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Abstract: This paper proposes a new hybrid block method of order five for solving second-order
ordinary differential equations directly. The method is developed using interpolation and collocation
techniques. The use of the power series approximate solution as an interpolation polynomial and
its second derivative as a collocation equation is considered in deriving the method. Properties of
the method such as zero stability, order, consistency, convergence and region of absolute stability
are investigated. The new method is then applied to solve the system of second-order ordinary
differential equations and the accuracy is better when compared with the existing methods in terms
of error.
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1. Introduction

Ordinary differential equations (ODEs) are commonly used for mathematical modeling in many
diverse fields such as engineering, operation research, industrial mathematics, behavioral sciences,
artificial intelligence, management and sociology. This mathematical modeling is the art of translating
problems from an application area into tractable mathematical formulations whose theoretical and
numerical analysis provide insight, answers and guidance useful for the originating application [1].
This type of problem can be formulated either in terms of first-order or higher-order ODEs.

In this article, the system of second-order ODEs of the following form is considered.

1y2 “ 1 f px, 1y, 1y1q, 1ypx0q “ a0, 1y1px0q “ b0
2y2 “ 2 f px, 2y, 2y1q, 2ypx0q “ a1, 2y1px0q “ b1

...
my2 “ m f px, my, my1q, mypx0q “ an, my1px0q “ bn

(1)

The method of solving higher-order ODEs by reducing them to a system of first-order approach
involves more functions to evaluate them and then leads to a computational burden as mentioned
in [2–4]. The multistep methods for solving higher-order ODEs directly have been developed by many
scholars such as [5–9]. However, these researchers only applied their methods to solve single initial
value problems of ODEs.
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The aim of this paper is to develop a new numerical method for solving single second-order ODEs
and systems of second-order ODEs directly.

2. Derivation of the Method

In this section, a one-step hybrid block method with three off-step points, xn` 1
5
, xn` 2

5
and xn` 3

5
,

for solving Equation (1) is derived. Let the power series of the form

jypxq “
v`m´1
ÿ

i“0

ai

ˆ

x´ xn

h

˙

i

, j “ 1, . . . , m. (2)

be the approximate solution to Equation (1) for x P rxn, xn`1s where n “ 0, 1, 2, ¨ ¨ ¨ , N ´ 1, a 1s
are the real coefficients to be determined, v is the number of collocation points, m is the number of
interpolation points and h “ xn ´ xn´1 is a constant step size of the partition of interval ra, bs which is
given by a “ x0 ă x1 ă ¨ ¨ ¨ ă xN´1 ă xN “ b.

Differentiating Equation (2) twice gives:

jy2 pxq “ j f px, jy, jy1q “
v`m´1
ÿ

i“2

ipi´ 1qai
h2

ˆ

x´ xn

h

˙

i´2

, j “ 1, . . . , m. (3)

Interpolating Equation (2) at xn` 2
5
, xn` 3

5
and collocating Equation (3) at all points in the selected

interval, i.e., xn, xn` 1
5
, xn` 2

5
, xn` 3

5
and xn` 1, gives the following equations which can be written in

matrix form:
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5
j f n` 3

5
j f n`1

˛
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‹
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, j “ 1, . . . , m. (4)

Employing the Gaussian elimination method on Equation (4) gives the coefficient ai 's, for i “ 0p1q6.
These values are then substituted into Equation (2) to give the implicit continuous hybrid method of
the form:

jy pxq “
ÿ

i“ 2
5 , 3

5

jαipxq jyn`i `
ÿ

i“ 1
5 , 2

5 , 3
5

jβipxq j f n`i `

1
ÿ

i“0

jβipxq j f n`i, j “ 1, . . . , m.. (5)

Differentiating Equation (5) once yields:

jy1 pxq “
ÿ

i“ 2
5 , 3

5

d
dx

jαipxq jyn`i `
ÿ

i“ 1
5 , 2

5 , 3
5

d
dx

jβipxq j f n`i `

1
ÿ

i“0

d
dx

jβipxq j f n`i, j “ 1, . . . , m. (6)

where
jαn` 3

5
“

ˆ

5px´ xnq

h
´ 2

˙

jαn` 2
5
“

ˆ

3´
5px´ xnq

h

˙
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jβ0 “
px´ xnq

2

2
´

61px´ xnq
3

36h
`

205px´ xnq
4

72h2 ´
55px´ xnq

5

24h3 `
25px´ xnq

6

36h4 ´
301hpx´ xnq

4500
`

11h2

3750

jβ 1
5
“

25px´ xnq
3

8h
´
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12000
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10000

Equation (5) is evaluated at non-interpolating points, i.e., xn, xn` 1
5

and xn+1, while its first
derivative is evaluated at all points, and this yields the following equation in matrix form:

j A jY L “
jB jR1 `

jC jR2 `
jD jR3 j “ 1, . . . , m (7)

where
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Multiplying Equation (7) by j A´ 1 gives the hybrid block method as shown below.
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3. Properties of the Method

3.1. Zero Stability

The one-step hybrid block method (8) is said to be zero-stable if and only if the first characteristic
function Π(x) has roots such that |xt| ď 1 and if |xt| “ 1; then the multiplicity of xt does not exceed
two. The characteristic function of the new derived method is given as below:

Πpxq “

¨
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˚
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˚
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0 0 0 0 0 0 0 1

˛
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0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
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‹
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ x6px´ 1q2

the solution of which is x “ 0, 0, 0, 0, 0, 0, 1, 1. Hence, our method is zero-stable.

3.2. Order of the Method

According to [9] the order of the new method in Equation (8) is obtained by using the Taylor series
and it is found that the developed method has an order of r5, 5, 5, 5, 5, 5, 5, 5sT with an error constant
vector of:

[1.732063 ˆ 10´7, 4.104127 ˆ 10´7, 6.582857 ˆ 10´7, ´1.587302 ˆ 10´6, 1.537778 ˆ 10´6,
8.533333 ˆ 10´7, 1.680000 ˆ 10´6, ´1.666667 ˆ 10´5]T

3.3. Consistency

The hybrid block method is said to be consistent if it has an order more than or equal to one.
Therefore, our method is consistent.

3.4. Convergence

Zero stability and consistency are sufficient conditions for a linear multistep method to be
convergent [10]. Since the new hybrid block method is zero-stable and consistent, it can be concluded
that the method is convergent.

3.5. Region of Absolute Stability

In this section, the locus boundary method is adopted to determine the region of absolute stability.
The linear multistep numerical method is said to be absolutely stable if for all given h, the roots of the
characteristic function Πpxq “ ρpxq ´ hσpxq satisfies |x| ă 1. The test equation y “ ´λ2y is substituted
in Equation (8) where h “ λ2h2 and λ “

d f
dy . Substituting x “ cos θ´ isinθ and equating the imaginary

part yields:

h “
p56250000 pcos pθq ´ 1qq

p3cos pθq ´ 89q

This gives the stability interval of (0, 1222826).

4. Implementation of the Method

The initial starting value at each block is obtained by using the Taylor method. Then, the
calculations are corrected using Equation (8). For the next block, the same techniques are repeated to
compute the approximation values of jyn` 1

5
, jyn` 2

5
, jyn` 3

5
, jyn` 1, j = 1, . . . , m simultaneously
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until the end of the integrated interval. During the calculations of the iteration, the final values of
jyn`1 are taken as the initial values for the next iteration.

5. Numerical Experiments

In this section, the performance of the developed one-step hybrid block method is examined using
the following three systems of second-order initial value problems. Tables 1 and 2 Tables 3 and 4 and
Tables 5 and 6 show the comparison of the numerical results of the new method with exact solution for
solving problems 1–3 respectively. While, in Table 7, the results of the developed method are more
accurate than that of [11] which was executed by six-step block method for solving Problem 4.

Problem 1: y2

1 “ 1´ cosx` sinpy12q ` cospy12q y1 p0q “ 1, y11 p0q “ 0,

y2

2 “
1

p4`y2
1q
´ 1
p5´sinpxq2q

y2 p0q “ 0, y12 p0q “ π,

Exact solution: y1 = cos x, y2 = πx

Table 1. Exact solution and computed solution of the new method for solving y1 in Problem 1.

x Exact Solution of y1 Computed Solution of y1 Error in y1

0.2 0.98006657784124163 0.98006661117494787 3.333371 ˆ 10´8

0.4 0.92106099400288510 0.92106172165508671 7.276522 ˆ 10´7

0.6 0.82533561490967833 0.82533871008804471 3.095178 ˆ 10´6

0.8 0.69670670934716550 0.69671472046421035 8.011117 ˆ 10´6

1.0 0.54030230586813977 0.54031839116566260 1.608530 ˆ 10´5

Table 2. Exact solution and computed solution of the new method for solving y2 in Problem 1.

x Exact solution of y2 Computed solution of y2 Error in y2

0.2 0.62831853071795862 0.62831853071222155 5.737077 ˆ 10´12

0.4 1.25663706143591720 1.25663706109624340 3.396738 ˆ 10´10

0.6 1.88495559215387590 1.88495558867424440 3.479631 ˆ 10´9

0.8 2.51327412287183450 2.51327410626325070 1.660858 ˆ 10´8

1.0 3.14159265358979270 3.14159260122723750 5.236256 ˆ 10´8

Problem 2: y2

1 “ ´e´xy2 y1 p0q “ 1, y11 p0q “ 0, h “ 0.01

y2

2 “ 2exy11 y2 p0q “ 1, y12 p0q “ 1,

Exact solution: y1 = cos x, y2 = ex cos x

Table 3. Exact solution and computed solution of the new method for solving y1 in Problem 2.

x Exact Solution of y1 Computed Solution of y1 Error in y1

0.2 0.980066577841241630 0.980066574492776010 3.348466 ˆ 10´9

0.4 0.921060994002884990 0.921060961237438300 3.276545 ˆ 10´8

0.6 0.825335614909678110 0.825335481688297850 1.332214 ˆ 10´7

0.8 0.69670670934716505 0.696706354719187630 3.546280 ˆ 10´7

1.0 0.540302305868139210 0.540301570350463110 7.355177 ˆ 10´7
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Table 4. Exact solution and computed solution of the new method for solving y2 in Problem 2.

x Exact Solution of y2 Computed Solution of y2 Error in y2

0.2 1.197056021355891400 1.197056651769760100 6.304139 ˆ 10´7

0.4 1.374061538887522100 1.374064060556476500 2.521669 ˆ 10´6

0.6 1.503859540558786200 1.503864970151431300 5.429593 ˆ 10´6

0.8 1.550549296807422400 1.550558149588110000 8.852781 ˆ 10´8

1.0 1.468693939915884900 1.468705886868917300 1.194695 ˆ 10´8

Problem 3: y2

1 “
´y1

b

y2
1`y2

2

y1 p0q “ 1, y11 p0q “ 0, h “ 0.01

y2

2 “
´y2

b

y2
1`y2

2

y2 p0q “ 0, y12 p0q “ 1,

Exact solution: y1 = cos x, y2 = sin x

Table 5. Exact solution and computed solution of the new method for solving y1 in Problem 3.

x Exact Solution of y1 Computed Solution of y1 Error in y1

0.2 0.980066577841241630 0.980066577799155510 4.208611e´11

0.4 0.921060994002884990 0.921060993708316070 2.945689e´10

0.6 0.825335614909678110 0.825335614150025320 7.596528e´10

0.8 0.696706709347165050 0.696706708168561060 1.178604e´9

1.0 0.540302305868139210 0.540302304687844350 1.180295e´9

Table 6. Exact solution and computed solution of the new method for solving y2 in Problem 3.

x Exact Solution of y2 Computed Solution of y2 Error in y2

0.2 0.198669330795061240 0.198669331113754400 3.186932 ˆ 10´10

0.4 0.389418342308650690 0.389418343391428780 1.082778 ˆ 10´9

0.6 0.564642473395035590 0.564642475168185330 1.773150 ˆ 10´9

0.8 0.717356090899523120 0.717356092762203360 1.862680 ˆ 10´9

1.0 0.841470984807896840 0.841470985889528840 1.081632 ˆ 10´9

Problem 4: y2 “ x
`

y1
˘2 , y p0q “ 1, y1 p0q “ 1

2 , h “ 1
30 .

Exact solution y “ 1` 1
2 ln

´

2`x
2 _x

¯

Table 7. Comparison of the new method with [11] for solving Problem 4.

x Exact Solution Computed Solution Error in New
Method P = 5 Error in [11] P = 7

0.1 1.0500417292784914 1.0500417292785045 1.310063 ˆ 10´16 1.445510 ˆ 10´14

0.2 1.1003353477310756 1.1003353477311153 3.974598 ˆ 10´14 3.779332 ˆ 10´13

0.3 1.1511404359364668 1.1511404359364565 1.021405 ˆ 10´14 3.428134 ˆ 10´11

0.4 1.2027325540540821 1.2027325540537517 3.304024 ˆ 10´13 6.987109 ˆ 10´8

1.0 1.2554128118829952 1.2554128118817025 1.292744 ˆ 10´12 2.017066 ˆ 10´7

The numerical results confirm that the proposed method produces better accuracy if compared
with the existing methods. This is also clear in the graph below (Figure 1).
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