equation yields a block method of the form
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The derivative of the block (8) gives 
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3.  PROPERTIES OF THE METHOD 

 

 This section examines the properties of the new developed block method for 

solving second order initial value problems of ODEs. 

 

3. 1. Order of the Method 

 Expanding (8) about the point  using Taylor series gives 
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Comparing the coefficients of the powers of h makes our method (8) to have order 

T]7,7,7,7,7,7[  with error constant T]
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3. 2. Zero Stability  

 The block method (8) is said to be zero-stable if the roots Nzs  ,...,2,1  of the 

first characteristic polynomial )det()( )1()0( AzAz   satisfies 1z  and the root 1z  

has multiplicity not greater than the order of the differential equation. The first 

characteristic polynomial of the block method (8) is given by 
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which implies . Thus, 1z  and hence the developed method (8) is 

zero-stable.  
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3. 3. Convergence 

 A method is said to be convergent if it is zero-stable and its order is greater than 

one (Henrici, 1962). Since the method (8) is zero-stable and its order is seven, it is, 

therefore, convergent. 

 

3. 4. Region of Absolute Stability  

Boundary locus method is adopted in finding the region of absolute stability of 

this method. Substituting the test equation
y
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
   , 2

 to equation (8) and after 

performing some mathematical manipulations, the region of absolute stability ]47.23,0[  

is obtained as depicted in Figure 1 below: 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

             

Figure 1: Region of Absolute Stability for a six-step block Method   

 

4. NUMERICAL PROBLEMS 

 

 The following differential problems were solved numerically in order to compare 

the accuracy of our method with the existing methods. 

 

Problem 1:  10,0)0(,1)0(,cos2  xyyxyy  

Exact solution: xxxxy sincos)(   
 

The above problem was solved by Omar & Suleiman [13] whereby k=5 was considered 

and maximum errors were selected. Our method was applied to the same problem and 

the results generated are compared with their results as displayed in Table I.   
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Table 1. Comparison between the new method and Omar & Suleiman [13] for Problem 1 

 

 

Problem 2:  10,1)0(,1)0(,  xyyyy  

 Exact solution: 
xexy )(  

 

Omar & Suleiman [13] also solved the above differential problem with their developed 

method whereby the maximum errors were also selected. The same problem was also 

considered by our method and the results are compared with their results as shown in 

Table II below.  

 

 Table 2. Comparison between the new method and Omar & Suleiman [13] for Problem 2 
 

h  Exact Solution       Numerical Solution Error in our      

new method 

with k =6  

Error in 

Omar & 

Suleiman  

[13] with k =5 

0.01 428.375436859282560000            428.375436859208890000   
 

7.366907E-11     
 
5.87339E-03 

0.001 405.856642517224540000       
 

405.856642517222330000     
 

2.216893E-12       
 

5.87625E-05         
 

0.0001 403.670923400927280000         403.670923400538980000     
 

3.882974E-10       
 

5.87604E-05
 

0.00001 403.452999950629530000      
 
403.452999946529190000     

 
4.100343E-09          

 
5.87601E-06  
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Badmus & Yahaya [1] applied their method to approximate the solution of the problem 

above. The same problem was also solved by our method and the comparison of the 

numerical results is given in Table III.  

 

 

 

 

h  Exact Solution    Numerical Solution Error in our      

new method  

with k =6 

Error in Omar & 

Suleiman [13] 

with k =5 

0.01 -0.366105114594323600             -0.366105114608609670
 

1.428607E-11
 

4.21146E-03
 

0.001 -0.681709299809421630          
 

-0.681709299809590390
 

1.687539E-13             
 

4.20825E-04
 

0.0001 -0.712865615093621450 -0.712865615098958290      
 
5.336842E-12            

 
4.20740E-06   

 
0.00001 -0.715977036435663790    - 0.715977036493128160      

 
5.746437E-11             

 
4.20736E-06       
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Table 3. Comparison between the new method and Badmus & Yahaya [1] for Problem 3 

 

x Exact Solution      Numerical Solution Error in our      

new method 

 

Error in 

Badmus & 

Yahaya  

[1] with k =5 

0.03      1.016668210133795800                   1.016668210133777200     
 
1.865175E-14      

 
................ 

0.10    
 

1.050041729278491400      1.050041729278346800     
 
1.445510E-13

 
5.891E-06         

 
0.20    

 
1.100335347731075600             1.100335347693282200     

 
3.779332E-11

 
8.2399E-05

 
0.30  

 
1.151140435936466800      1.151140401655123400     

 
3.428134E-08   

 
3.46421E-04  

0.40     1.202732554054082100            1.202732484182993400 6.987109E-08 7.52101E-04 

0.50      1.255412811882995200            1.255412610176400700 2.017066E-07 1.38028E-03 

 

 

 

5. CONCLUSION 
 

 A new six-step block method for the direct solution of second order initial value 

problems of ODEs has been successfully developed. In Tables I and II above, the new 

developed method produces better accuracy when compared with results generated by 

Omar and Suleiman [13]. The new method also outperforms the method developed by 

Badmus and Yahaya [1] in term of accuracy. It is observed that the higher the step-

length k, the higher the accuracy of the method. Therefore, in our future work, the value 

of the step-length k will be increased so that better results will be obtained.  
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