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Abstract: In this paper, the generalized Jacobi elliptic functions expansion method with computerized
symbolic computation are employed to investigate explicitly analytic solutions of the (N +
1)-dimensional generalized Boussinesq equation. The exact solutions to the equation are constructed
analytically under certain circumstances, some of these solutions are degenerated to soliton-like
solutions and trigonometric function solutions in the limit cases when the modulus of the Jacobi
elliptic function solutions tends to 0 and 1, which shows that the applied method is more powerful
and will be used in further works to establish more entirely new exact solutions for other kinds of
higher-dimensional nonlinear partial differential equations in mathematical physics.
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1. Introduction

In recent years, due to the wide applications of soliton theory in natural science, searching for
exact soliton solutions of nonlinear evolution equations plays an important and significant role in the
study on the dynamics of those phenomena [1,2]. Particularly, various powerful methods have been
presented, such as inverse scattering transformation, Cole-Hopf transformation, sinecosine method,
Painlevé method, Lie group analysis, similarity reduced method, Hirota bilinear method, homogeneous
balance method, Bäcklund transformation, Darboux transformation, the extended tanh-function
method, the extended F-expansion method, projective Riccati equations method, the Jacobi elliptic
function expansion method and so on. In this paper, we would like to discuss an (N + 1)-dimensional
generalized Boussinesq equation by our generalized Jacobi elliptic functions expansion method [3]
proposed recently. As a result, more new exact solutions are obtained. The character feature of our
method is that, without much extra effort, we can get series of exact solutions using a uniform way.
Another advantage of our method is that it also applies to general higher-dimensional nonlinear partial
differential equations.

This paper is arranged as follows. In Section 2, we briefly describe the generalized Jacobi elliptic
function expansion method. In Section 3, several families of solutions to the higher-dimensional
generalized Boussinesq equation are obtained. In Section 4, some conclusions are given.

2. Summary of the Generalized Jacobi Elliptic Functions Expansion Method

For a given partial differential equation in N + 1 variables x,t and yj (j = 1, . . . ,N ´ 1)

Ppu, ut, ux, uy1 , uy2 , ¨ ¨ ¨ , uyN´1 , utt, uxx, ¨ ¨ ¨ q “ 0 (1)

Math. Comput. Appl. 2016, 21, 8; doi:10.3390/mca21020008 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
http://www.mdpi.com/journal/mca


Math. Comput. Appl. 2016, 21, 8 2 of 12

We seek the following formal solutions of the given system by a new intermediate transfoumation:

upξq “
k
ÿ

i“0

AiFipξq `
k
ÿ

i,j“1;iďjďk

rBiFj´ipξqEipξq ` CiFj´ipξqGipξq `DiFj´ipξqHipξqs (2)

where A0, Ai, Bi, Ci, Di, (i = 1,2, . . . ,k) are time-dependent functions to be determined later.
ξ “ ξpx, t, y1, . . . , yN´1q are arbitary functions with the variables x,t and yj (j = 1, . . . ,N ´ 1).
The parameter k can be determined by balancing the highest order derivative terms with the
nonlinear terms in Equation (2). And EpξqFpξqGpξqHpξq are an arbitrary array of the four functions
e “ epξq f “ f pξqg “ gpξq and h “ hpξq, the selection obey the principle which makes the calculation
more simple. Here we ansatz

#

e “ 1
p`qsnξ`rcnξ`ldnξ , f “ snξ

p`qsnξ`rcnξ`ldnξ

g “ cnξ
p`qsnξ`rcnξ`ldnξ , h “ dnξ

p`qsnξ`rcnξ`ldnξ

(3)

where p, q, r, l are arbitrary constants, the four function e, f, g, h satisfy the following restricted relation:

#

e1 “ ´qgh` r f h` lm2 f g, f 1 “ pgh` reh` leg,
g1 “ ´p f h´ qeh` lpm2 ´ 1qe f , h1 “ ´m2 p f g´ rpm2 ´ 1qe f ´ qeg

(4)

where “1” denotes d
dξ .m is the modulus of the Jacobi elliptic function(0 ď m ď 1), and e, f, g, h satisfy

one of the following relation at the same time.
Family 1: when p = 0, we can select Fpξq “ f pξq or gpξq, using the following iterative restrictions

#

lh “ 1´ q f ´ rg, e2 “ f 2 ` g2,
pl2 ´ r2qg2 “ 1´ 2pq f ` rg´ qr f gq ` pl2m2 ´ l2 ` q2q f 2 (5a)

Family 2: when q = 0, we can select Fpξq “ gpξq or hpξq, using the following iterative restrictions

#

pe “ 1´ rg´ lh, pm2 ´ 1q f 2 “ g2 ´ h2,
pl2pm2 ´ 1q ` p2qh2 “ 1´m2 ` 2pm2 ´ 1qplh` rg´ rlghq ` pp2m2 ` r2 ´m2r2qg2 (5b)

Family 3: when r = 0, we can select Fpξq “ hpξq or epξq, using the following iterative restrictions

#

q f “ 1´ pe´ lh, m2g2 “ h2 ` pm2 ´ 1qe2,
pq2 ´m2 p2qe2 “ m2 ´ 2m2plh` pe´ plehq ` pl2m2 ` q2qh2 (5c)

Family 4: when l = 0, we can select Fpξq “ epξq or f pξq, using the following iterative restrictions

#

rg “ 1´ pe´ q f , h2 “ e2 ´m2 f 2,
pq2 ` r2q f 2 “ ´1` 2ppe` q f ´ pqe f q ` pr2 ´ p2qe2 (5d)

Substituting (4) along with (5a–5d) into Equation (1) separately yields four
families of polynomial equations for EpξqFpξqGpξqHpξq. Setting the coefficients of
FipξqEj1pξqGj2pξqH j3pξqpi “ 0, 1, 2, ¨ ¨ ¨ ; j1,2,3 “ 0, 1; j1 j2 j3 “ 0q to zero yields a set of over-determined
differential equations(ODEs) in A0 AiBiCiDi, (i = 1,2, . . . ,k) and ξ, solving the ODEs by Mathematica
and Wu elimination, we can obtain many exact solutions of Equation (1) accroding to (2)–(3) and
(5a)–(5d).
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3. Exact Solutions of the Equation

Let us consider the following (N + 1)-dimensional generalized Boussinesq equation

utt “ βuxx ` λpunqxx ` γuxxxx ` α
N´1
ÿ

j“1

uyjyj (6)

where u “ upx, y1, y2, ¨ ¨ ¨ , yN´1, tq, β ‰ 0, λ ‰ 0, γ ‰ 0, n ‰ 1 ą 0 is a real number and N > 1 is an
integer. The semi-travelling wave similarity transformation was used in [4] to investigate Equation (6)
with α = β = γ = 1 and acquired many types of its exact solutions. The auxiliary differential equation
approach is employed in [5] to investigate some new exact solutions of Equation (6) under the same
circumstance. Equation (6) includes a class of (1 + 1)-dimensional and (2 + 1)-dimensional modified
Boussinesq equations.

In fact, if one takes β = γ = λ = 1, α = 0, n = 2, Equation (6) represents the well-known Boussinesq
equation [6]

utt “ uxx ` pu2qxx ` uxxxx (7)

which describes the propagation of long waves on the surface of water with a small amplitude and
plays an important role in fluid mechanics [7].

In fact, if one takes β = γ = λ = 1, α = 0, n = 3, Equation (6) represents the modified
Boussinesq equation

utt “ uxx ` pu3qxx ` uxxxx (8)

which can be regarded as the continuous limit of a FPU dynamical system with cubic nonlinearity [8]
and some similarity reductions of (8) were obtained [9].

If one takes β = γ = λ = 1, α = 1, n = 2, N = 2, Equation (6) represents the classical (2 + 1)-dimensional
Boussinesq equation [10,11]

utt “ uxx ` pu2qxx ` uxxxx ` uyy (9)

El-Sayed and Kaya [12] considered the approximate solution of Equation (9) with initial value.
If one takes λ = 8, α = β = γ = 1, n = 3, N = 2, Equation (6) represents (2 + 1)-dimensional generalized
Boussinesq equation

utt “ uxx ` 8pu3qxx ` uxxxx ` uyy (10)

Matsukawa and Watanabe [13] used the bilinear method to obtained several N-soliton solutions of
Equation (10). Some other research about Equation (6) can be seen in [14–18]. In the following, we
construct exact solutions of Equation (6).

Making the gauge transformation

ξ “ τpx`
N´1
ÿ

j“1

ljyj ` ctq (11)

where τ, lj, c are constants to be determined later
We have

pα
N´1
ÿ

j“1

l2
j ` β´ c2quξξ ` λpunqξξ ` γτ2uξξξξ “ 0 (12)

Integrating (12) about ξ and ignoring the constant of integration give rise to

pα
N´1
ÿ

j“1

l2
j ` β´ c2quξ ` λpunqξ ` γτ2uξξξ “ 0 (13)
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Using transformation u “ v
1

n´1 yield

pα
N´1
ÿ

j“1

l2
j ` β´ c2qv2vξ ` nλv3vξ ` γτ2r

pn´ 2qp2n´ 3q

pn´ 1q2
pvξq

3
`

3p2´ nq
n´ 1

vvξ vξξ ` v2vξξξs “ 0 (14)

where v “ vpx, y1, y2, ¨ ¨ ¨ , yN´1, tqvξ “
dv
dξ , vξξ “

dp2qv
dξ2 , vξξξ “

dp3qv
dξ3 .

By balancing the term nλv3vξ and γτ2v2vξξξ in (14), we obtain N = 2, thus we assume that the
solutions of Equation (14) is expressed in the form

v “ c0 ` c1e` c2 f ` c3g` c4h` d1e2 ` d2 f 2 ` d3g2 ` d4h2

`d5 f g` d6 f h` d7gh` d8e f ` d9eg` d10eh
(15)

where v “ vpξq, e “ epξq, f “ f pξq, g “ gpξq, h “ hpξq, ci, djpi “ 0, ¨ ¨ ¨ , 4; j “ 1, ¨ ¨ ¨ , 10q are constants to
be determined later and e, f, g, h satisfy (4) and (5a–5d) .

Substituting (4) and (5a–5d) separately along with (11) into (14) and setting the coefficients of
FipξqEj1pξqGj2pξqH j3pξqpi “ 0, 1, 2, ¨ ¨ ¨ qpj1...3 “ 0, 1, j1 j2 j3 “ 0q to zero yields an ODEs with respect to
the unknowns cipi “ 0, ¨ ¨ ¨ , 4q, djpj “ 1, ¨ ¨ ¨ , 10q,τ, c, p, q, r, l, m. After solving the ODEs by Mathematica
and Wu elimination we could determine the following solutions:

State 1 n = 2
Case 1

p “ 0, r “ l “ 1, q “ ˘1, α
N´1
ř

j“1
l2
j ` β´ c2 “ ´2λc0 ` γτ2p7´ 8m2q,

c2 “ ˘
3γτ2pm2´2q

λ , c4 “
6γτ2pm2´1q

λ , d2 “
3γτ2pm2´2q2

2λ , d4 “ ´
6γτ2

λ

Case 2

q “ 0, p “
?

1´m2, l “ 1, α
N´1
ř

j“1
l2
j ` β´ c2 “ ´2λc0 ` γτ2pm2 ´ 2` 3ε

?
1´m2q,

r “ ˘p
?

1´m2 ´ εq, ε “ ˘1, c3 “ ˘
3γτ2ppm2´1qε`

?
1´m2q

λ

Case 3

q “ 0, p “
?

1´m2, l “ 1, α
N´1
ř

j“1
l2
j ` β´ c2 “ ´2λc0 ` γτ2pm2 ´ 2` 3ε

?
1´m2q,

r “ ¯m, ε “ ˘1, c1 “
6γτ2m2

?
1´m2

λ , d1 “
6γτ2m2p1´m2q

λ ,

Case 4

r “ 0, p “ l “ 1, α
N´1
ř

j“1
l2
j ` β´ c2 “ ´2λc0 ` γτ2pm2 ´ 2´ 3ε

?
1´m2q,

q “ ˘εp1` ε
?

1´m2q, ε “ ˘1, c2 “ ˘
3γτ2pεp1´m2q`

?
1´m2q

λ

Case 5

r “ 0, p “ l “ 1, α
N´1
ř

j“1
l2
j ` β´ c2 “ ´2λc0 ` γτ2p1` 4m2q,

q “ ¯mi, i “
?
´1, c2 “ ˘

6γτ2mi
λ , d2 “ ´

6γτ2m2

λ

Case 6

l “ 0, p “ q “ 1, r “ ˘i, i “
?
´1, α

N´1
ÿ

j“1

l2
j ` β´ c2 “ ´2λc0 ` γτ2p1´ 3m`m2q, c3 “ ˘

3γτ2mi
λ



Math. Comput. Appl. 2016, 21, 8 5 of 12

Case 7

l “ 0, p2 “ 1, q2 “ 1, r “ ˘1, α
N´1
ÿ

j“1

l2
j ` β´ c2 “ ´2λc0 ` γτ2p4m2 ´ 5q, c3 “ ˘

6γτ2

λ
, d3 “ ´

6γτ2

λ

Case 8

p “ l “ 0, α
N´1
ř

j“1
l2
j ` β´ c2 “ ´2λc0 ` γτ2pm2 ´ 18

?
1´m2 ´ 2q,

d5 “
6γτ2r2 4?1´m2pm2´2

?
1´m2´2q

λ , q “ ˘r 4
?

1´m2

Case 9

r “ l “ 0, α
N´1
ÿ

j“1

l2
j ` β´ c2 “ ´2λc0 ` 2γτ2p1`m2q, d3 “

3γτ2p1´m2qp2

2λ
, q “ ˘p

Case 10

r “ l “ 0, α
N´1
ÿ

j“1

l2
j ` β´ c2 “ ´2λc0 ` γτ2p1´ 18m`m2q, d8 “ ˘

6γτ2 p2βp1´mq2
?

m
λ

, q “ ¯p
?

m

Case 11

r “ l “ 0, α
N´1
ÿ

j“1

l2
j ` β´ c2 “ ´2λc0 ` γτ2p1´ 5m2q, c2 “ ¯

3γτ2mp1´m2qp
λ

, q “ ˘mp

Case 12

q “ l “ 0, α
N´1
ÿ

j“1

l2
j ` β´ c2 “ ´2λc0 ` γτ2pm2 ´ 2q, c4 “ ˘

3γτ2r
2λ

, c3 “
3γτ2r

2λ
, p “ εr, ε “ ˘1

Case 13

p “ q “ 0, α
N´1
ÿ

j“1

l2
j ` β´ c2 “ ´2λc0 ` γτ2p1´ 18m`m2q, d7 “ ˘

6γτ2l2βp1´mq2
?

m
λ

, r “ ¯l
?

m

Case 14

p “ q “ 0, α
N´1
ř

j“1
l2
j ` β´ c2 “ ´2λc0 ` γτ2pm2 ´ 2q, r “ εl, ε “ ˘1,

c2 “ ˘
3γτ2lpm2´1q

2λ , c4 “ ´
3γτ2lpm2´1q

2λ

where c ­“ 0, τ ­“ 0, lj are arbitrary constants in Case 1–Case 14. ci, dj don’t mention in all above cases is

zero. So do the following situations. Therefore, from (3), (11), (15), Cases 1–14 and u “ v
1

n´1 , we obtain
the Jacobi elliptic wave-like solutions to Equation (6):

u1.1 “ c0 `
˘

3γτ2pm2´2q
λ snξ1 `

6γτ2pm2´1q
λ dnξ1

˘snξ1 ` cnξ1 ` dnξ1
`

3γτ2pm2´2q2

2λ sn2ξ1 ´
6γτ2

λ dn2ξ1

p˘snξ1 ` cnξ1 ` dnξq2

u1.2 “ c0 ˘

3γτ2ppm2´1qε`
?

1´m2q
λ cnξ2

?
1´m2 ˘ p

?
1´m2 ´ εqcnξ2 ` dnξ2
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u1.3 “ c0 `

6γτ2m2
?

1´m2

λ?
1´m2 ¯mcnξ3 ` dnξ3

`

6γτ2m2p1´m2q
λ

p
?

1´m2 ¯mcnξ3 ` dnξ3q
2

u1.4 “ c0 `
˘

3γτ2pεp1´m2q`
?

1´m2q
λ snξ4

1˘ εp1` ε
?

1´m2qsnξ4 ` dnξ4

u1.5 “ c0 ˘

6γτ2mi
λ snξ5

1¯misnξ5 ` dnξ5
´

6γτ2m2

λ sn2ξ5

p1¯misnξ5 ` dnξ5q
2

u1.6 “ c0 ˘

3γτ2mi
λ cnξ6

1` snξ6 ˘ icnξ6

u1.7 “ c0 ˘

6γτ2

λ cnξ7

1˘ snξ7 ` εcnξ7
´

6γτ2

λ cn2ξ7

p1˘ snξ7 ` εcnξ7q
2 ,

u1.8 “ c0 `
6γτ2 4

?
1´m2pm2 ´ 2

?
1´m2 ´ 2q

λ

snξ8cnξ8

p˘
4
?

1´m2snξ8 ` cnξ8q
2

u1.9 “ c0 `
3γτ2p1´m2q

2λ

cn2ξ9

p1˘ snξ9q
2

u1.10 “ c0 ˘
6γτ2p1´mq2

?
m

λ

snξ10

p1¯
?

msnξ10q
2

u1.11 “ c0 ¯
3γτ2mp1´m2q

λ

snξ11

1˘msnξ11

u1.12 “ c0 `
3γτ2

2λ

cnξ12 ˘ dnξ12

ε˘ cnξ12

u1.13 “ c0 ˘
6γτ2p1´mq2

?
m

λ

cnξ13dnξ13

p¯
?

mcnξ13 ` dnξ13q
2

u1.14 “ c0 `
3γτ2pm2 ´ 1q

2λ

˘snξ14 ´ dnξ14

εcnξ14 ` dnξ14

ξi “ τpx`
N´1
ÿ

j“1

ljyj ˘ t

g

f

f

eα
N´1
ÿ

j“1

l2
j ` β` 2λc0 ´ γτ2∆iq, pi “ 1, ¨ ¨ ¨ , 14q

Remark 1: If we let β “ γ “ α “ 1,
N´1
ř

j“1
l2
j “ N ´ 1, c0 “ 0, τ “

b

N´c2

2p1`m2q
, u1.9 is equivalent to the

solution u1.23 given in [5]. If we select the corresponding parameter, we can get the solutions from
u1.1 to u1.25 given in [5]. Solutions u1.ipξiqpi “ 1, 7, 12q are degenerated to soliton-like solutions when
the modulus m Ñ 1, and solutions u1.ipξiqpi “ 1, 2, 4, 7, 8, 9, 12, 14q are degenerated to trigonometric
functions solutions when the modulus mÑ 0.

Here, u1.1 provides us with a compound Jacobi wave solution whose structure are shown in
Figure 1. The typical structure of new Jacobi elliptic wave-like solution u1.8 is shown in Figure 2.
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
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Figure 1. Solution u1.1 when c0 “ 0, τ “ λ “ lj “ α “ β “ γ “ N “ 1, m “ 0.9 and t = 0.
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State 2 n = 3
Case 1

p “ c1 “ c2 “ c4 “ 0, r “ 1, q2 “ l2p1´m2q, l2 ‰ 1, c3 “ ˘
τ
l

b

´γp1`l4`l2p2´4m2qq
2λ ,

c0 “ ´p1` l2p1´ 2m2qc3, α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆1, ∆1 “

1
2 `

pp1`l4qpm2´1q`2l2p1`m4qq

1`l4`l2p2´4m2q
,

Case 2

q “ c1 “ c2 “ c3 “ 0, p “ l “ 1, α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆2, ∆2 “

8´13m2`6m4

2p4´3m2q
,

r2 “ m2

m2´1 , c4 “ ¯τm
c

γp4´3m2q

2λp1´m2q
, c0 “ ˘τm

c

γp1´m2q

2λp4´3m2q

Case 3

r “ c1 “ c3 “ c4 “ 0, q “ 1, p “ ˘l ‰ 1
m , c2 “ ˘

τ
l

b

´γp1`l4m4`2l2pm2´2qq
2λ ,

c0 “ ¯
τp1`l2pm2´2qq

l

b

´γ
2λp1`l4m4`2l2pm2´2qq ,

α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆3, ∆3 “ ´

pp1`l4m4qpm2´2q`2l2pm4`2m2´2qq
2p1`l4m4`2l2pm2´2qq ,

Case 4

l “ c1 “ c3 “ c4 “ 0, q “ ˘r, α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆4, ∆4 “ ´

p1`m2q
2 ,

p2 “ r2, c2 “ ˘τr
b

2γpm2´1q
λ , c0 “ ˘τ

b

γpm2´1q
2λ
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Case 5

c1 “ c4 “ 0, p “ q “ 0, α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆5, ∆5 “

rr2´m4l2´2m2pr2´l2qs

2pm2l2´r2q
, ε “ ˘1,

c2 “ ετ

b

γpr2´m2l2qpm2´1q
2λ , c3 “ ´τ

b

γpm2l2´r2qpr2´l2q
2λ , c0 “ ˘

τr
2

c

2γpr2´l2q

λpm2´r2q

Case 6

c0 “ c1 “ c2 “ 0, r “ l “ 0, α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆6, ∆6 “ ´

1`m2

2 ,

c3 “ ˘τ

b

γpm2 p2´q2q
2λ , c4 “ ετ

b

γpp2´q2q
2λ , ε “ ˘1

Therefore from (3), (11), (15), Cases 1–6 and u “ v
1

n´1 , we obtain the Jacobi elliptic wave-like
solutions to Equation (6):

u2
2.1 “ ¯

τp1` l2p1´ 2m2q

l

c

´γp1` l4 ` l2p2´ 4m2qq

2λ
˘

τ
l

b

´γp1`l4`l2p2´4m2qq
2λ cnξ2.1

εl
?

1´m2snξ2.1 ` cnξ2.1 ` ldnξ2.1

u2
2.2 “ ˘τm

d

γp1´m2q

2λp4´ 3m2q
¯

τm
c

γp4´3m2q

2λp1´m2q
cnξ2.2

?
m2 ´ 1` εmcnξ2.2 `

?
m2 ´ 1dnξ2.2

u2
2.3 “ ¯

τp1` l2pm2 ´ 2qq
l

d

´γ

2λp1` l4m4 ` 2l2pm2 ´ 2qq
˘

τ
l

b

´γp1`l4m4`2l2pm2´2qq
2λ snξ2.3

˘l ` snξ2.3 ` ldnξ2.3

u2
2.4 “ ˘τ

c

γpm2 ´ 1q
2λ

˘
τ

b

2γpm2´1q
λ snξ2.4

˘1˘ εsnξ2.4 ` cnξ2.4

u2
2.5 “ ˘

τr
2

d

2γ
`

r2 ´ l2q

λpm2 ´ r2q
`

ετ

b

γpr2´m2l2qpm2´1q
2λ snξ2.5 ´ τ

b

γpm2l2´r2qpr2´l2q
2λ cnξ2.5

rcnξ2.5 ` ldnξ2.5

u2
2.6 “

˘τ

b

γpm2 p2´q2q
2λ cnξ2.6`ετ

b

γpp2´q2q
2λ dnξ2.6

p`qsnξ2.6

ξ2.i “ τpx`
N´1
ř

j“1
ljyj ˘ t

d

α
N´1
ř

j“1
l2
j ` β´ γτ2∆iq, pi “ 1, ¨ ¨ ¨ , 6q

Remark 2: If we let l “ 1, r “ ˘1, α “ β “ γ “ 1,
N´1
ř

j“1
l2
j “ N ´ 1, τ “

b

´
2pN´c2q

1`m2 , u2.5 is equivalent to

the solution u2.24 given in [5]. If we let p “ 1, q “ 0, α “ β “ γ “ 1,
N´1
ř

j“1
l2
j “ N ´ 1, τ “

b

´
2pN´c2q

1`m2 ,

u2.6 is equivalent to the solution u2.13 given in [5]. If we select the corresponding parameter, we
can get the solutions from u2.1 to u2.25 given in [5]. Solutions u2.ipξiqpi “ 1, 3, 6q are degenerated to
soliton-like solutions when the modulus mÑ 1, and solutions u2.ipξiqpi “ 1, 3, 5, 6q are degenerated to
trigonometric functions solutions when the modulus mÑ 0.

The structure of new doubly periodic-like solutions u2.4 and u2.6 is illustrated in Figures 3 and 4.



Math. Comput. Appl. 2016, 21, 8 9 of 12

Math. Comput. Appl. 2016, 21, 8 9 of 12 

2.13u  given in [5]. If we select the corresponding parameter, we can get the solutions from 2.1u  to 

2.25u  given in [5]. Solutions 2. ( )( 1,3,6)i iu iξ = are degenerated to soliton-like solutions when the 

modulus 1m → , and solutions 2. ( )( 1,3,5,6)i iu iξ =  are degenerated to trigonometric functions 

solutions when the modulus 0m → . 
The structure of new doubly periodic-like solutions 2.4u and 2.6u  is illustrated in Figures 3 and 

4. 

 

Figure 3. Solution 2.4u  when 1, 1, 0.3jl N mλ τ α β γ= − = = = = = = =  and t = 0. 

 

Figure 4. Solution 2.6u  when 2, 1, 1, 0.93jp q l N mτ λ α β γ= = = = = = = = = =  

and t = 0. 

State 3 3n >  
Case 1 

1
2 22 2

1 1 2

2

0 1 2 4 3

1

2

11, 0, 1, 1 , , ,
( 1)

(1 )0,
( 1)

N

j
j

l cm l r p q
n

nc c c c c
n

γτ

γτ
λ

α β
−

=

= = = = ± + = ∆ ∆ = −
−

+
= = = = =

−

+ −∑
 

Case 2 
2

2
0

1

2 3 4 1 2

2
2

2

1
2 2

2

(1 )0, 0, 1, 1 , 0, ,
( 1)

1, ,
( 1)

N

j
j

nm l p r q

l c

c c c c c
n

n
α β

γτ
λ

γτ
−

=

+
= = = = ± − = = = = = −

−

= ∆ ∆ = −
−

+ −∑
 

Case 3 

 

Figure 3. Solution u2.4 when λ “ ´1, τ “ lj “ α “ β “ γ “ N “ 1, m “ 0.3 and t = 0.

Math. Comput. Appl. 2016, 21, 8 9 of 12 

2.13u  given in [5]. If we select the corresponding parameter, we can get the solutions from 2.1u  to 

2.25u  given in [5]. Solutions 2. ( )( 1,3,6)i iu iξ = are degenerated to soliton-like solutions when the 

modulus 1m → , and solutions 2. ( )( 1,3,5,6)i iu iξ =  are degenerated to trigonometric functions 

solutions when the modulus 0m → . 
The structure of new doubly periodic-like solutions 2.4u and 2.6u  is illustrated in Figures 3 and 

4. 

 

Figure 3. Solution 2.4u  when 1, 1, 0.3jl N mλ τ α β γ= − = = = = = = =  and t = 0. 

 

Figure 4. Solution 2.6u  when 2, 1, 1, 0.93jp q l N mτ λ α β γ= = = = = = = = = =  

and t = 0. 

State 3 3n >  
Case 1 

1
2 22 2

1 1 2

2

0 1 2 4 3

1

2

11, 0, 1, 1 , , ,
( 1)

(1 )0,
( 1)

N

j
j

l cm l r p q
n

nc c c c c
n

γτ

γτ
λ

α β
−

=

= = = = ± + = ∆ ∆ = −
−

+
= = = = =

−

+ −∑
 

Case 2 
2

2
0

1

2 3 4 1 2

2
2

2

1
2 2

2

(1 )0, 0, 1, 1 , 0, ,
( 1)

1, ,
( 1)

N

j
j

nm l p r q

l c

c c c c c
n

n
α β

γτ
λ

γτ
−

=

+
= = = = ± − = = = = = −

−

= ∆ ∆ = −
−

+ −∑
 

Case 3 

 

Figure 4. Solution u2.6 when p “ 2, q “ 1, τ “ λ “ lj “ α “ β “ γ “ N “ 1, m “ 0.93 and t = 0.

State 3 n > 3
Case 1

m “ 1, l “ 0, r “ 1, p “ ˘
a

1` q2, α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆1, ∆1 “ ´

1
pn´1q2

,

c0 “ c1 “ c2 “ c4 “ 0, c3 “
γτ2p1`nq
λpn´1q2

Case 2

m “ 0, l “ 0, p “ 1, r “ ˘
a

1´ q2, c0 “ c2 “ c3 “ c4 “ 0, c1 “ ´
γτ2p1`nq
λpn´1q2

,

α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆2, ∆2 “ ´

1
pn´1q2

,

Case 3
m “ 1, q “ l “ 0, p “ 1, r “ ˘1, c0 “

γτ2p1`nq
2λpn´1q2

, d2 “ ´
γτ2p1`nq
2λpn´1q2

,

α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆3, ∆3 “ ´

1
pn´1q2

,

Case 4

m “ 0, q “ l “ 0, p “ ˘1, r “ ε, ε “ ˘1, c0 “ ´
γτ2p1`nq
2λpn´1q2

, d2 “ ´
γτ2p1`nq
2λpn´1q2

,

α
N´1
ř

j“1
l2
j ` β´ c2 “ γτ2∆4, ∆4 “

1
pn´1q2

,



Math. Comput. Appl. 2016, 21, 8 10 of 12

Therefore from (3), (11), (15), Cases 1–4 and u “ v
1

n´1 , we obtain the following soliton-like and
trigonometric function solutions for Equation (6) are expressed by

u3.1px, tq “ t

γτ2p1`nq
λpn´1q2

sechrξ1s

˘
a

1` q2 ` qtanhrξ1s ` sechrξ1s
u

1
n´1

u3.2px, tq “ t
´

γτ2p1`nq
λpn´1q2

secrξ2s

˘
a

1´ q2 ` qtanrξ2s ` secrξ2s
u

1
n´1

u3.3px, tq “ t
γτ2p1` nq
2λpn´ 1q2

´
γτ2p1` nq
2λpn´ 1q2

r
tanhrξ3s

1˘ sechrξ3s
s

2
u

1
n´1

u3.4px, tq “ t´
γτ2p1` nq
2λpn´ 1q2

´
γτ2p1` nq
2λpn´ 1q2

r
tanrξ4s

ε˘ secrξ4s
s

2
u

1
n´1

where

ξi “ τpx`
N´1
ÿ

j“1

ljyj ˘ t

g

f

f

eα
N´1
ÿ

j“1

l2
j ` β´ γτ2∆iq, pi “ 1, ¨ ¨ ¨ , 4q.

Remark 3: All the solutions obtained in this paper for Equation (6) have been checked by
Mathematica software.

The properties of the new soliton-like wave solutions u3.1 and periodic-like solutions u3.2 is shown
in Figures 5 and 6. Remark 4: To our knowledge, the explicit solutions except (u1.9, u2.5, u2.6) we
obtained here to Equation (6) are not shown in the previous literature. They are new exact solutions of
Equation (6). Our method contains all the results mentioned by the G’/G method [19], the improved
sub-ODE method [20] and auxiliary equation technique [21], etc., which were discussed in [22].
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4. Conclusions

In this paper, we have found abundant new types of exact solutions for the (N + 1)-dimensional
generalized Boussinesq equation by using the generalized Jacobi elliptic functions expansion method
and computerized symbolic computation. More importantly, our method is very simple and powerful
at finding new solutions to various kinds of nonlinear evolution equations, such as Schrödinger
equation, Boussinesq equation, etc. We believe that this method should play an important role for
finding exact solutions in mathematical physics.

Acknowledgments: The authors express their sincere thanks to the editor and referees for their careful reading of
the manuscript and constructive suggestion. The work is supported by the National Nature Science Foundation of
China (Grant No. 61070231), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20130736)
and the Scientific Research Foundation of NanJing Institute of Technology (Grant No. ZKJ201513).

Author Contributions: Baojian Hong obtained the data, drawn the figures and wrote the paper. Dianchen Lu
conceived theoretical background and analyzed the data. All authors discussed the results and commented on
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ablowitz, M.J.; Clarkson, P.A. Soliton, Nonlinear Evolution Equations and Inverse Scattering; Cambridge
University Press: New York, NY, USA, 1991.

2. Matveev, V.A.; Salle, M.A. Darboux Transformations and Solitons; Springer-Verlag: Berlin, Heidelberg,
Germany, 1991.

3. Hong, B.J. New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation.
Appl. Math. Comput. 2009, 215, 2908–2913. [CrossRef]

4. Yan, Z.Y. Similarity transformations and exact solutions for a family of higher-dimensional generalized
Boussninesq equations. Phys. Lett. A 2007, 361, 223–230.

5. Guo, Y.X.; Lai, S.Y. New exact solutions for an (N+1)-dimensional generalized Boussinesq equation.
Nonlinear Anal. Theor. Methods Appl. 2010, 72, 2863–2873. [CrossRef]

6. Boussinesq, J. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal,
en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond.
Journal de Mathématiques Pures et Appliquées, Deuxième Série 1872, 17, 55–108.

7. Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1974.
8. Dodd, R.K.; Eilbeck, J.C.; Gibbon, J.D.; Morries, H.C. Soliton and Nonlinear Waves; Academic Press: London,

UK, 1982.
9. Yan, Z.Y.; Xie, F.D.; Zhang, H.Q. Symmetry Reductions, Integrability and Solitary Wave Solutions to

High-Order Modified Boussinesq Equations with Damping Term. Commun. Theor. Phys. 2001, 36, 1–6.
10. Chen, Y.; Yan, Z.Y.; Zhang, H.Q. New explicit solitary wave solutions for (2+1)-dimensionalBoussinesq

equation and (3+1)-dimensional KP equation. Phys. Lett. A 2003, 307, 107–113. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2009.09.035
http://dx.doi.org/10.1016/j.na.2009.11.030
http://dx.doi.org/10.1016/S0375-9601(02)01668-7


Math. Comput. Appl. 2016, 21, 8 12 of 12

11. Allen, M.A.; Rowlands, G. On the transverse instabilities of solitary waves. Phys. Lett. A 1997, 235, 145–146.
[CrossRef]

12. El-Sayed, S.M.; Kaya, D. The decomposition method for solving (2 + 1)-dimensional Boussinesq equation
and (3 + 1)-dimensional KP equation. Appl. Math. Comput. 2004, 157, 523–534. [CrossRef]

13. Matsukawa, M.; Watanabe, S. N-Soliton solution of two dimensional modified boussinesq equation.
J. Phys. Soc. Jpn. 1988, 57, 2936–2940. [CrossRef]

14. Wazwaz, A.M. Construction of soliton solutions and periodic solutions of the Boussinesq equation by the
modified decomposition method. Chaos Solitons Fract. 2001, 12, 1549–1556. [CrossRef]

15. Feng, D.H.; Li, J.B.; Lue, J.L.; He, T.L. The improved Fan sub-equation method and its application to the
Boussinseq wave equation. Appl. Math. Comput. 2007, 194, 309–320. [CrossRef]

16. Wang, D.; Sun, W.W.; Kong, C.C.; Zhang, H.Q. New extended rational expansion method and exact solutions
of Boussinesq equation and Jimbo-Miwa equations. Appl. Math. Comput. 2007, 189, 878–886. [CrossRef]

17. Lai, S.Y. Different physical structures of solutions for a generalized Boussinesqwave equation.
J. Comput. Appl. Math. 2009, 231, 311–318. [CrossRef]

18. Abd-el-Malek, M.B.; Badran, N.A.; Hassan, H.S.; Abbas, H.H. New solutions for solving Boussinesq equation
via potential symmetries method. Appl. Math. Comput. 2015, 251, 225–232. [CrossRef]

19. Hubert, M.B.; Betchewe, G.; Doka, S.Y.; Crepin, K.T. Soliton wave solutions for the nonlinear transmission
line using the Kudryashov method and the (G’/G)-expansion method. Appl. Math. Comput. 2014, 239,
299–309. [CrossRef]

20. Zhang, S.; Wang, W.; Tong, J.L. The improved sub-ODE method for a generalized KdV-mKdVequation with
nonlinear terms of any order. Phys. Lett. A 2008, 372, 3808–3813. [CrossRef]

21. Zhang, Y.; Lai, S.Y.; Yin, J.; Wu, Y.H. The application of the auxiliary equation technique to ageneralized
mKdV equation with variable coefficients. J. Comput. Appl. Math. 2009, 223, 75–85. [CrossRef]

22. Hong, B.J. New exact Jacobi elliptic functions solutions for the generalized coupled Hirota-Satsuma KdV
system. Appl. Math. Comput. 2010, 217, 472–479. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0375-9601(97)00618-X
http://dx.doi.org/10.1016/j.amc.2003.08.059
http://dx.doi.org/10.1143/JPSJ.57.2936
http://dx.doi.org/10.1016/S0960-0779(00)00133-8
http://dx.doi.org/10.1016/j.amc.2007.04.026
http://dx.doi.org/10.1016/j.amc.2006.11.142
http://dx.doi.org/10.1016/j.cam.2009.02.025
http://dx.doi.org/10.1016/j.amc.2014.11.055
http://dx.doi.org/10.1016/j.amc.2014.04.065
http://dx.doi.org/10.1016/j.physleta.2008.02.048
http://dx.doi.org/10.1016/j.cam.2007.12.021
http://dx.doi.org/10.1016/j.amc.2010.05.079
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Summary of the Generalized Jacobi Elliptic Functions Expansion Method 
	Exact Solutions of the Equation 
	Conclusions 

