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Abstract: This paper proposes a new hybrid block method of order five for solving second-order
ordinary differential equations directly. The method is developed using interpolation and collocation
techniques. The use of the power series approximate solution as an interpolation polynomial and
its second derivative as a collocation equation is considered in deriving the method. Properties of
the method such as zero stability, order, consistency, convergence and region of absolute stability
are investigated. The new method is then applied to solve the system of second-order ordinary
differential equations and the accuracy is better when compared with the existing methods in terms
of error.

Keywords: single-step; hybrid block method; system of second order ordinary differential equations;
collocation and Interpolation method; direct solution

Subject Classificatio: 65L05; 65L.06; 65120

1. Introduction

Ordinary differential equations (ODEs) are commonly used for mathematical modeling in many
diverse fields such as engineering, operation research, industrial mathematics, behavioral sciences,
artificial intelligence, management and sociology. This mathematical modeling is the art of translating
problems from an application area into tractable mathematical formulations whose theoretical and
numerical analysis provide insight, answers and guidance useful for the originating application [1].
This type of problem can be formulated either in terms of first-order or higher-order ODEs.

In this article, the system of second-order ODEs of the following form is considered.

Ly =1, 'y, 1), Ty(xo) = a0, 'y (x0) = bo
2yr =2f(x,%y, %), %y(xo) = a1,y (x0) = by "

"y ="fx "y, My (x0) = an, ™y (%0) = by

The method of solving higher-order ODEs by reducing them to a system of first-order approach
involves more functions to evaluate them and then leads to a computational burden as mentioned
in [2-4]. The multistep methods for solving higher-order ODEs directly have been developed by many
scholars such as [5-9]. However, these researchers only applied their methods to solve single initial
value problems of ODEs.
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The aim of this paper is to develop a new numerical method for solving single second-order ODEs
and systems of second-order ODEs directly.

2. Derivation of the Method

In this section, a one-step hybrid block method with three off-step points, x, 1 %42 and x, 3
for solving Equation (1) is derived. Let the power series of the form
) v+m—1 X—x i
Ty(x) = )] ai(h n>, ji=1,...,m. @)

i=0

be the approximate solution to Equation (1) for x € [xy, X,41] wheren =0, 1, 2,--- ,N—1,as
are the real coefficients to be determined, v is the number of collocation points, m is the number of
interpolation points and & = x,, — x,,_1 is a constant step size of the partition of interval [a, b] which is
givenbya =xp <x) < <xy—1 <xN =b.

Differentiating Equation (2) twice gives:

i—2

v+m—1 - .
Iy (x) =1f(x 1y, 0y = ) (hzl) (x hx”> . j=1...,m. @3)

i=2

Interpolating Equation (2) at x ntd and collocating Equation (3) at all points in the selected

n+2’

interval, i.e., x;,, x 3 and Xn+ 1, gives the following equations which can be written in

n+s % n+ zs anr
matrix form:

12 4 8 16 3 e . j
5 25 125 &5 3125 1565 0 Ytz
13 9 2z s 243 7 . j
5 25 125 625 3125 15625 1 Yntd
00 % 0 0 0 0 a ifu
2 6 12 4 6 ; .
00 W2 52 25K 25n2 125K2 a3 | = ]fn+% , j=1,...,m 4)
2 12 48 3 9 j
00 2 52 252 =2 T2 a4 f n+2
2 18 108 108 486 j
00 2 52 252 =2 1o a5 f n+3
2 6 12 20 30 i
00 &2 2 »# »m as Ifni1

Employing the Gaussian elimination method on Equation (4) gives the coefficienta; 's, for i = 0(1)6.
These values are then substituted into Equation (2) to give the implicit continuous hybrid method of
the form:

Z ](xl ]yn+z Z ]fi’l-‘rl + Z jB jf?l-‘rl" ] = 1’ L (5)

i=2 i=0
=5

il
(S
[S115+)

_1
, =55,

Differentiating Equation (5) once yields:
, ; L og. .
]y/ (x) = Z ?]“z( ) ]]/nJrz + Z 7][3 fﬂ+i + Z %]Bi(x) ]fn+irj =1,...,m (6)
i i=0

where
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(x — xp)? _ 61(x— )2 205(x —x,)t 55(x —xy)°  25(x —x,)®  301h(x — xy) N 1142

ig, — _ _
Po 2 6 72 2415 36 4500 3750
i, = 25(x —x4)°  775(x — xn)* L 125(x— 1) 125(x —x,)°  25h(x — xy) . 8312
5 8h 96/2 1613 481 9% 2000
B, 575(x —xa)*  25(x —x4)>  75(x —xy)° L 125(x— xn)®  43h(x — xy) . 17h2
5T 2 12h 8h3 3604 300 250
B, = 25(x —x,)°  425(x — x,)* L 25— xa)°  125(x —x,)°  109h(x — xy) . 2312
37 36k 14412 6h3 72h* 3600 3000
B, = 55(x —xu)*  (x—x4)°  5(x—xy)° L 25(x— )8 L M(x—xn) h?
1T T os8K2 24h 1613 144K* 12000 10000

Equation (5) is evaluated at non-interpolating points, i.e., x,, x, +1 and x4, while its first
derivative is evaluated at all points, and this yields the following equation in matrix form:

JAJY; =IBIRy+ICIRy +/DIR3j=1,...,m @)
where
yn-i—l
0O -3 2 00 O0O00O0 5 -1 0
1 =2 1 00000 Ynt2 0 0
0O 2 -3 1 0000 yn+g 0 0
5 -5
ja—| O o 00000y Ve | g | O L e (Y
0 2 501000 'k / ’ o o |'™ ’
g h5 ]/n_;_% Yn
0 7 200100 Vo2 0 0
0 3 200010 v 0 0
0 2 2 000 01 s 0 0
h I /
yn+l
1142 8312 1712 2342 —I?
3750 2000 250 3000 10000
—h? 2342 4912 1142 —h2
7500 6000 1500 3000 30000 ‘
—214? 83n  —113K*  151K% 337K If 1
2500 2000 1500 1000 30000 Jnts
—301% , , ‘ —25h  —43h  —109h 11k , Ifi2
_ 2500 i, — (i in_ % 300 3600 12000 iR, — | Znts
¢ 7h Ry (f ”) D “eon i an —n |/ /Rs £
800 800 1800 3600 7200 Jn+i
—h 31h —77h —31 17h I f s
500 2400 900 200 36000 n+
19K —31h 31h 431 —7h
9000 2400 600 720 12000
—53h 25h  —883h  797h  4283h
T000 % 1800 1200 36000

Multiplying Equation (7) by /A~ ! gives the hybrid block method as shown below.

IjYLZjEjR1+jEjR2+j5jR3 (8)

5812 173h2 —n2 37h2  —7K2

1 &k 5625 12000 150 18000 60000

1 0 0 O 0 0 O 0 5 134h2 47],,2 74h2 hZ 7,12

1 2 2500 750 375 225 3750

01 00O0O0TO0TO0 5 o e o W2 o2
001 0O0O0O0TO0 1 35l 2500 4000 500 2000 20000
00010000/ 1 n |- e — R

= JB = iC = D =

Tlocooaooo BT g [T T g g
000O0OT1TUO0TFO0 0 1 % 41n 13h h =k

150 225 225 2250

00 0O0O0OO0OT1TFPO0 0 1 “6on 9o 3on =
000000 D0 1 1000 100 200 100 2000

0 1 i 2Bk —25h  25h  17h

~
N

48 72 36 144
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3. Properties of the Method

3.1. Zero Stability

The one-step hybrid block method (8) is said to be zero-stable if and only if the first characteristic
function I1(x) has roots such that |x;| < 1and if |x;| = 1; then the multiplicity of x; does not exceed
two. The characteristic function of the new derived method is given as below:

10000000 0001000 2
01000000 0001000 %
00100000 0001000 &

M= | 00010000 19001000 1 |_yen 12
00000100 0000000 1
000000T10 0000000 1
000000TO01 0000000 1

the solution of whichis x = 0,0,0,0,0,0,1, 1. Hence, our method is zero-stable.

3.2. Order of the Method

According to [9] the order of the new method in Equation (8) is obtained by using the Taylor series
and it is found that the developed method has an order of [5,5,5,5,5,5, 5, 5]T with an error constant
vector of:

[1.732063 x 10~7, 4.104127 x 10~7, 6.582857 x 10~7, —1.587302 x 10~°, 1.537778 x 107°,
8.533333 x 1077, 1.680000 x 10~°, —1.666667 x 10~°]"

3.3. Consistency

The hybrid block method is said to be consistent if it has an order more than or equal to one.
Therefore, our method is consistent.

3.4. Convergence

Zero stability and consistency are sufficient conditions for a linear multistep method to be
convergent [10]. Since the new hybrid block method is zero-stable and consistent, it can be concluded
that the method is convergent.

3.5. Region of Absolute Stability

In this section, the locus boundary method is adopted to determine the region of absolute stability.
The linear multistep numerical method is said to be absolutely stable if for all given /, the roots of the
characteristic function T1(x) = p(x) — ho(x) satisfies |x| < 1. The test equation y = —Ay is substituted
in Equation (8) where i = A2h? and A = Z—y. Substituting x = cos 8 — isin® and equating the imaginary
part yields:
(56250000 (cos (8) — 1))

(3cos (8) — 89)

This gives the stability interval of (0, 1222826).

h=

4. Implementation of the Method

The initial starting value at each block is obtained by using the Taylor method. Then, the
calculations are corrected using Equation (8). For the next block, the same techniques are repeated to
compute the approximation values of fyn+l, fynJrg, jynJr;, Yyt 1,j=1,..., msimultaneously

5 5 5
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until the end of the integrated interval. During the calculations of the iteration, the final values of
i Yn+1 are taken as the initial values for the next iteration.

5. Numerical Experiments

In this section, the performance of the developed one-step hybrid block method is examined using
the following three systems of second-order initial value problems. Tables 1 and 2 Tables 3 and 4 and
Tables 5 and 6 show the comparison of the numerical results of the new method with exact solution for
solving problems 1-3 respectively. While, in Table 7, the results of the developed method are more
accurate than that of [11] which was executed by six-step block method for solving Problem 4.

Problem 1: 1] = 1— cosx + sin(yh) + cos(v5) y1 (0) =1, ¥4 (0) = 0,
= 71'/

Y2 = @)~ Goangy 120 =0 5 0)

Exact solution: y1 = cos x, y, = tx

Table 1. Exact solution and computed solution of the new method for solving y; in Problem 1.

X Exact Solution of y; Computed Solution of y; Error in yq
0.2 0.98006657784124163 0.98006661117494787 3.333371 x 1078
04 0.92106099400288510 0.92106172165508671 7.276522 x 10~7
0.6 0.82533561490967833 0.82533871008804471 3.095178 x 1076
0.8 0.69670670934716550 0.69671472046421035 8.011117 x 10~°
1.0 0.54030230586813977 0.54031839116566260 1.608530 x 10~°

Table 2. Exact solution and computed solution of the new method for solving 1, in Problem 1.

X

Exact solution of y,

Computed solution of y,

Error in y,

0.2 0.62831853071795862 0.62831853071222155 5.737077 x 10712
0.4 1.25663706143591720 1.25663706109624340 3.396738 x 10~10
0.6 1.88495559215387590 1.88495558867424440 3.479631 x 107°
0.8 2.51327412287183450 2.51327410626325070 1.660858 x 108
1.0 3.14159265358979270 3.14159260122723750 5.236256 x 1078

Problem 2: y] =

—e Y21 (0) =1, ¥4 (0) =0, h = 0.01
Yy =26y 12 (0) =1, ¥4 (0) = 1,

Exact solution: y1 = cos x, y, = e* cos x

Table 3. Exact solution and computed solution of the new method for solving y; in Problem 2.

X Exact Solution of y4 Computed Solution of y; Error in y4
0.2 0.980066577841241630 0.980066574492776010 3.348466 x 107°
04 0.921060994002884990 0.921060961237438300 3.276545 x 108
0.6 0.825335614909678110 0.825335481688297850 1.332214 x 1077
0.8 0.69670670934716505 0.696706354719187630 3.546280 x 107
1.0 0.540302305868139210 0.540301570350463110 7.355177 x 10~
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Table 4. Exact solution and computed solution of the new method for solving 1, in Problem 2.

X

Exact Solution of y,

Computed Solution of y,

Error in y,

0.2
0.4
0.6
0.8
1.0

1.197056021355891400
1.374061538887522100
1.503859540558786200
1.550549296807422400
1.468693939915884900

1.197056651769760100
1.374064060556476500
1.503864970151431300
1.550558149588110000
1.468705886868917300

6.304139 x 10~7
2521669 x 10~
5.429593 x 10~
8.852781 x 10~8
1.194695 x 108

Problem 3: y] =

//_
Y2 =

YLy, (0) =1, ¥4 (0) = 0,h = 0.01

\JVi+y3

—y

i3

y2(0)=0,1,(0) = 1,

Exact solution: y1 = cos x, y, = sin x

Table 5. Exact solution and computed solution of the new method for solving y; in Problem 3.

X Exact Solution of y4 Computed Solution of y; Error in y4
0.2 0.980066577841241630 0.980066577799155510 4.208611e~ 11
04 0.921060994002884990 0.921060993708316070 2.945689¢ 10
0.6 0.825335614909678110 0.825335614150025320 7.596528¢ 10
0.8 0.696706709347165050 0.696706708168561060 1.178604e
1.0 0.540302305868139210 0.540302304687844350 1.180295e 7

Table 6. Exact solution and computed solution of the new method for solving y, in Problem 3.

X Exact Solution of y, Computed Solution of y; Error in y,
0.2 0.198669330795061240 0.198669331113754400 3.186932 x 10~10
0.4 0.389418342308650690 0.389418343391428780 1.082778 x 107
0.6 0.564642473395035590 0.564642475168185330 1.773150 x 10~?
0.8 0.717356090899523120 0.717356092762203360 1.862680 x 107
1.0 0.841470984807896840 0.841470985889528840 1.081632 x 10~?

Problem 4: 3" = x(v')*, y(0) =1,y (0) = , h = 5.

Exact solutiony = 1 + %ln ( >

)

Table 7. Comparison of the new method with [11] for solving Problem 4.

X

Exact Solution

Computed Solution

Error in New
Method P =5

Errorin[11]P =7

0.1
0.2
0.3
0.4
1.0

1.0500417292784914
1.1003353477310756
1.1511404359364668
1.2027325540540821
1.2554128118829952

1.0500417292785045
1.1003353477311153
1.1511404359364565
1.2027325540537517
1.2554128118817025

1.310063 x 1016
3.974598 x 10~ 14
1.021405 x 1014
3.304024 x 10~13
1.292744 x 10~12

1.445510 x 1014
3.779332 x 10713
3.428134 x 10~
6.987109 x 10~8
2.017066 x 107

60f7

The numerical results confirm that the proposed method produces better accuracy if compared
with the existing methods. This is also clear in the graph below (Figure 1).
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Comparsion of the new method with [11]

02 04 06 038 1 12

-8
=4=Error in new method
10 —f—Error in [11]
-12 M -
wl L

-16

Tog([Firror|)

-18

x value

Figure 1. Comparison between errors in the new method with error in [11] for solving Problem 4.

6. Conclusions

In this article, a one-step block method with three off-step points is derived via the interpolation
collocation approach. The developed method is consistent, zero-stable, convergent, with a region of
absolute stability and order five. The numerical results generated when the new developed method
was applied to three systems of second-order initial value problems above have shown the high
accuracy of the new method.
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