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Abstract- The stability and bifurcations of a hinged-hinged pipe conveying pulsating 

fluid with combination parametric and internal resonances are studied with both 

analytical and numerical methods. The system has geometric cubic nonlinearity. Three 

types of critical points for the bifurcation response equations are considered. These 

points are characterized by a double zero and two negative eigenvalues, double zero and 

a pair of purely imaginary eigenvalues, and two pairs of purely imaginary eigenvalues, 

respectively. With the aid of normal form theory, the expressions for the critical 

bifurcation lines leading to incipient and secondary bifurcations are obtained. Possible 

bifurcations leading to 2-D tori are also investigated. Numerical simulations confirm the 

analytical results.  
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1. INTRODUCTION 

  

  The linear and nonlinear dynamics of pipes conveying fluid has been studied 

widely during the last decades. Detailed review and extensive bibliography on this flow-

induced vibrations and instabilities of piping and cylindrical structures were provided 

by Padoussis et al [1-3]. The parametric instabilities depending on the amplitude and 

frequency of flow fluctuation will occur when the flow velocity has a harmonically 

fluctuating component over a mean value. A lot of investigations based on linearized 

analytical models of these parametric instability problems for simply supported pipes 

were done by Chen [4], Padoussis and Issid[5], Padoussis and Sundararajan [6], 

Ginsberg [7] and Ariaratnam and Namachchivaya [8], Jayaraman and Tien [9]. They 

studied the parametric and combination resonances and evaluated instability with 

numerical methods. In [10], Panda and Kar studied the nonlinear dynamics of a hinged-

hinged pipe conveying pulsating fluid subjected to combination and principle 

parametric resonance in the presence of internal resonance with the method of multiple 

scales and numerical methods. Using the method of multiple scales, Panda and Kar [11] 

studied the nonlinear planar vibration of a pipe conveying pulsating fluid subjected to 

principal parametric resonance in the presence of internal resonance. By considering the 

effect of motion constraints modeled as cubic springs, the nonlinear dynamics of simply 
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supported pipes conveying pulsating fluid was further investigated, and some new 

dynamical behaviors including quasi-periodic and chaotic motions were obtained [12]. 

Jin and Song [13] investigated the stability and parametric resonances of supported 

pipes conveying pulsating with numerical methods. The post-divergence behavior of 

extensible fluid-conveying pipes supported at both ends was studied by Modarres-

Sadeghi and Padoussis [14], and a supercritical pitchfork bifurcation was obtained. 

Using numerical methods, Wang and Ni [15] investigated the stability and chaotic 

motions of a standing pipe conveying fluid. A spectral element model was developed 

for the uniform straight pipelines conveying internal unsteady fluid [16]. By using the 

Melnikov method, the global dynamics of parametrically excited conveying fluid near 

0:1 resonance was studied, and chaotic dynamics may exist in the system [17]. The 

stability and dynamics of a cantilevered pipe conveying fluid with motion-limiting 

constraints and a linear spring support were investigated [18]. Using the Euler-Bernoulli 

beam theory and nonlinear Lagrange strain theory, a new nonlinear model of a straight 

pipe conveying fluid was presented [19]. The vibration was analyzed with the Galerkin 

method. Using Hamilton's principle and Galerkin method, Sina [20] investigated the 

non-linear vibrations of slightly curved pipes conveying fluid with constant velocity. 

Periodic and chaotic motions were observed in the transverse vibrations.   

In this paper, the stability and bifurcations of a hinged-hinged pipe conveying 

pulsating fluid with combination parametric and internal resonances are studied both 

analytically and numerically. Three types of critical points for the bifurcation response 

equations are discussed. These points are characterized by a double zero and two 

negative eigenvalues, double zero and a pair of purely imaginary eigenvalues, and two 

pairs of purely imaginary eigenvalues, respectively. With the aid of normal form theory, 

the expressions for the critical bifurcation lines leading to incipient and secondary 

bifurcations are obtained. Possible bifurcation solutions and their stability are 

investigated. Numerical simulations are also given, which verify the analytical results. 

 

2. FORMULATION OF THE PROBLEM 

  

 Consider a uniform horizontal pipe hinged at both ends conveying fluid with a 

flow-velocity having harmonically pulsating component superimposed over a steady 

one (Fig 1).  Assume that the motion is planar and the uniform cross-section remains 

plane during the motion and the tube behaves like an Euler-Bernoulli beam in transverse 

vibration. It is also assumed that the fluid is incompressible and has plug flow 

conditions. The equation of transverse motion of the pipe including the nonlinearity due 

to midline stretching is  
4 5 2 2

*

4 4 2
2 ( )

y y y y y
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x x t x t t t

    
    

      
 

* 2
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 
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with the boundary conditions 

                
2 2

2 2
(0, ) ( , ) (0, ) ( , ) 0

y y
y t y L t t L t

x x

 
   

 
       (2) 

where x  is the longitudinal coordinate, y  is the transverse deflection, T  is the 
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externally imposed axial tension, m  and M  are the mass per unit length of pipe and 

fluid materials, respectively, A  is the cross sectional area of the pipe, L  is the length, 

EI  is the flexural stiffness of the pipe material, *E  is the coefficient of internal 

dissipation of the pipe material which is assumed to be viscoelastic and of the Kelvin-

Voigt type and c  is the external damping factor,  U  is the fluid velocity which has the 

following form 

                      
0(1 sin )U U t                                 (3) 

where
0U is the mean flow velocity,  and are the amplitude and frequency of the 

flow-velocity fluctuation, which may lead to parametric instabilities. 

 
 Figure 1.  Schematics of the model. 

 

Introducing the following dimensionless quantities 
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the equation of motion becomes [10] 
* 2 1/2 1/2 *'''' '''' { (1 )} '' 2 'w w u u w uw w w            

1 1
2 *

0 0
( ') d '' ' 'd '' 0k w w w w w      ，                         (5) 

              
0 (1 sin )u u     ，                                                                                       (6) 

The primes and dots represent differentiation with respect to non-dimensional 

longitudinal coordinate   and non-dimensional time . To express the smallness of the 

amplitude of motion w , we scale it with the factor
1/ 2  as in [10], where the small 

parameter  is a measure of amplitude and is also used as a book keeping device in the 

subsequent perturbation analysis. Introducing this scaling factor and using Eq.(6) for 

pulsating flow velocity, the non-dimensional equation of motion can be written as 
2

0 0 1 1 0 1'''' ( 2 sin ) '' cos (1 ) '' 2 ( sin ) 'w u u u w u w u u w                   

   
1

2 2

0
2 2 '''' ( ') d '' ( )w w w k w w O         ，                          (7) 

with the associated boundary conditions 

(0, ) (1, ) ''(0, ) ''(1, ) 0w w w w       ，                       (8) 
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where                * / 2   ， * / 2   ，
0 1u u                           (9) 

   Using the method of multiple scales, introducing the time scale , 0,1,n

nT n   , 

and the time derivatives 0 1

d
,

d
D D


  

0

2
2

0 12

d
2 ,

d
D D D


   n

n

D
T





, 

0,1,n  , we write the expansion of ( , )w   in the form 

                           
0 0 1 1 0 1( , ) ( , , ) ( , , )w w T T w T T                                                  (10) 

Substituting Eq.(10) into (7) and (8),  and equating coefficients of like powers of  on 

both sides, one can obtain 
0 2 ' 2 '' ''''

0 0 0 0 0 0 0 0( ) : 2 ( ) 0O D w u D w u w w      , 

'' ''

0 0 0 0(0, ) (1, ) (0, ) (1, ) 0w w w w       ,                                     (11) 

1 2 ' 2 '' ''''
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'''' ' '
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1
'' ' '' '2

1 0 0 0 1 0 0 0 0 0
0

cos (1 ) 2 sin du T w u u T D w kw w x           , 

           '' ''

1 1 1 1(0, ) (1, ) (0, ) (1, ) 0w w w w                                               (12) 

According to (11), we can write        
1 0 2 0i i

0 0 1 1 1 1 2 1 2( , , ) ( ) ( ) ( ) ( )
T T

w T T A T e A T e cc
        ,                             (13) 

where the complicate expressions of ( )( 1,2)m m   are given in reference [10]. 

Substituting (13) into (12), considering the case of the internal resonance and 

combination parametric resonance, i.e., 

               
2 1 13    ，

1 2 2      ，                      (14) 

the modulation equations can be written as 

 1 1 2 2i i' 2 2

1 1 1 1 1 1 1 1 2 1 2 2 1 1 2 4 22 2 2 8 8 8 2 0
T T

A C A e A S A A S A A A G A A e H A e
         ,        (15) 

1 1 2 2-i i' 2 3

2 2 2 2 2 4 2 2 3 1 2 1 2 1 5 12 2 2 8 8 8 2 0
T T

A C A e A S A A S A A A G A e H Ae
         ,          (16) 

The coefficients which are very complicated and can be seen in the appendix of 

reference [10] are omitted here. 

Letting    1( )

1 1

1
[ ( ) i ( )]

2
ni T

n n nA p T q T e


  ， ( 1, 2)n  ，                      (17) 

substituting it into Eqs.(15) and (16), carrying out algebraic manipulations and 

separating real and imaginary parts, we can obtain the normalized reduced equations as 

follows [10] 
' 3 2 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) ( )R I R I R Ip C p C q e p e q S p p q S p q q             
2 2 2 2

2 1 2 1 2 2 1 2 1 2 1 1 4 2 4 2( ) ( )R I R IS p p p q S q p q q q H p H q        
2 2 2 2

1 1 2 2 1 1 1 2 1 1 1 2 1 2 1 2( 2 ) (2 )R IG p p p q p q q G p q p p q q q      ，             (18a) 
' 3 2 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) ( )R I R I I Rq C q C p e q e p S p p q S p q q             

    2 2 2 2

2 1 2 1 2 2 1 2 1 2 1 1 4 2 4 2( ) ( )R I R IS q p q q S p p p q p H q H p        

    2 2 2 2

1 1 2 1 2 1 1 2 1 1 1 2 1 2 2 1( 2 ) (2 )R IG p q q q p q p G p q q p p p q       ，            (18b) 
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' 3 2 3 2

2 2 2 2 2 2 2 2 2 4 2 2 2 4 2 2 2( ) ( )R I R I R Ip C p C q e p e q S p p q S q p q             
2 2 2 2

3 1 2 2 1 3 1 2 1 2 2 2 5 1 5 1( ) ( )R I R IS p p p q S p q q q q H p H q        
3 2 3 2

2 1 1 1 2 1 1 1( 3 ) ( 3 )R IG p p q G q p q    ，                              (18c) 
' 3 2 3 2

2 2 2 2 2 2 2 2 2 4 2 2 2 4 2 2 2( ) ( )R I R I R Iq C q C p e q e p S q p q S p p q             
2 2 2 2

3 1 2 1 2 3 1 2 1 2 2 2 6 2 6 2( ) ( )R I R IS p q q q S p p q q p H q H p        
3 2 3 2

2 1 1 1 2 1 1 1( 3 ) ( 3 )R IG q p q G p p q    ，                              (18d) 

where  
1 1 2( ) / 4    ，

2 2 1(3 ) / 4    .                           (19) 
The characteristic equation of the Jacobi matrix evaluated at the initial equilibrium 

point 
1 1 2 2( , , , ) (0,0,0,0)p q p q  for Eq.(18) is  

4 3 3

1 2 3 4 0R R R R        ，                          (20) 

where 
1R ,

2R ,
3R ,

4R  are complicated functions of the parameters and omitted here. 

     According to the Routh-Hurwitz criterion, the initial equilibrium point 
1 1( , ,p q 2 ,p  

2) (0,0,0,0)q  is stable if the following conditions are satisfied. 

1 0R  ，
1 2 3 0R R R  ， 2

3 1 2 3 1 4( ) 0R R R R R R   ， 4 0R  .           (21) 

 

3. BIFURCATION ANALYSIS 

 

Conditions (21) imply that all the eigenvalues of the Jacobi matrix have negative 

real parts. When (21) are not satisfied, this is not the case. Three cases will be discussed 

here. 

3.1. Case 1: Double zero and two negative eigenvalues 

Taking
1 4R  ,

2 3R  ,
3 4 0R R  ,Eq.(20) has a double zero and two negative 

eigenvalues 1,2 1   ,
4 3   .One choice of parameters that satisfy these conditions is 

1  ，
1 0RC  ，

2 2RC  ，
1

6 13 15

3
IC


 ，

2

6 13 6

3
IC


 ，

4 1IH  ， 

5

4 13 10

3
IH


 ， 0  ，

1 2 0   ，
4 3 6 6 0R R R IH H H H    . 

Let us consider 1 ,  2 as perturbation parameters. Using the parameter transformations 

1 1  ， 2 2   and the state variable transformation 

11 11 12 13 14

21 21 22 23 24

31 32 33 34 32

41 42 43 442 4

xp J J J J

xq J J J J

J J J J xp

J J J Jq x

    
    
    
    
    

    

                      (22) 

where ( , 1,2,3,4)ijJ i j  are given in the appendix (A.1), one may transformation Eq.(18) 

into a new system as follows 

1
11 1 12 2 13 3 14 4 1

d

d

x
a x a x a x a x Nf

t
                          (23a) 
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2
21 1 22 2 23 3 24 4 2

d

d

x
a x a x a x a x Nf

t
                         (23b) 

3
31 1 32 2 33 3 34 4 3

d

d

x
a x a x a x a x Nf

t
                         (23c) 

4
41 1 42 2 43 3 44 4 4

d

d

x
a x a x a x a x Nf

t
                          (23d) 

where ( , 1, 2,3,4)ija i j    are given in the appendix (A.2),  ( 1,2,3,4)iNf i   are third 

order nonlinear terms whose expressions are very complicated and omitted here. 

The Jacobi matrix of Eq.(23) evaluated on the initial equilibrium solution 
1 2( ,x x 3, ,x  

4) (0,0,0,0)x  at the critical point 
1 2( 0)c c cP     is now in the canonical form 

                 ( 0)

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 3

ixJ 

 
 
 
 
 

 

                         (24) 

The local dynamical behavior of system (23) is characterized by the critical 

variables
1x  and 2x . Further more, the bifurcation solutions for the non-critical 

variables 3x  and 4x  may be determined from Eq.(23) up to leading order terms [21]. 

Therefore one may verify that neglecting 3x and 4x  (i.e., setting 3x = 4x = 0) in the first 

two equations of Eq.(23) does not effect the results of the bifurcation solution (
1x , 2x ) 

and their stability conditions up to leading order terms. So, in order to consider the 

bifurcation and stability properties of system (23) in the vicinity of the critical point cP , 

one only needs to analyze the following two-dimensional system: 

1
11 1 12 2 1

d

d

x
a x a x Nff

t
   ， 

              2
21 1 22 2 2

d

d

x
a x a x Nff

t
   ,                            (25) 

where 
iNff  are complicated third order nonlinear terms and omitted. Now based on the 

reduced system (25), the results and formulae obtained in [22] can be applied here. 

Using these methods, we can study the stability and bifurcations of this model 

analytically. Applying the general formula yields the following results. 

The stability conditions for the initial equilibrium solution 0ix   are described 

by 

1 2131.03 16.86 0    and 
1 210.61 5.03 0   ,           (26) 

which leads to two critical lines. One of these is 

1 1 2:10.61 5.03 0L    , 1 2(131.03 16.86 0)   ,           (27) 

along which a static bifurcation solution takes place from the initial equilibrium solution 

and the solution is expressed by 
2

1 1 2(0.028 0.0015 )x     ， 

2 1 2 1( 0.70 1.11 )x x    ,                              (28) 
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It is called a pitchfork bifurcation. 

On the other hand, the second critical line 

2 1 2:131.03 16.86 0L    ，
1 2(10.61 5.03 0)                (29) 

describes a dynamic boundary where the initial equilibrium solution loses its stability 

and bifurcates a family of limit cycles. Again from Table 1 of reference [22], one may 

find the stability condition for the family of limit cycles, given by 

                 
11 22 11.2 0                                      (30) 

so the family of limit cycles bifurcating from the initial equilibrium solution is stable. 
  The static bifurcation solution (28) becomes unstable on the third critical line 

3 1 2:1.11 111.20 0L                                 (31) 

from which another family of limit cycles which is usually called secondary Hopf 

bifurcations occurs. The frequency of this family of limit cycles is 

             
1 2(0.77 0.12 ) 0c                                       (32) 

where 
1 20.77 0.12 0    since the secondary Hopf bifurcation solution exists in the 

region located on the right of the critical line 
1L  (see Fig.2). The stability condition for 

this family of limit cycles is given as follows:  

12 21  
0.57

0
c

                                     (33) 

Therefore the secondary Hopf bifurcation solution is stable. The critical bifurcation 

lines are illustrated in the parameter space in Fig 2. From Fig 2 it is seen that there may 

exist stable trivial and non-trivial equilibrium solutions, periodic motions in this case.  

 
Figure 2. The bifurcation diagram in the case of double zero and two negative 

eigenvalues. 
 

3.2. Case 2:Double zero and a pair of purely imaginary eigenvalues 

Taking the parameters 

1

2
  ， 1 1RC  ， 2 0RC  ， 1

5

3
IC  ， 2

20

3
IC  ， 4 1IH  ， 5

4

3
IH  ， 

0  ，
1 2 0   ，

4 3 6 6 0R R R IH H H H    ， 

in Eq.(20) yields 1 3 4 0R R R   ， 2 1R  ,so the eigenvalues of the Jacobian are 
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1,2 0  , and 3,4 i   , where i 1  .  Choosing 
1 and 

2  as parameters, and using 

the parameter transformation
1 1  , 

2 2  , introducing the following state variable 

transformation 

             

11

21

32

2 4

15
0 15 0

5

2 3 1 0

1 1
1 1

2 2

15 15 15
15

3 30 10

xp

xq

xp

q x

 
 
    
    
     
    
    

     
 
  

                      (34) 

one may obtain the following equations 

1
1 2 1 2 2 1 2 3 2 4 1

d 15 15 1 7 15
( ) (1 ) 15( )

d 12 6 15 60 60

x
x x x x Nm

t
             ， 

2
2 1 1 2 2 1 2 3

d 15 1 1 15
15( ) ( )

d 18 12 4 60

x
x x x

t
         1 2 4 2

15
( 2 )

60
x Nm    ， 

3
1 2 1 2 2 1 2 3 2 4 3

d 15 15 15 15
( 2 ) ( 2 ) (1 )

d 6 6 12 12

x
x x x x Nm

t
              ， 

4
1 2 1 1 2 2 2 3

d 1 4 2 3 15
15( ) 15( ) ( 1 )

d 6 9 3 2 36

x
x x x

t
           

1 2 4 4

15
( 2 )

12
x Nm    ，                                      (35) 

where the third order nonlinear terms 
iNm (i = 1,2, 3,4) are omitted here. 

Using an intrinsic method of harmonic analysis [23], we obtain the normal form 

of Eq.(35) as follows 

        1
2

d

d

y
y

t
 ， 

        3 22
2 1 1 2 2 1 1

d 15 15 2 15 10 6 15
( 2 ) ( ) ( )

d 18 6 27 27 5 15

y
y y y y

t
          ， 

        3 2

1 2 1

d 15 1 15
( 2 ) ( ) (64 40 15)

d 12 12 5
y

t


           ， 

        
2 2

2 1

d 15 7 15 8 15 14
1 ( ) ( )

d 18 60 10 9 3
y

t


       ，                         (36) 

where 
1 2, , ,y y    are the variables that are transformational systems which are topology 

equivalent to the original systems. The transformational systems can display the 

dynamical behaviors of the original ones. System (36) has the following equilibrium 

solutions. 

(i) The initial equilibrium solution (E.S.) 1 2 0y y    . 

Evaluating the Jacobian at the initial equilibrium solution, we obtain the stability 

conditions as follows 
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1 22 0   ，

2 0  , 
2 2

1 1 2 2 2(15 60 8 15 60 ) 0        ，                     (37) 

So the initial equilibrium solution is unstable. 

(ii) The static bifurcation solution (S.B.) 

                  2

1 2( 15 3) / 4y   ， 

                  
2 0y   ，                                                                          (38)  

 The stability conditions for this solution are as follows   

  
1 22 0   ，

2 0  , 2 2

1 1 2 2 2(15 60 32 15 60 ) 0        ，          (39) 

(iii) Hopf bifurcation solution (H.B.) 

                      
1 2 0y y  ， 

                     
2

1 2 1 25 15( 2 ) /(5 12 15) 0.38( 2 )           ，                      (40) 

The stability conditions for this solution are as follows 

1 22 0   ，
1 216804.8 40201 0    ， 

2 2

2 2 1 2 1 125620 10086.33 25620 4216.28 6405 0          ，     (41)  

(iv) Hopf bifurcation solution 2 (H.B.2)  

           2

1 1 2(0.0015 0.0035 )y     ， 

           
2 0y  ， 

           2

1 20.000084 0.153836    ，                             (42) 

Obviously, when 

1 20.0015 0.0035 0    and 
1 20.000084 0.153836 0       (43) 

there exists H.B.2 solution. 

The stability conditions for this solution are 

1 20.65 1.04 0    ， 
3 2 2 2

2 1 2 1 2 2 1 20.34 0.38 0.11 0.66 0.28 0            , 

1 2 1 2(0.0015 0.0035 )(0.000084 0.153836 ) 0      ，                      (44) 

so this bifurcation solution is unstable. 

The bifurcation diagram is shown as in Fig 3. Here the dashed lines just mark 

the regions of different bifurcation solutions. From Fig 3 we can see that there exist 

stale non-trivial equilibrium solution and periodic motion under certain conditions.  
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Figure 3. The bifurcation diagram in the case of double zero and a pair of purely 

imaginary eigenvalues. 
 

3.3 Case 3: two pairs of purely imaginary eigenvalues 

If the values of parameters are chosen as 

1/ 41
( )
2

  ，
1 1RC  ，

2 1RC   ，
1 1IC  ，

2 1IC  ，
4 1IH  ，

5 3IH   ， 

0  ，
1 2 0   ，

4 3 6 6 0R R R IH H H H    ， 

then we have
1 3 0R R  in Eq.(20) and the eigenvalues are 

                 1,2 i   ，
3,4 2i                                (45) 

Considering 1 , 2 as parameters, using the parameter transformation 1 1  , 

2 2   and the state variable transformation 

                      

11

21

1/ 4 / 4 1/ 4 3/ 4 32

2 41/ 4 1/ 4 3/ 4 1/ 4

2
0 2 0

2

0 1 0 1

1 2 2 2 2 2

2 2 2 1 2 2

xp

xq

xp

q x

  

  

 
    
    
     
    

        
    

    

             (46) 

Eq.(18) becomes 

  1/ 4 5/ 41
1 2 1 2 2 1 2 3

d 2 3 2 3 9
( ) (1 (2 2 ) ) ( )

d 2 2 4 4

x
x x x

t
            

            3/ 4

2 4 13 2 x Nh   ， 

  2
1 1 2 2 1 2 4 2

d 2 3 2
( ) ( )

d 2 8

x
x x x Nh

t
          ， 

  
1/ 43

2 1 1 2 2 2 1 3

d 9 3 3 2 2
( ) 3 2 ( )

d 4 4 2 2

x
x x x

t
          

            
3/ 4 3/ 4

2 4 3( 2 (2 2 ) x Nh    ， 

   4
1 2 2 3 1 2 4 4

d 3 2 2
( ) 2 ( )

d 4 2

x
x x x Nh

t
          ，                                   (47) 

The third order nonlinear terms ( 1,2,3,4)iNh i   are also omitted here. 
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With the method of multiple scales and computer algebra [24], we get the 

normal form of Eq.(47) in polar coordinates as follows: 

            2 2

1 1 11 1 12 2 20 1 02 2( )r r a r a r       ，   

            2 2

2 2 21 1 22 2 20 1 02 2( )r r b r b r       ， 

            2 2

1 1 11 1 12 2 20 1 2 2c c r c r          ， 

            2 2

2 2 21 1 22 2 20 1 02 2c d r d r          ，                   (48) 

where 11 22

2

2
   ， 12 21

2

2
    ，

11 21 0   ， 5/ 4 1/ 4

12 2 2   ， 

7 / 4 1/ 4

22 2 2    ， 3/ 4 1/ 4

20

35 9 9 7 2
2 2

8 8 2 8
a     , 1/ 4 3/ 4

02

9 3 2 7 33
2 2

2 4 8 8
a     ， 

3/ 4 3/ 4

20

61 81 5
7 2 2 2

8 16 8
b      ， 3/ 4 1/ 4

02

31 9 111 2 71
2 2

16 32 64 32
b      ， 

1/ 4 3/ 4

20

9 11 27 2 115
2 2

2 2 8 15
c     ， 1/ 4 3/ 4

02

63 45 13 2 13
2 2

8 8 8 2
c     ， 

1/ 4 3/ 4

20

13 7 55 2 41
2 2

8 8 16 16
d      ， 3/ 4

02

33 69 99 2
2

64 64 64
d     , 

and 
1r , 

2r , 
1  and 

2  are the variables that are transformational systems which are 

topology equivalent to the original systems. 

We now discuss the main types of equilibrium states and their stability for 

system (48). These fall into four categories. 

(i) Trivial state: The initial equilibrium solution (E.S.):
1 2 0r r  . 

Evaluating the Jacobi matrix at the initial equilibrium solution results in the 

stability conditions for the E.S. as 
11 1 12 2 0      and 

21 1 22 2 0     ,i.e.,  

1 2 0    and 
2 1 0   , so it is unstable.   

(ii) Pure mode 1: Hopf bifurcation solution (i.e., a self-sustained oscillation, H.B.(I) 

with frequency 
1 ): 

          2

1 11 1 12 2 1 2

20

1
( ) 0.11 0.11r

a
           ， 

          
2 0r  ， 

    2

1 1 11 1 12 2 20 1c c r        
1 21 2.02 3.63               (49) 

Obviously, when 2 1 0    there exists H.B.(I) solution.   

Evaluating the Jacobi matrix at the H.B.(I) solution results in the following 

stability conditions 11 1 12 2 0     and  2 0
2 1 1 2 2 2 1 1 1 1 2 2

2 0

( ) 0
b

a
          .The 

condition 11 1 12 2 0     implies that 1 2 0   , So H.B.(I) solution is unstable. 

(iii) Pure mode 2: Hopf bifurcation solution (H.B.(II) with frequency 2 ) 

1 0r  ， 
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2

2 21 1 22 2 1 2

02

1
( ) 0.11 0.11r

b
           ， 

2

2 2 21 1 22 2 02 2c d r         1 22 0.49 1.03    ,              (50) 

Obviously, when 
2 1 0    there exists H.B.(II) solution. 

Evaluating the Jacobi matrix at the H.B.(II) solution results the following 

stability conditions 
21 1 22 2 0      and 02

11 1 12 2 21 1 22 2

02

( ) 0
a

b
           ,i.e., 

2 1 0    and 
2 1 0   ,so H.B.(II) solution is also unstable.  

(iv) Mixed modes: quasi-periodic solution (2D tori with frequency
1 ,

2 ): 

2 02 21 1 22 2 02 11 1 12 2
1

20 02 02 20

( ) ( )a b
r

a b a b

         



1 20.0025 0.0025    ， 

2 20 21 1 12 2 20 21 1 22 2
2

20 02 02 20

( ) ( )b a
r

a b a b

         



1 20.18 0.1   , 

2 2

1 1 11 1 12 2 20 1 02 2c c r c r         
1 21 4.18 3.95    ， 

2 2

2 2 21 1 22 2 20 1 02 2c d r d r          1 22 4.25 1.73                         (51) 

Obviously, when 
2 1 0   and

1 20.18 0.1 0   , there exists 2D tori.  

The stability conditions for the quasi-periodic solutions are obtained from the 

trace and determinant of the Jacobian, given by 
2 2

20 1 02 22( )Tr a r b r   

      20 02 02 21 1 22 2 02 20 20 11 1 12 2

20 02 02 20

2[ ( )( ) ( )( )]
0

a a b b a b

a b a b

           
 


， 

   2 2

20 02 02 20 1 24( ) 0Det a b a b r r   ，                                     (52) 

i.e.,
1 21.21 0.64 0    . The critical lines are illustrated in Fig 4. Here the dashed 

lines also just mark the regions of different bifurcation solutions. From Fig 4 one can 

see that there exist stable mixed modes quasi-periodic motions under certain conditions 

in this case.  
 

 
Figure 4. The bifurcation diagram in the case of two pairs of purely imaginary 

eigenvalues. 
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4. NUMERICAL SIMULATIONS 

 

In this section, with the fourth-order Runge-Kutta method, the phase portraits of 

system (14) are obtained for different values
1 and

2 .  

For case 1, choosing
1 2( , ) (0.05,0.15)   ,

1 2( , ) ( 0.05,0.1)    , 

1 2( , ) (0.05,   0.01), respectively, we obtain the phase portraits of system (2.14) as in 

Fig 5-Fig 7.  

Notice that these parameters of 
1 2( , )  are in the stable regions of the initial 

equilibrium solution, static bifurcation solution and limit cycle, respectively, numerical 

results agree with the analytical ones. 

For case 2, choosing 
1 2( , ) (0.05,0.05)   (in the stable region of the static 

bifurcation solution), 
1 2( , ) ( 0.05, 0.1)     (in the stable region of the Hopf 

bifurcation solution), respectively, we obtain the phase portraits of system (2.14) as in 

Fig 8-Fig 9. 

For case 3, choosing 
1 2( , ) (0.05,0.05)   (in the stable region of 2-D tori), the 

phase portraits are shown as in Fig 10. 

             
                                                             (a)                                                                     (b) 

Figure 5. Trajectory starting from
1 1 1 2( , , , ) (0.05,0,0.05,0)p q q q  converges to the E.S. for case 1 

                                         
                                                             (a)                                                                   (b) 

Figure 6. Trajectory starting from
1 1 1 2( , , , ) (0.05,0,0.05,0)p q q q  converges to the S.B. for case 1 
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                                                             (a)                                                                 (b) 

  Figure 7. Trajectory starting from
1 1 1 2( , , , ) (0.05,0,0.05,0)p q q q  converges to the L.C. for case 1 

 

                                            
                                                           (a)                                                                     (b) 

Figure 8. Trajectory starting from
1 1 1 2( , , , ) (0.05,0,0.05,0)p q q q  converges to the S.B. for case 2 

 

 

                                            
                                                        (a)                                                                         (b) 

  Figure 9. Trajectory starting from
1 1 1 2( , , , ) (0.05,0,0.05,0)p q q q  converges to the H.B. for case 2 

                                          
                                                       (a)                                                                     (b) 

  Figure 10. Trajectory starting from
1 1 1 2( , , , ) (0.05,0,0.05,0)p q q q  converges to the 2-D tori for 

case 3 
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5. CONCLUSIONS 

  

With the method of normal forms, the bifurcation solutions and their stability of 

a hinged-hinged pipe conveying pulsating fluid with combination parametric and 

internal resonances are studied in detail. When the stability conditions for the initial 

equilibrium solutions are not satisfied, bifurcations including pitchfork bifurcation, 

Hopf bifurcation, 2-D tori may occur. Complicated dynamical phenomena of this model 

are presented here. Numerical simulations agree with the analytical results. 
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7. APPENDIX 

 

11 12 14 23 1J J J J    ，
13

6 13 6
( 13 7)

12
J


  ，

21 22

6 13 6

6
J J


   ， 

24 31

6 13 6
( 13 1)

12
J J


    ，

32

6 13 6 6 13 6
( 13 1)

6 12
J

 
    ， 

33 2J  ，
34

6 13 6
( 13 1)

6
J


  ， 41

7 13

6 6
J    ， 43

2
6 13 6

3
J   ， 

42

5 13 ( 13 5)(4 13)

12 6
J

  
  ， 44

2 14
13

3 3
J    ，           (A.1) 

1 2
11

(5 13 113) (25 13 107)
,

4 6 13 6(2 13 5)
a

   


 

1 2
12

(63 13 255) (21 13 117)
1 ,

4 6 13 6(2 13 5)
a

   
 

 

1 2
13

(7 13 32) (16 9 13)

2(2 13 5)
a

   



， 1 2

14

(17 13 35) (95 13 461)

2 6 13 6(2 13 5)
a

   
 

 
，

1 2
21

3[( 13 7) (5 13 13) ]

2 6 13 6(2 13 5)
a

   
 

 
， 1 2

22

3[(7 13 11) (3 13 9) ]

4 6 13 6(2 13 5)
a

   
 

 
， 

1 2
23

3[( 13 5) (7 3 13) ]

2(2 13 5)
a

   
 


， 1 2

24

3[( 13 1) (7 13 31) ]

6 13 6(2 13 5)
a

   


 
， 

1 2
31

3[( 13 1) ( 13 1) ]

8(2 13 5)
a

   



， 1 2

32

9[( 13 3) ( 13 3) ]

16(2 13 5)
a

   



， 

1 2
33

(3 13 12)
1

6 13 6(2 13 5)
a

  
  

  
， 1 2

34

3[( 13 4) (7 13 16) ]

4(2 13 5)
a

    



， 
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1 2
41

( 13 2) (2 13)

6 6 13 6(2 13 5)
a

   
 

 
， 1 2

42

3[( 13 1) (3 13) ]

8 6 13 6(2 13 5)
a

    


 
， 

1 2
43

( 13 2) ( 13 6)

4(2 13 5)
a

   



， 1 2

44

( 13 8) (29 4 13)
3

6 13 6(2 13 5)
a

   
  

 
， 

                                                                                                                      (A.2) 
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