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Abstract: In this paper, the generalized Jacobi elliptic functions expansion method with computerized
symbolic computation are employed to investigate explicitly analytic solutions of the (N +
1)-dimensional generalized Boussinesq equation. The exact solutions to the equation are constructed
analytically under certain circumstances, some of these solutions are degenerated to soliton-like
solutions and trigonometric function solutions in the limit cases when the modulus of the Jacobi
elliptic function solutions tends to 0 and 1, which shows that the applied method is more powerful
and will be used in further works to establish more entirely new exact solutions for other kinds of
higher-dimensional nonlinear partial differential equations in mathematical physics.

Keywords: generalized Jacobi elliptic functions expansion method; generalized Boussinesq equation;
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1. Introduction

In recent years, due to the wide applications of soliton theory in natural science, searching for
exact soliton solutions of nonlinear evolution equations plays an important and significant role in the
study on the dynamics of those phenomena [1,2]. Particularly, various powerful methods have been
presented, such as inverse scattering transformation, Cole-Hopf transformation, sinecosine method,
Painlevé method, Lie group analysis, similarity reduced method, Hirota bilinear method, homogeneous
balance method, Bicklund transformation, Darboux transformation, the extended tanh-function
method, the extended F-expansion method, projective Riccati equations method, the Jacobi elliptic
function expansion method and so on. In this paper, we would like to discuss an (N + 1)-dimensional
generalized Boussinesq equation by our generalized Jacobi elliptic functions expansion method [3]
proposed recently. As a result, more new exact solutions are obtained. The character feature of our
method is that, without much extra effort, we can get series of exact solutions using a uniform way.
Another advantage of our method is that it also applies to general higher-dimensional nonlinear partial
differential equations.

This paper is arranged as follows. In Section 2, we briefly describe the generalized Jacobi elliptic
function expansion method. In Section 3, several families of solutions to the higher-dimensional
generalized Boussinesq equation are obtained. In Section 4, some conclusions are given.

2. Summary of the Generalized Jacobi Elliptic Functions Expansion Method

For a given partial differential equation in N + 1 variables x,t and y; (j=1,... N — 1)

P(ul Ug, Uy, uylluyzl e /uyN,1/ Upt, Uxx, ) = 0 (1)
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We seek the following formal solutions of the given system by a new intermediate transfoumation:
uQ) =2 AF@+ Y [BFTQEQ+ GO+ DPTRH @] @)
i=0 ij=li<j<k

where Ay, A;, B, Ci, D;, (i = 1,2, ... k) are time-dependent functions to be determined later.
¢=2¢(x,ty1,...,yn—1) are arbitary functions with the variables x,t and yi G=1,...,N = 1)
The parameter k can be determined by balancing the highest order derivative terms with the
nonlinear terms in Equation (2). And E(¢)F(¢)G(¢)H(C) are an arbitrary array of the four functions
e=e(l)f = f(¢)g = g(¢) and h = h(¢), the selection obey the principle which makes the calculation
more simple. Here we ansatz

— 1 _ sng
{ €= p+qsn§+rcn§+ldn§’f ~ p+gsng+rend+ldng 6)
_ cng _ dng
&= p+gsné+renl+ldng’ " — p+gsné+rend+1ldng

where p, g, 1, | are arbitrary constants, the four function ¢, f, g, I satisfy the following restricted relation:

e = —qgh+rfh+Im?fg, f' = pgh+reh +leg, @
¢ = —pfh—qgeh+1(m?> —1ef, W = —m?pfg —r(m> —1)ef — geg

where “/” denotes d%.m is the modulus of the Jacobi elliptic function(0 < m < 1), and ¢, f, g, h satisfy
one of the following relation at the same time.
Family 1: when p = 0, we can select F(¢) = f(¢) or g(&), using the following iterative restrictions

Ih=1—qf —rg,e® = f>+¢%, (5)
(2 —r)g? =1-2(qf +rg—qrfg) + (IPm* — 1> + ¢*) f2

Family 2: when g = 0, we can select F(§) = (&) or h({), using the following iterative restrictions

pe=1—rg—1Ih,(m>—1)f*=g>—h?, (5b)
(P(m? = 1) + pP)h? = 1 —m? + 2(m? — 1) (Ih + rg — rIgh) + (p*m? + 1*> — m?r?)g>

Family 3: when r = 0, we can select F(¢) = h(¢) or e(§), using the following iterative restrictions
qf =1—pe—1h,m?g> = k> + (m?> — 1)é?, (50)
(q2 — m2p2)62 =m?— Zmz(lh + pe — pleh) + (12m2 + q2)h2

Family 4: when I = 0, we can select F(¢) = ¢(¢) or f(¢), using the following iterative restrictions

rg =1—pe—qf,h* = &> — m*f?, (5d)
(% +12)f2 = =1+ 2(pe +qf — pgef) + (2 = p*)e?

Substituting (4) along with (5a-5d) into Equation (1) separately yields four
families of polynomial equations for E(&)F()G(¢)H(S). Setting the coefficients of
F{(&)EN(&)GR(E)HB (&) (i =0,1,2,- - ;7123 = 0,1;j1j2j3 = 0) to zero yields a set of over-determined
differential equations(ODEs) in AgA;B;C;D;, (i=1,2, ... ,k) and ¢, solving the ODEs by Mathematica
and Wu elimination, we can obtain many exact solutions of Equation (1) accroding to (2)—(3) and
(5a)-(5d).
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3. Exact Solutions of the Equation

Let us consider the following (N + 1)-dimensional generalized Boussinesq equation

N—-1
Ut = ,Buxx + )\(un)xx + Ylxxxx + & Z uyfyf (©)
j=1

where u = u(x,y1,v2, - ,yn—-1,£), B # 0,A # 0,7 # 0,n # 1 > 0 is a real number and N > 1 is an
integer. The semi-travelling wave similarity transformation was used in [4] to investigate Equation (6)
with & = B =y = 1 and acquired many types of its exact solutions. The auxiliary differential equation
approach is employed in [5] to investigate some new exact solutions of Equation (6) under the same
circumstance. Equation (6) includes a class of (1 + 1)-dimensional and (2 + 1)-dimensional modified
Boussinesq equations.
In fact, if one takes B =y =A =1, 2 =0, n = 2, Equation (6) represents the well-known Boussinesq
equation [6]
Ut = Uxx + (uz)xx + Uxxxx (7)

which describes the propagation of long waves on the surface of water with a small amplitude and
plays an important role in fluid mechanics [7].
In fact, if one takes p =y = A =1, « = 0, n = 3, Equation (6) represents the modified
Boussinesq equation
Upp = Uxx + (uB)xx + Uxxxx 8)

which can be regarded as the continuous limit of a FPU dynamical system with cubic nonlinearity [8]
and some similarity reductions of (8) were obtained [9].
Ifonetakes f=y=A=1,a=1,n=2,N =2, Equation (6) represents the classical (2 + 1)-dimensional
Boussinesq equation [10,11]
U = Uxx + (”2)xx + Uyxxx + Uyy )

El-Sayed and Kaya [12] considered the approximate solution of Equation (9) with initial value.

If one takes A =8, a = =y =1,n =3, N = 2, Equation (6) represents (2 + 1)-dimensional generalized
Boussinesq equation

Uy = Uy + 8(u3)xx + Uxxxx + Uyy (10)

Matsukawa and Watanabe [13] used the bilinear method to obtained several N-soliton solutions of
Equation (10). Some other research about Equation (6) can be seen in [14-18]. In the following, we
construct exact solutions of Equation (6).

Making the gauge transformation

N-1

E=t(x+ ) Lyj+ct) (11)
j=1

where 7,1 j, € are constants to be determined later
We have
N-1
(a Z lj2 + 56— cz)ug;; + A" )z + 'yrzugggg =0 (12)
j=1

Integrating (12) about ¢ and ignoring the constant of integration give rise to

N-1
(a Z l]2 +B- cz)ug + A ") + ’YTzuggg =0 (13)
j=1
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1
Using transformation u = v#=1 yield

(n—2)(2n—3)
(n—1)*

32—n
n—1

(05)3 + )Z)Ugvgg + 02'05(';@] =0 (14)

N—1
(o Z l]-2 +pB— cz)vzvg + n)w3v§ +977
j=1

@ 3)
where v = v(x,y1,y2,- -+, Yn—1,t)vg = Z—g,vgg = ddev,vggg = dd§3”.
By balancing the term nAv>vs and y71*0%vszz in (14), we obtain N = 2, thus we assume that the

solutions of Equation (14) is expressed in the form

0 = o+ cre + cof + c3g + cah + dre® + dof? + d3g? + dyh? (15)

+d5fg + défh + d7gh + dgef + dgeg + dqgeh
where v = v(¢),e = e(0), f = f($),8 = §(8),h = h(§),ci,dj(i=0,---,4j=1,---,10) are constants to
be determined later and ¢, f, g, & satisfy (4) and (5a-5d) .

Substituting (4) and (5a-5d) separately along with (11) into (14) and setting the coefficients of
F{(&)EN(E)GR(E)HB(E)(i=0,1,2,---)(j1.3 = 0,1, j1j2j3 = 0) to zero yields an ODEs with respect to
the unknownsc;(i =0,--- ,4), d; (Gj=1,---,10),7,¢c,p,q,7, 1, m. After solving the ODEs by Mathematica
and Wu elimination we could determine the following solutions:

State1n =2

Case 1

N—1
p=0r=I1=1,g=+1a )] l]-2 +B—c% = —2Ac + yT2(7 — 8m?),
j=1

3yt (m?2—2 672 (m2—1 372 7?12—22 67T
7 (A ) oy = & ()L ) 4, = 3 (2/\ " d, i

2
) =+

Case 2

N-1
g=0,p=v1-m?2l=1a} l]-2+/5—c2 = —2)co + Y72 (m? — 2+ 3eV/1 — m?2),
j=1

r=+(V1-m?—¢),e=+1l,c3 = +37T2((m2_128+ vi=m)

Case 3

N—-1
g=0,p=v1-m2l=1a ), l]-2 +B—c? = —2Acy + T3 (m? — 2 + 3ev/1 — m?2),
j=1
6772 m?\/1—m? _ eyTPm*(1—m?)
A pd1 =

r=Fm,e=+11,c0 =

A ’
Case 4
N—1
r=0p=Il=1a) l]2+,8—c2 = —2Mco + T3 (m? — 2 —3eV/1 — m?),
j=1
g=te(l+evl—m2),e=+1,cp = J_rng(e(l*mjwr 1-m’)
Case 5
N—1
r=0,p=1=1a))] lf+,8—c2 = —2Aco + T3 (1 + 4m?),
j=1
.. 2.7 2.,2
g =Fmi,i=+/1,cp=+TM g4, = T
Case 6
NS 3yt2mi
I=0,p=qgq=1r=4+ii= \/—1,zxz lf—i—ﬁ—cz = —2Aco+ 97?1 = 3m +m?),c3 = + 7/\
j=1
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Case 7

1=0,p*=1,¢>=1,r= il,th 2+ B—c? = —2Aco + yT?(4m> —5),c3 = +

N—1
p=1=0,a); l]-2+/3—c2 = —2/\c0+712(m2—18\/1—m2—2),
i=1

]7
224/ 202 “m2—
ds — 6yTereN/1—m (7/1\1 24/1—m 2)/‘7 _ irm

Case 9

N—-1 2 2y,,2
3yte(l—m
r=1= O,zxj_gl lf+,6—c2 = —2Aco + 29T (1 + m?),d3 = %,q =+p

Case 10

N-1 5.9 5
1—
P10 P poct = 20+ 71— 18m + m?), dy = £ TV PUZIINI

j=1
Case 11

N-1
r=1= 0,042 l]2+/37c2 = —2/\co+'y7.'2(1—5m2),02 =F
j=1

Case 12

N-1
g=1 :0,¢x2 l]2+‘3—c2 = —2Aco +yTA(m? —2),c4 = +
j=1

Case 13

N—-1 272 a2
p=q= O,zxz 1]42—1—,8—02 = —2Aco + yT2(1 — 18m + m?),d; = i67T ! ‘B(l/\ m) W,r = Flym
j=1

Case 14

N-1
p:q:O,lx Z l].2+’5fC2 = 72)\‘:04")/'[2(7712*2),1’:81,5: +1,
=1

2 2 2 2_
:i371' I(m*—1) c _ BT lg\n 1)

2 20 L4 =

where ¢ 0, T + 0, /; are arbitrary constants in Case 1-Case 14. ¢;, d; don’t mention in all above cases is

zero. So do the following situations. Therefore, from (3), (11), (15), Cases 1-14 and u = vﬁ, we obtain
the Jacobi elliptic wave-like solutions to Equation (6):

20,2 20,2 20,292 2
s (/r\n 2) snép + 67T (T 1)dm:1 39t (ﬁ 2) sn2E — 6“5\7 dn2E,
U] =c¢co+ P 3
+sngy + cngy +dngy (+sn& + cnéy + dné)

37T2((m2—1/\)£+\/1—m2)cn€2
V1I—m2+ (V1 —m2 —e)enés + dn;

Uiz = Co +
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67 7T2mA/1—m?2 6yT2m?(1—m?)
A A

+
VI—m2 Fmends +dnds (V- m2 T mengs + dngs)’
+3'y'r (e(1—m )+\/ﬁ STlC
Tte(l+evl— )sn§4—|—dn§4
et gugs s

5 =200 + —— -
15 L F misngs +dns (1 F misnls + dnés)?

Uiz =Co+

Urqa = Co +

2 .
. . 371/’\ mzcng6
16=cot 1+ snge £ icnde

6"/’( 6’)’”[

cngy cn’¢y
1+ S"C7 +ecndy (14 sn§7 + ecniy)?

67 24T n(m? — 2/T = —2) sngscnds
A (V1 — m2snés + cn(;‘g)z

3vt2(1—m?) cn&
21 (1+sno)?

6772 (1— m)*/m $nG10

U7 =Co*

Upg = Co +

Ur9 = Co +

ui10 = Co £

A (1F Vmsnéo)®
3ytPm(l —m?)  snéy
i =coF A 1+ msnéqq
3912 +d
Ui1n = Co + YT° cndip +dnlip

2A et CTlC]z

6v7T2(1 —m)*\/m cndi3dndys

U113 = ¢+
A (F/menéis + dnéis)

s = ot 3yt (m* —1) £sngyy —dnlyy

L4 =70 2A 8C7’l§14 + dﬂ§14
N-1 N-1

Gi=t(x+ Z liy; +t zxz l]-2+,8+2/\co—'yT2Ai),(i =1,---,14)
j=1 j=1
2 _ _ c2
Remark 1: If welet f =y =a =1, ]Zl I5 —1,¢0=0,7 = “/m u19 is equivalent to the

solution u; p3 given in [5]. If we select the corresponding parameter, we can get the solutions from
111 to uq g5 given in [5]. Solutions u4 ;(¢;)(i = 1,7,12) are degenerated to soliton-like solutions when
the modulus m — 1, and solutions u1;(§;)(i = 1,2,4,7,8,9,12,14) are degenerated to trigonometric
functions solutions when the modulus m — 0.

Here, u1; provides us with a compound Jacobi wave solution whose structure are shown in
Figure 1. The typical structure of new Jacobi elliptic wave-like solution u; g is shown in Figure 2.
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Figure 1. Solution 117 when¢g =0, T =A=lj=a=f=7y=N=1m=09andt=0.

W.s
1300
1350
1000
Jk %
-4 -2 F4 4

Figure 2. Solution uy g whenc¢g =0,7=A=lj=a=Bf=7y=N=1m=03andt=0

State2n =3
Case 1

p*01—02—c4—0r*1q 712(1— m2),12 £1,c5 = \/ 1+l4+12(2 4m?))

T
7
—(1+ (1 —2m?)c3, 2 Bp—c?=qt2hy, A =3+ (414 (= 1) +212 (1 +m*))

7

=1 1+144+12(2—4m?) ’
Case 2
g=ci=c2=c3=0,p=1=1, “Z B+p—c =91 Az,Az—isz(lfmaﬁg” ,
2= mTiil’ _ 2A4 33112)150 = +Tm i:gi)z)
Case 3
r=ci=c=c=0g=1p=xl#1Lc= i§\/’7(1+l4m42§212(m2*2))’
Co = $T(1+12(1m272))\/2)\(1_,_14”14:_7212(,”2_2))/
N
Case 4
N-1

2
]:

2y (m2—1 m2—1
PP =110 =+1r 77()\ ) co = +1 77(% )
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Case 5
NSt 2 2 2 [r2—m*1>—2m2 (12 —1%)]
c1=c=0,p=q=0a IF+B—c"=79T°Ns5,A5 = > ,e=+1,
f] j 2(m?12—r?)
2 _m2]2 2_1 212 _42 2_]2 2 2_]2
2 = v LIl g — g [2OEPIED) o) = 47 Aw(iqr‘z_rzg
Case 6
2
co—cl—cz—Or—l—OtxZ l2+/3—c = Y%A, A = — +2’” ,
2 _ —
3 =+T (muq ,Cq = €T p q

Therefore from (3), (11), (15), Cases 1-6 and u = Um, we obtain the Jacobi elliptic wave-like
solutions to Equation (6):

_ 1A 12(2—4m?
2 TP 2m2)\/—'y(1 + A P2—4m?)) %\/ YAEPERRA) e
21 l 2) T elV1—m2snlyq + cnloq + ldnds g
7(4—3m?)
y(1 —m2) T | o3 () €622
u%z = *Tm 5+
. 2M(4 —3m*)  Vm? — 1+ emcniyn + Vm2 — 1dnér o
—y (1+ A 4212 (m2—2
2. _ TP ) i N 7y 2R 0 2) G,
23 ! 2A(1 + HAm4 + 212(m2 —2)) — +1 +snép3 + ldnéys
(29 (m2—1
2 it [v(m?—1) N T 77(@\ )sn§2_4
24 = 20 T+l tesnlry+ondpy
2 __ 14272 2_ 2712 _42 2_72
27 (1’2 2 y(r mzl/\)(m 1) sn§2_5 —T y(m2l ;)\)(’ 12) C”§2,5
A(m2 —r2) rengps + ldnds s
2 +14/ 77“125/2\7“72)‘3”62.6"‘51—\/ 77@22;[{2)‘17162.6
26 p+gsniae
N-1

Goi=T(x + i ]%"’t\/"‘z 12"’/3 YT2A), (i=1,---,6)

N-1
. _ _ R S 2 _ _ . ]_2(N=c) : ;
Remark 2: If welet/ =1, r =+l,a ==7=1, j§1 l]. =N-1,7= — T W25 18 equivalent to

the solution up 4 givenin [5]. f weletp =1, =0,a =B =7 =1, I\']le l]2 =N-1,7t= _2(11::132),
uy 6 is equivalent to the solution uj 13 given in [5]. If we select the] corresponding parameter, we
can get the solutions from 151 to 135 given in [5]. Solutions u;;(&;)(i = 1,3,6) are degenerated to
soliton-like solutions when the modulus m — 1, and solutions u, ;(¢;)(i = 1,3,5,6) are degenerated to
trigonometric functions solutions when the modulus m — 0.

The structure of new doubly periodic-like solutions w5 4 and 154 is illustrated in Figures 3 and 4.
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Figure 4. Solution upg whenp =2,g=1,1=A=lj=a=f=7y=N=1m=093and = 0.

State3n >3
Case 1

N—-1
m=1,1=0,r=1,p= im,zx > lj2+,3—c2 = YT2A, A = % 11) ,
j=1 -

e
Case 2
m=01=0p=1r== 1_‘72rC0252=C3=C4=0,61:_%r
at]g111]2+ﬁ_02=7T2A2,A2=_ﬁzl
Case 3 2 2
m=1,q=l=0,P=1,r=i1,c0=m_ljlr)l%,dzz_%%’
"‘IE ZJZ +B—c?=9T2A3, 03 = — (n—11)2'
Case 4
m=0,q=l=0,P=il,r=e,s=il,c0=_§z7(11_+1’)12)l =_%,
“éjz_ll]z+ﬁ—cz=7rzA4,A4:ﬁzl

=1
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Therefore from (3), (11), (15), Cases 1-4 and u = vanl, we obtain the following soliton-like and
trigonometric function solutions for Equation (6) are expressed by

2(14n
asech[(] -
1) =
Uz 1 (%, ) {i 1+ g% + gtanh[1] + sech[{1] }
2(1+n
1 i sec( 2] w
u3,2(x/ t) = {

+4/1 — g% + gtan[&] + sec[&] }

1
y13(1 4 n) B yt2(1+n), tanh[&z] 2 "

ua3(x, 1) = {ZA(n—1)2 2A(n—1)2[1isech[és]] }
e 924 tanfs] 2T
uz4(x ) = { 2A(n — 1) 2A(n—1)2[€iseC[€4]]}

where

N-1 N-1
Gi=tlx+ ) Lyt a) B+p—or28), (=1 ,4).
j=1 j=1

Remark 3: All the solutions obtained in this paper for Equation (6) have been checked by
Mathematica software.

The properties of the new soliton-like wave solutions u3 1 and periodic-like solutions u3 5 is shown
in Figures 5 and 6. Remark 4: To our knowledge, the explicit solutions except (119, U2 5, Uz ¢) We
obtained here to Equation (6) are not shown in the previous literature. They are new exact solutions of
Equation (6). Our method contains all the results mentioned by the G’ /G method [19], the improved
sub-ODE method [20] and auxiliary equation technique [21], etc., which were discussed in [22].

-10 -5 5 10

Figure 5. Solution uzy whent=A =] =a=f=7y=N=1g=1n= 4andt=0.
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4. Conclusions

In this paper, we have found abundant new types of exact solutions for the (N + 1)-dimensional
generalized Boussinesq equation by using the generalized Jacobi elliptic functions expansion method
and computerized symbolic computation. More importantly, our method is very simple and powerful
at finding new solutions to various kinds of nonlinear evolution equations, such as Schrodinger
equation, Boussinesq equation, etc. We believe that this method should play an important role for
finding exact solutions in mathematical physics.
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