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Abstract- This paper presents an investigation of the spinning flow of a non-Newtonian 

Casson fluid over a rotating disk. The model established for the governing problem in 

the form of partial differential equations has been converted to ordinary differential 

equations with the use of suitable similarity transformation. The analytical 

approximation has been made with the most likely analytical method, homotopy 

analysis method (HAM). The convergence region of the obtained solution is determined 

and plotted. The velocity profiles are shown and the influence of Casson parameter is 

discussed in detail. Also comparison has been made with the Newtonian fluid as the 

special case of considered problem. 
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1. INTRODUCTION 

The Newton’s expression of viscosity can be infringed by such fluids which 

comprise many deferments such as shampoo, coal-water or coal-oil slurries, toothpaste, 

clay covering, postponements, oil, skin-deep products, custard, dyes, yoghurt, tomato 

paste, body fluid, emollients, toners, dyes, superglues, detergents, and sludge etc. The 

performance of these kind of fluids cannot be characterized by classical Navier–Stokes 

equations and having non-linear stress–strain relationship, which is known as non-

Newtonian fluid. The flows of such fluids are handled extensively in polymer 

processing and chemical engineering processes. Rheological characteristics of non-

Newtonian fluids are used in biological and biomedical devices like homodialyser. 

Usually in non-Newtonian fluid models, the constitutive non-linear stress-strain 

relations receive difficulties that lead to nonlinear equations of motion. Irrespective of 

composite and nonlinear model, the presentations of non-Newtonian fluids have 

concerned the interest of the investigators. The constitutive expression between stress 

and shear rate is not able to addressed all the non-Newtonian fluids. From Casson [1], 

Casson fluid is also a type of non-Newtonian fluid. Casson fluid exhibits yield stress; it 

is well known that Casson fluid is a clipcontraction liquid. At zero rate of shear, it is 

having an infinite viscosity. Casson fluids are of different types. Some are in plasma 

form for example jelly and blood. However, some fluids are like thick viscous form like 

honey, tomato soup, concentrated fruit juices, shampoo etc. from the study of Dash et al 

[2].Venkatesam et al. [3] studied about blood rheology in stenosed narrow arteries by in 

view of blood as a Casson fluid and compared their results with the Herschel-Bulkley 

fluid model. Bhattacharyya et al. [4] perform a numerical computation to investigate the 

phenomena of heat transfer and the effect of thermal radiation over a stretching sheet for 
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a two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of electrically 

performing non-Newtonian Casson fluid. In his study, he observed that the velocity 

boundary layer thickness is better for Casson fluid as compared to facilitate of 

Newtonian fluid, also by increasing the values of velocity ratio parameter the heat 

transfer rate is increased too. Sankar et al. [5] performed a comparative analysis 

between Herschel Bulkley fluid and Casson fluid representation by considering the 

pulsatile flow of blood in slender conical arteries with gentle extend beyond stenosis. 

The study revealed that mean velocity and mean flow rate have higher values in 

Herschel Bulkley fluid model as measure up to Casson model, while the plug core 

radius and  wall shear stress, lower values in Herschel Bulkley fluid model as compared 

to Casson model. Paszynski et al. [6] modified the Fluid Particle Model (FPM) in which 

the study used the non- linear constitutive equation and show the possibilities to suggest 

the flow of blood as a Casson fluid, also the transport coefficients for the modified FPM 

can be significantly useful for representation of stream  of blood expressed by non-

linear Casson constitutive law.  

Benton [7] started discussion about rotational flow over a disk with great effort. 

About the spinning flow near an infinite rotating disk eventually Rajagopal [8] studied 

about the swirling flows related to viscoelastic fluids. However the effort was done by 

Attia[9] later on involving unvarying suction or injection of the fluid nearby a spinning 

permeable disk which was basically unstable MHD flow. Erdogan [10] studied the flow 

which was induced and implemented in a non-torsional fluctuation and a rotation of 

fluid infinitely by non-coaxial disk revolution. Anderson et al. [11] returned power-law 

fluid flow to a completed spinning disk. Takhar et al [12] worked on unstable flow of 

MHD and the transfer of heat over a moving disk and the fluid was ambient. Cheng and 

Liao [13] worked on the analytical solution of Von Kármán about the spinning of 

viscous flow in the obvious and decent way. Turkyilmazoglu[14-15] did the remarkable 

effort upon the work on revolution of disk regarding exact solutions which showed the 

resemblance to the glutinous incompressible and leading fluid. He also studied about the 

compressible boundary layer flow over morally investigative resolutions having heat 

transfer in arrears to a porous moving disk. Later on the study was done by 

Turkyilmazoglu[16] on MHD boundary layer flow as well which again involved the 

roughness on the moving disk. Meanwhile Sibanda et al. [17-18] discussed the problem 

about osmic heating and viscous indulgence on MHD flow and the transfer of heat 

effectively on a porous medium over a moving disk. The work was continued with other 

problem going on Spectral-homotopy analysis solutions as well. Attempt was made 

exclusively well by Khan et al. [19-21] recently worked in which the problems were 

taken under consideration about the unstable MHD flow of couple stress as well as 

Powell Eyring fluids. He also did the study in the same manner on Jeffery fluid over an 

off-centered moving disk.  

The main purpose of this chapter is to learn about spinning flow of Casson fluid 

over a rotating disk in occurrence of external magnetic field. It may be because of the 

mathematical complexity of this particular model. The resulting nonlinear equations of 

Cassonfluids are more complicated than the Navier-Stokes equation. The flow equations 

obtained by the use of a second order approximation of the Casson model. The 

homotopy analysis method is the main technique which is used to get analytical 
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solution. Graphs are also represented showing the physical behavior of evolving 

parameters in a clear manner. 

2. MATHEMATICAL MODEL 

Here we are considering three dimensional, laminar, steady, incompressible, flow of 

Casson fluid in a semi-bounded. By taking  ,r and z axes along radial, tangential and 

axial direction and assume that the uniform magnetic field B  is acting along the z - 

axis. The flow geometry of the considered problem presented as Fig. 1. 

 

 

Figure 1. Physical model and flow alignment. 

The constitutive equation for Casson model can be shown as.  

TIS  p                         (1) 

Where S  is the Cauchy stress tensor, T  is the extra stress tensor, I  is the identity 

tensor, p  is the pressure and shear stress flow of a Casson fluid is given by 
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Now consider the velocity and stress as 
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By using the above equations, we get the continuity, the momentum and energy 

equations which can be written as:  
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By using the boundary conditions on the disk and the boundary conditions at infinity 
 

       ,00     , 0       0, 0 321  uruu      0   0 31  u,u                  (14) 

 

Here the similarity transformations will be: 
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After using the above similarity transformation we get the following equations 
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Substituting Eq. (19) into Eqs. (16)-(8), we have 
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Where HF   ,  and G   are the radial, axial and tangential components of dimensionless 

velocity and P  is the dimensionless pressure of the flow. 
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Therefore, the local skin-friction coefficients are given by: 
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3. SOLUTION OF THE PROBLEM 

 

The homotopy analysis method (HAM) presented by Liao [22-23] is used to obtain 

the analytical solutions. HAM is a very powerful technique to find analytical solutions 

as it provides huge flexibility to choose the convergence region with the help of 

convergence control parameter   and it has been successfully used to been solved by 

this method [24-25]. 

By means of HAM the following initial estimation  0H  ,  0G  have been 

chosen to understand the comprehensive and totally analytic solutions of Eqs.(20)-(21) 

with the boundary conditions (22), its shown as: 
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Here 1L and 2L  are the auxiliary linear operators 
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 The zeroth –order deformation equations are 
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The boundary conditions for this deformation are 
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As we know that  1,0     is the embedding parameter and   is the auxiliary nonzero 

parameter. By Taylor’s theorem, 
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The series Eqs. (38) - (39) are convergent at 1 and hence Eqs. (34)-(35) yields 
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The deformation problems are 
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m  

The symbolic computation software MATHEMATICA has been used for the solution of 

Eqs. (42)-(43) with boundary conditions (44).  

4. DISCUSSION OF THE GRAPHICAL RESULTS 

 

The ℏ graphs are computed for         HPGF   and  , ,  to achieve the 

convergence region and the acceptable range of values for different values of rotational 

and Casson parameters as depicted in Figs. 2-3. Fig. 4 shows the dimensionless velocity 

profiles for Casson fluid. It displays the effect of Casson parameter   on the profiles of 

the radial velocity, tangential velocity, axial velocity and pressure. The radial 

component of velocity rises near the disk and then slowly reduces to zero, allowing 

more fluid to pass from the disk, the tangential component of velocity decays 

exponentially, and the axial component of velocity has the asymptotic limiting value. 

By means of observation from Fig. 5, it is quite clear that an increase in Casson 

parameter  decreases the dimension less constituent of radial velocity F over the 

rotational disk. Fig. 6 demonstrates that an increases in Casson parameter show the way 

to an increase in tangential velocity component  G  at any known tangential location on 

top of the revolving disk. Fig. 7 shows that an increase in the Casson parameter 

decreases the axial velocity H . Fig. 8 explains that there is a reduction in pressure with 

the increase in Casson parameter  . Later on Fig. 9-12 illustrates the comparison of the 

result between homotopy analysis method (HAM) and Runge-Kutta method (RKM) 

which also verifies the result. Also, the table shows the comparison of numerical values 

calculated by HAM from the values taken from White [26] for viscous fluid. 
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Table 1. The mathematical explanation for Casson fluid parameter 1.0  and for 

viscous flow i.e. for    . Bracket values are of     i.e. of viscous fluids from 

White [26]. 

5. CONCLUDING REMARKS 

 

In this study, an effort has been made to investigate the spinning flow of a non-

Newtonian Casson fluid over a rotating disk. The governing partial differential 

  F  'F  G  'G  H  P  

0 
0.0 

(0.0) 

0.510474 

(0.51023) 

1.0 

(1.0000) 

-0.623153 

(-0.61592) 

0.0 

(-0.0) 

0.0 

(0.0) 

0.1 
0.0467425 

(0.0462) 

0.397923 

(0.4163) 

0.93921 

(0.9386) 

0.604691 

(-0.6112) 

-0.00410004 

(-0.0048) 

0.095501 

(0.0924) 

0.2 
0.0833887 

(0.0836) 

0.316175 

(0.338) 

0.826776 

(0.8780) 

-0.582508 

(-0.5987) 

-0.0153538 

(-0.0179) 

0.171451 

(0.1674) 

0.3 
0.1266 

(0.1133) 

0.2558 

(0.2620) 

0.822154 

(0.8190) 

-0.55778 

(-0.5803) 

-0.0323507 

(-0.0377) 

0.231499 

(0.2274) 

0.4 
0.13645 

(0.1364) 

0.2103559 

(0.1999) 

0.767683 

(0.7621) 

-0.53144 

(-0.5577) 

-0.053874 

(-0.0628) 

0.278024 

(0.2747) 

0.5 
0.156084 

(0.1536) 

0.175464 

(0.1467) 

0.715895 

(0.7075) 

-0.504228 

(-0.5321) 

-0.0788806 

(-0.0919) 

0.313282 

(0.3115) 

0.6 
0.172505 

(0.1660) 

0.126216 

(0.1015) 

0.666847 

(0.6557) 

-0.476719 

(-0.5047) 

-0.106481 

(-0.1239) 

0.339343 

(0.3396) 

0.7 
0.18639 

(0.1742) 

0.108339 

(0.0635) 

0.620546 

(0.6067) 

-0.449358 

(-0.4763) 

-0.135922 

(-0.1580) 

0.358041 

(0.3608) 

0.8 
0.198232 

(0.1789) 

0.0434545 

(0.0317) 

0.576959 

(0.5605) 

-0.422482 

(-0.4476) 

-0.16657 

(-0.1933) 

0.370958 

(0.3764) 

0.9 
0.208394 

(0.1807) 

0.00808339 

(0.0056) 

0.536025 

(0.5171) 

-0.39634 

(-0.4191) 

-0.197896 

(-0.2293) 

0.379432 

(0.3877) 

1.0 
0.217151 

(0.1801) 

-0.0198 

(-0.0157) 

0.497661 

(0.4766) 

-0.371112 

(-0.3911) 

-0.229464 

(-0.2655) 

0.384562 

(0.3955) 

∞ 
0.0 

(0.0) 

-0.0 

(-0.0) 

0.0 

(0.0) 

-0.0 

(-0.0) 

-0.836136 

(-0.8838) 

0.364850 

(0.3906) 
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equations were transformed into ordinary differential equations by means of a suitable 

similarity transformation. The analytical solution of the governing equations was 

obtained by homotopy analysis method and the obtained results were compared with the 

Newtonian fluid as a special case of the considered problem. Results obtained in this 

study showed an excellent agreement with results presented in [26]. The influence of 

Casson fluid parameter was also observed on the velocity profiles in radial, tangential, 

and axial directions; and pressure distribution.  

 

 

Figure 2. The  curves for  0  F  ,  0   G ,  0   H  and  0   P  for 1 . 

 

 

Figure 3. The  curves for  0  F  ,  0   G ,  0   H  and  0   P  for 2 . 
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Figure 4. Dimensionless velocity and pressure profile for Casson fluid 

 

 

Figure 5. The radial velocity component F . 

 

Figure 6. The tangential velocity component G . 
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Figure 7. The axial velocity component H . 

 

Figure 8. The pressure function P . 

 

Figure 9. Comparison of the result with HAM and RK Method on    F  

for 1 , -0.05  
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Figure 10. Comparison of the result with HAM and RK Method on    G  for 1 , 

-0.1  

 

Figure 11. Comparison of the result with HAM and RK Method on    H  for 1 ,  

-0.05  

 

Figure 12. Comparison of the result with HAM and RK Method on    P for 1 ,  

-0.05  
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