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Abstract: Generating execution plans is a costly operation for the DataBase Management System
(DBMS). An interesting alternative to this operation is to reuse the old execution plans, that were
already generated by the optimizer for past queries, to execute new queries. In this paper, we present
an approach for execution plan recommendation in two phases. We firstly propose a textual
representation of our SQL queries and use it to build a Features Extractor module. Then, we present
a straightforward solution to identify query similarity.This solution relies only on the comparison
of the SQL statements. Next, we show how to build an improved solution enabled by machine
learning techniques. The improved version takes into account the features of the queries’ execution
plans. By comparing three machine learning algorithms, we find that the improved solution using
Classification Based on Associative Rules (CAR) identifies similarity in 91% of the cases.

Keywords: execution plan reuse; CAR; SQL queries; recommendation

1. Introduction

To execute a given SQL query, the query optimizer needs to choose an execution plan for it.
An execution plan is a tree such that each node of the tree is a physical operator (e.g., sequential scan,
sort, or hash join) [1]. Needless to say, generating execution plans is an “expensive” process for
servers. Equivalent results can be obtained by considering different plans, but selecting the less
resource consuming plan is crucial. Accordingly, the task of query optimizers is to generate a plan
with the sequence of actions that minimizes the consumption of resources. One solution is to reuse
existing plans [2], that were generated in the past for previous queries, to execute new similar queries.
This solution is based on similarity identification between queries. In our context, two queries are said
to be similar if the same execution plan could be used to execute both of them.

In this paper, our main objective is to present a recommendation process that uses similarity
identification between SQL queries and machine learning techniques to recommend a previously
generated execution plan to the optimizer. We firstly present a straightforward approach that relies
only on SQL query statements, and presents an improved approach enabled by machine learning
techniques afterwards.

In the improved approach, as we represent our queries in two different spaces, we want to use
classification methods to try to discover relationships between these representations. Features of the
first representation are derived from the SQL statement of the query, while features of the second
representation are extracted from the execution plan. More specifically, we are interested in discovering
association rules between the textual features of SQL queries and their execution plans’ features. These
rules are then used to learn models that recommend execution plans for new queries as shown
in Figure 1.
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Figure 1. Using association rules to plan recommendation.

The remainder of this paper is organized as follows: In the second section, we give an overview
of work related to our study. Next, we describe our approach in the third section, and the features
extraction process in the fourth section. The straightforward solution and the solution improved by
machine learning techniques are presented in Sections 5 and 6, respectively. Finally, we discuss our
experimental results in the last section and provide a brief conclusion afterwards.

2. Related Work

Related work falls into three categories: Machine learning, Recommender systems and
Query Optimization. Machine learning techniques are a good alternative to building complex
cost-based models and are often easier to adapt and use with new configurations and query types.
Accordingly, machine learning methods have been used to tackle a number of issues related to
query optimization [3] in general, and SQL queries specifically. These issues range from statistics
estimation [4], selectivity and query size estimation [5,6], execution time prediction [7], query
performance prediction [8] and execution plan recycling [9,10].

Authors of [11] provide a comprehensive survey on recommender systems and classify them
into three categories: 1–content-based, 2–collaborative and 3–hybrid approaches. The concept of
recommendation has also been used is the field of query optimization. The work in [12] presents
a number of existing methods in the literature to recommend queries to assist the user in the
exploration of databases and data warehouses. While the existing approaches using recommendation
for query optimization focus on query recommendation; in our work, we are interested in execution
plan recommendation.

Existing approaches in the literature perform query similarity identification based on two main
phases: (i) defining a pattern for an appropriate query representation; as well as (ii) developing a
similarity function. Queries can be represented at the intentional level by considering the uninterpreted
SQL sentence [13] or at the extensional level by using the set of tuples resulting from the query
execution [14]. Other query representations range from vectors of features [10] to a set of fragments [15].
Graphs [16] are sometimes used as a pattern for query representation as well. The similarity function
varies depending on the nature of the problem. [16] uses a simple equality test of query patterns while
the comparison in [17] is based on separate tests of query fragments. Other ways for establishing
similarity are based on classical functions applied to the queries representation. For instance,
authors of [14] use the inner product, while similarity by [14,18] is identified based on cosine distance
and Jaccard similarity, respectively. Our approach for similarity identification is different as we are
building two features’ datasets, not only one. The first dataset represents the textual features of the
queries while the second dataset contains features extracted from their execution plan. Our goal is to
find association rules between these two datasets and use them for plan recommendation.

3. Approach to Execution Plan Recommendation

In this paper, we propose a mechanism to build an accurate execution plan recommendation
system. Figure 2 illustrates our approach.
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For a given query qn, we want the optimizer to choose a suitable execution plan, already stored in
the cache memory of the DataBase Management System (DBMS), and reuse it to execute qn. For this
task, we need to study the similarity of qn with “old” queries that were previously executed by the
optimizer. If a similarity is detected between qn and an “old” query qo , then the execution plan Plano

used by the optimizer to execute qo will be reused to process qn.
Our study relays on two main components: the first is the “Features Extractor”, the task of

which is to capture features from query statements and execution plans. The second component is the
“Similarity Evaluation” module that receives features as input and predicts similarity. The contributions
of this paper can be summarized as follows:

• We firstly propose a textual representation of our data and use it to build the Features
Extractor module.

• Secondly, we present a straightforward Similarity Evaluation module that relies only on the
comparison of the SQL statements of the queries and studies the pitfalls associated with
this method.

• Next, we show how to build an improved Similarity Evaluation module enabled by machine learning
techniques. The improved version of the module takes into account the features of the queries’
execution plans.

• We compare three machine learning algorithms and study which one is more accurate in
our context.

Figure 2. Our approach for plan recommendation.

4. Feature Extraction

In order to build our Features Extractor module, we need to identify a representation model for our
data. In the straighforward solution, queries representation ( Queries Features Matrix) is derived from
their SQL statements, while in the improved solution, an additional representation in the execution
plan space is used (Execution Plan Features Matrix). Both matrices are presented in this section.

4.1. Query Features Matrix

4.1.1. Features

As a crucial step in processing textual data, text representation converts the content of a
given piece of text into a compact format so that it can be recognized and automatically classified.
Consequently, the data (e.g., SQL query) is represented as a vector in the feature space, that is, a query
Q would be represented as Q = (F1, ..., Fk), where k is the feature set size. In our context, a features
matrix is an n× k matrix, where n is the number of query vectors.

Features, more often referred to as terms, can be at various levels, such as words, phrases, or any
other syntactic indexing units used to identify a SQL query. For our application and approach
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requirements, we propose a representation method that we call the Fragments Model. The fragments
model, proposed here, has two main advantages over the classical term model. Firstly, it considerably
reduces the dimensions of the feature space and therefore reduces resource consumption in the
treatment of queries. This advantage is of crucial importance when we have to deal with query
datasets of a large size. The second advantage is the capacity of the fragment model to offer an entity
recognition capability. That is, while the classical model treats all tokens of a given query as equivalent
terms with the same nature, the fragments model offers the possibility to identify entities in the query.
Therefore, relations, attributes and predicates can be recognized that are decisive in identifying queries
having similar execution plans.

Fragments Model

In this representation, we split the SQL queries into fragments rather than words. Each fragment
is identified by a keyword at the beginning and another one to mark its end in the SQL statement.
We have identified six types of fragments as shown in Table 1. Combined fragments of all queries
represent the features set.

Table 1. Fragments’ models.

Fragment Begining End

Fragment 1 Select From
Fragment 2 From Where, Group By, Order By
Fragment 3 Where like, =, Group By, Order By
Fragment 4 = AND, End of the query
Fragment 5 AND =, End of the query
Fragment 6 like, Group By, Order By End of the query

Example 1. The fragments’ models of queries Q0 and Q1 are presented in Table 2.

Q0: SELECT LINE_LEVEL FROM PRODLEVEL WHERE LINE_LEVEL =’RLI9AYC8YAQ4’

Q1: SELECT ACTVARS.DOLLARSALES FROM ACTVARS,PRODLEVEL
WHERE ACTVARS.PRODUCT_LEVEL= PRODLEVEL.CODE_LEVEL
AND PRODLEVEL.LINE_LEVEL =’RLI9AYC8YAQ4’

Table 2. Fragments’ models of queries Q0 and Q1.

Fragments Q0 Model Q1 Model

Fragment 1 LINE_LEVEL ACTVARS.DOLLARSALES
Fragment 2 PRODLEVEL ACTVARS,PRODLEVEL
Fragment 3 LINE_LEVEL ACTVARS.PRODUCT_LEVEL
Fragment 4 ’RLI9AYC8YAQ4’ PRODLEVEL.CODE_LEVEL
Fragment 5 NULL PRODLEVEL.LINE_LEVEL
Fragment 6 NULL ’RLI9AYC8YAQ4’

4.1.2. Weighting Method

Feature weighting [19] is another important step that assigns appropriate weights to features.
The simplest weighting method is the binary representation that assigns 1 to a feature if it occurs in
the data and 0 otherwise. In this solution, we prefer to use the ‘Term Frequency-Inverse Document
Frequency’ (TF-IDF) method rather than the simple frequency weighting. The TF-IDF [20] technique
provides a composite weight that is more discriminative compared to a simple term frequency
weighting method, and therefore captures similarities in a more precise way. While simple frequency
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only provides information about presence or absence of a fragment in a given query, TF-IDF gives
information on the ‘importance’ of that fragment in the set of queries. That is, the TF-IDF scheme
assigns the highest weights to fragments that occur many times within a small number of queries and
lowest weights to those occurring in the majority of queries. This property helps in obtaining quality
discriminative features, which are not supported by classical term frequency representation.

TF-IDF

TF-IDF is an abbreviation for ‘Term Frequency-Inverse Document Frequency’. It is a statistical
metric that is widely used in information retrieval field to measure the importance of a word in a given
document. This measure is calculated using Equations (1) and (2).

t f .id f ( f , q, Q) = t f (q, f ).id f ( f , Q), (1)

id f ( f , Q) = log
N

|q ∈ Q : f ∈ q| , (2)

where

• N: Total Number of Queries in the Database;
• t f (q, f ): Frequency of feature f in query q;
• |q ∈ Q : f ∈ q|: Number of queries where the feature f appears.

4.2. Execution Plan Features Matrix

In order to build the execution plan features matrix, we need to choose some features from the
execution plan of the SQL queries that were previously executed by the optimizer.

The EXPLAIN PLAN instruction in Oracle [21] stores execution plans in a table called
PLAN_TABLE. This table contains the number of columns, among which we identify five parameters,
namely: Cost, Plan Hash Value, Cardinality, Operation and Bytes. A brief description of the features is
given in Table 3, as we use them to represent the SQL query in the execution plan space.

Table 3. Description of the selected execution plan features.

Feature Description

PLAN_HASH_VALUE A metric that identifies execution plans.

COST Execution cost as estimated by the optimizer. The value
of this attribute has no measurement unit.

CARDINALITY Number of rows returned by a query.

OPERATION Defines the operation type (Select, Update, ...).
BYTES Number of needed bytes per query.

5. Straightforward Solution

In this solution, the Similarity Evaluation module receives as input a 1× k features vector Vn of
a new query qn , and an n× k “old” queries features matrix M. Recall that, n is the number of old
queries and k is the number of features. Then, it computes the similarity between Vn and each row of
M. This step produces an n× 1 similarity vector S. Each value s0≤i≤n of S represents the similarity of
query q0≤i≤n with qn. The plan of the query with the highest measure s is then recommended.
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Several similarity measures are discussed in the literature [22]. In this paper, we use the
cosine similarity, which calculates the cosine of the angle betweens two feature vectors as defined in
Equation (3), where x1k and x2k are values of feature k in query vectors x1 and x2, respectively.

cos(θ) = ∑k=1
n x1kx2k√

∑k=1
n x2

1k ∑k=1
n x2

2k

. (3)

Limitation

As we show later in our experiments, this approach proved accurate to recognize queries that are
almost identical, but it presents a significant risk to:

• Judge two queries as not similar, by analyzing their SQL syntax, while their execution plans are
actually similar.

• Find that two queries have high similarity measure by comparing their statements, but still their
plan are different. This is basically due to the fact that small differences in the SQL statements,
that could be ignored in classical text categorization tasks, are very decisive in the process of
defining an execution plan.

In the next session, we propose an improved solution enabled by machine learning techniques.

6. Solution Enabled by Machine Learning Techniques

6.1. Evaluating Classification Techniques

Classification is a basic task in data analysis that requires the construction of a classifier, that is,
a function that is “trained” to assign a class label to unknown instances described by a set of features.

In Figure 3, we present the solution enabled by classification techniques. This approach begins
with the class assigner module, the mission of which is to evaluate execution plan features of
“old” queries and assign same class labels to queries that have equivalent execution plan features.
This module’s output is a 1× n vector C, where each value c0≤i≤n is the class label of query q0≤i≤n.
The next step is building the training set, which consists of merging vector C to the query features
matrix M. Recall that matrix M contains only features that are derived from the SQL statement.
Finally, a classifier will “learn” from this training set how to identify similar queries. In this paper, we
evaluate three classifiers, namely, Naive Bayes, Support Vectors Machines (SVM) and Classification
based on Associative Rules (CAR).

Figure 3. Improved solution enabled by classification techniques.
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6.1.1. Naive Bayes

Naive Bayes classifier [23] builds a model by learning, from a training set, the conditional
probability of each attribute xi given the class label y. Next, classification is perfomed by applying
Bayes rule to compute the probability of y given the particular instance of x1, ..., xn, and then predicting
the class with the highest posterior probability. The computation of the predictive model is based on
a strong independence assumption that considers all the attributes xi are conditionally independent
given the value of the class y. We evaluate the effect of the Naive Bayes classifier on our data, as it is
one of the most effective classifiers with a high predictive performance.

6.1.2. Support Vector Machines (SVM)

Support Vector Machines [24,25] is basically a two-class classifier that estimates a decision rule
f : Rn → {±1} using training data (~x1, y1), ..., (~xn, yn) ∈ Rn × {±1} such that f will correctly classify
new examples (~x,~y). In the case of nonlinearly separable data, SVMs use a kernel function to make the
data linearly separable. We could define a kernel K(~x,~y) as a real-valued function K : X× X → R for
which there exists a function ϕ : X → F with the property:

K(~x,~y) = 〈ϕ(~x), ϕ(s~y)〉. (4)

Generally, kernel functions must be positive semi-definite (PSD) to satisfy the theorem of
Mercer [26]. Radial Basis Function (RBF) kernel is one of the most efficient and popular kernel
functions cited in the litterature, thus we use it in our experimentations.

6.2. Evaluating Classification Based on Association Rules

Association rules which were introduced by [27] represent an automatic approach to discover
relationships or possible correlations between objects. They were originally designed for finding
multi-correlated items in transactions; however, they can be easily adapted for classification.

Thabtah, F. [28] gives a comprehensive review of associative classification methods. The main
objective of CAR is to find a set of rules that satisfy some minimum support and minimum confidence
constraints, and form an accurate classifier. Specifically, in this study, we are interested in finding a
set of association rules between two SQL query representations and use them to build an efficient
classifier. Recent studies have shown that using classifiers based on class association rules resulted in
higher accuracy than those obtained by using other classification algorithms such as C4.5 and ILA [29],
which strengthens our motivation to evaluate CAR in our improved solution.

7. Experimentations and Results

7.1. Experimental Set-Up

7.1.1. Data

Our experimentations were conducted on the Analytical Processing Benchmark (APB-1) [30],
descrived in Table 4, that we used to build 2 different datasets:

• Dataset D1: Contains 1000 simple queries having different execution plans;
• Dataset D2: Contains 1000 queries containing subqueries.

The benchmark contains 55 query templates that we used to build D1 while we formulated
10 templates to build D2.
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Table 4. APB1 benchmark characteristics.

Table Name Cardinality Size (MB)

ACTVARS 33,323,400 2085
CHANLEVEL 10 2.4× 10−4

CUSTLEVEL 990 2.4× 10−2

PRODLEVEL 9900 7.3× 10−1

TIMELEVEL 24 3.9× 10−4

7.1.2. Models’ Validation

We use k-fold cross validation method for model validation. The dataset is divided into k subsets,
and the holdout method is repeated k times. Alternatively, each one of the k subsets is used as a test
set and the other k− 1 subsets are put together to form a training set. Then, the average error across
all k trials is computed, and the variance of the resulting estimate is reduced as k increased. We need
to consider two aspects when defining the value of parameter k. A large value of k means less bias
towards overestimating the true expected error of the model but implies higher variance and higher
running time. Hence, we need to choose a value that minimizes the bias without penalizing running
time. Generally, the value of k is defined empirically. In our experiments, k = 10 offers reasonable
bias/variance tradeoff.

7.1.3. Evaluation Metrics

In this paper, we use three metrics in order to measure the prediction accuracy for machine
learning techniques.

1–Prediction rate: The rate of correct predictions on the test set. Prediction rate represents the
percentage of instances for which predicted class value equals the actual class value.

2–RMSE: Root Mean Square Error (RMSE) is one of the most widely used statistics that measures
the differences between values predicted by a model and the actual values.

3–Kappa statistic: Kappa is used as a measure to assess model quality. It is always less than or
equal to 1. A value of 1 implies perfect model and values less than 1 imply less than perfect models
(0.01–0.2: Slight, 0.21–0.4: Fair, 0.41–0.60: Moderate, 0.61–0.80: Substantial 0.81–0.99: Almost perfect).

7.1.4. Tools

For preprocessing the data, generating and testing the models, we use WEKA [31], a software
developped by the Machine Learning Group at the University of Waikato. We performed the
SVM tests with the Sequential Minimal Optimization (SMO) algorithm, which is well-known for
its simplicity. We use the Java implementation (JCBA) of the Classification Based on Associations
algorithm (CBA) to evaluate the performance of CAR. In the straightforward solution, Matlab was
used to calculate similarity.

7.2. Experimental Results

7.2.1. Experiment 1: Straightforward Solution

In this experiment, we are interested in evaluating the performance of textual models for detecting
similarity between SQL queries. We evaluate this solution at two levels:

• Firstly, we compare our fragments model to a word model (with simple frequency weighting)
as we want to identify which one of these two models is more likely to identify queries having
similar execution plans;

• Secondly, we test the models with our two datasets: D1 and D2.

For each dataset, we choose an arbitrary query to evaluate the solution. Accordingly, for D1 we
consider query Qnew1 while we take Qnew2 and Qnew3 from D2. Here, our goal is to see what are the
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queries that will be identified as similar to Qnew1, Qnew2 and Qnew3 by this method, using the fragment
model. We consider queries for which similarity is higher than 0.95 as similar.

Statements of test queries are as follows:

Qnew1: SELECT ACTVARS.DOLLARSALES FROM ACTVARS,PRODLEVEL
WHERE ACTVARS.PRODUCT_LEVEL= PRODLEVEL.CODE_LEVEL
AND PRODLEVEL.LINE_LEVEL =’RLI9AYC8YAQ4’

Qnew2: SELECT CHANNEL_LEVEL,TIME_LEVEL,DOLLARSALES
FROM ACTVARS,CHANLEVEL WHERE ACTVARS.CHANNEL_LEVEL=
(SELECT BASE_LEVEL FROM CHANLEVEL WHERE BASE_LEVEL =’C7W3GE3KN9GU’)

Qnew3: SELECT * FROM ACTVARS WHERE TIME_LEVEL IN (SELECT MONTH_LEVEL
FROM TIMELEVEL WHERE MONTH_LEVEL = ’199607’)

Table 5 presents the top three queries (i.e., with the highest similarity values) associated to each
test query as returned by the straightforward method. For the purpose of comparison, we additionally
calculate, for each of these result queries, the similarities using word model representation. Table 6
reports the query features in the execution plan space.

QRecom1: SELECT ACTVARS.DOLLARSALES FROM ACTVARS,PRODLEVEL
WHERE ACTVARS.PRODUCT_LEVEL= PRODLEVEL.CODE_LEVEL
AND PRODLEVEL.LINE_LEVEL = ’ITQS4CE29HQR’

QRecom2: SELECT CHANNEL_LEVEL,TIME_LEVEL,DOLLARSALES
FROM ACTVARS,CHANLEVEL WHERE ACTVARS.CHANNEL_LEVEL=
(SELECT BASE_LEVEL FROM CHANLEVEL WHERE BASE_LEVEL =’SMYQ2W6NF5X8’)

Q24: SELECT CHANNEL_LEVEL,TIME_LEVEL,DOLLARSALES
FROM ACTVARS,CHANLEVEL WHERE CHANLEVEL.BASE_LEVEL=
(SELECT CHANNEL_LEVEL FROM ACTVARS WHERE CHANNEL_LEVEL =’SMYQ2W6NF5X8’)

QRecom3: SELECT * FROM ACTVARS WHERE TIME_LEVEL IN
(SELECT MONTH_LEVEL FROM TIMELEVEL
WHERE MONTH_LEVEL = ’199511’)

Q3Sim: SELECT * FROM ACTVARS WHERE ACTVARS.TIME_LEVEL IN
(SELECT TIMELEVEL.MONTH_LEVEL FROM TIMELEVEL
WHERE TIMELEVEL.MONTH_LEVEL = ’199607’)

Table 5. Cosine similarity/query model.

Dataset New Query Suggested Similar Query Fragments Model Words Model

QRecom1 0.98 0.93
D1 Qnew1 Q12 0.90 0.90

Q13 0.90 0.89

QRecom2 0.97 0.92
D2 Qnew2 Q22 0.91 0.90

Q23 0.87 0.92
Q24 0.33 1

QRecom3 0.98 0.93
D2 Qnew3 Q32 0.85 0.95

Q33 0.78 0.92
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Table 6. Comparing queries in the execution plan space.

Query Cardinality Bytes Plan Hash Value

Qnew1 196,714 9,638,986 1,918,545,856
QRecom1 196,714 9,638,986 1,918,545,856

Q12 688,500 42,687,000 1,918,545,856
Q13 688,500 42,687,000 1,918,545,856

Qnew2 81,000 2,187,000 4,072,885,321
QRecom2 81,000 2,187,000 4,072,885,321

Q22 81,000 7,695,000 4,072,885,321
Q23 79,442 1,906,608 4,072,885,321
Q24 65,548 1,713,152 4,072,885,321

Qnew3 4673 387,859 2,685,087,043
QRecom3 4490 372,670 2,685,087,043
Q3Sim 4490 372,670 2,685,087,043
Q32 68,850 3,167,100 2,685,087,043
Q33 68,850 3,167,100 2,685,087,043

Queries identified as similar to Qnew1, Qnew2 and Qnew3, using the fragments model, are QRecom1,
QRecom2 and QRecom3, respectively. By comparing features of queries in the execution plan space
(Table 6), we observe that Qnew1 and QRecom1 are identical, in addition to Qnew2 and QRecom2. On the
contrary, QRecom3 does not seem to be similar to Qnew3 as its features are different in the space of
execution plans. Moreover, we manually identified and recognized Q3Sim as the actual similar query
to Qnew3.

On the other hand, we can see that the fragment model is more “discriminant” compared to the
word model. Actually, similarity values returned by the word model, for recommended queries, are
equivalent to those of the fragments model. However, in the case of Qnew2, the word model would
have recommended query Q24 (instead of query QRecom2) which is a suboptimal recommendation.
In contrast, the fragments model is correctly identifying query Q24 as a non similar query with a
similarity value that equals 0.33. This result is due to the fact that the fragments model is taking into
account the position of the terms in the SQL statements, while the word model is only considering
the frequency.

Besides the empirical evaluation, we randomly selected a sample of 100 queries from all datasets
and counted the number of queries for which similar queries were identified correctly. Similarity was
accurately identified only for the 30% of queries when the word model was applied, while we obtained
a rate of 40% with the fragments model. According to the observations above, while our proposed
model is more accurate compared to the simple word frequency model, it still represents a risk to
recommend non similar queries.

7.2.2. Experiment 2: Solution Enabled by Machine Learning Techniques

The second experiment was conducted on D2 dataset.
Table 7 reports the prediction rates of SVM, Naive Bayes and CAR algorithms. We observe that

the highest rate is realized by the JCBA algorithm followed by Naive Bayes and SVM.

Table 7. Comparison of prediction rate.

SVM Naive Bayes CAR

76.55% 77.95% 91%

Figure 4 provides a comparison of the Kappa statistic and the RMSE of the classifiers. We can see
that the minimal value of RMSE (0.28) is given by JCBA while Naive Bayes and SVM perform almost
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in the same way with values equal to 0.48 and 0.41, respectively. Furthermore, evaluation of the Kappa
statistic reveals that JCBA algorithm is generating an “Excellent” model while Kappa values of Naive
Bayes and SVM are in the same range and provide a “Fair” Model.
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Figure 4. Comparison of Kappa and RMSE.

While the straighforward solution was not able to provide an accurate results for dataset D2,
the improved solution using machine learning techniques performed much better with a prediction
rate of 76.55%. Consequently, better recommendation results are obtained, particularly when using
Classification based on Association Rules.

8. Conclusions

In this paper, we presented an approach for execution plan recommendation based on similarity
identification. Our goal was to build a model that recognizes similarity by using only the SQL
statement of new queries. We used machine learning techniques to improve the similarity detection.
Classification based on Association Rules has better potential to provide accurate prediction compared
to SVM and Naive Bayes. Moreover, the proposed model was able to identify and associate similar
queries having similar execution plans. Therefore, our approach is able to recommend relevant
execution plans to new queries, based on similarity identification with historical queries that were
previously executed by the optimizer. While execution time of models could be a constraint for
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using CAR, working with a parallelized version of the JCBA implementation, in future studies, can
help resolve this issue. Another perspective is to use adaptive recommendations using the optimizers’
feedback to enhance the prediction accuracy.
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