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1. Introduction

The problem of studying the increasing property of the sequence

pm =
m− 1

2

(∫ π/2

0
sinm−1 t d t

)2

, m ∈ N

arises from geometric probability for pairs of hyperplanes intersecting with a convex body, see [1].
The sequence pm was formulated in [2] as

qm =
π

2m

[
Γ((m + 1)/2)

Γ(m/2)

]2

, m ∈ N,

where
Γ(x) =

∫ ∞

0
tx−1e−t d t, x > 0

is the well-known gamma function. Guo and Qi [2] proved the increasing monotonicity of the
sequence pm by considering the sequence

Qm =
1
m

[
Γ((m + 1)/2)

Γ(m/2)

]2

, m ∈ N.

They presented two indirect proofs with the help of Bustoz and Ismail’s results [3] and their own
results [4].
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In 2015, Qi et al. [5] established an asymptotic formula for the function

φ(x) = 2
[

ln Γ
(

x + 1
2

)
− ln Γ

(
x
2

)]
− ln x, x > 0

and investigated some properties of the sequence Qm = eφ(m) for m ∈ N. They also posed
two problems about the monotonicity of the sequence m

√
αQm for 0 < α ≤ 2.

In this paper, we will derive an integral representation, present a double inequality, supply
an asymptotic formula, find an inequality, and verify complete monotonicity of the function
φ(x) or Q(x) = eφ(x). As consequences, the above-mentioned two problems posed in [5] are
confirmatively answered.

2. An Integral Representation and a Double Inequality for φ(x)

In this section, we derive an integral representation and a double inequality for the function φ(x)
as follows. As a consequence, the complete monotonicity of the function −φ(x)− ln 2 is concluded.

A function f is said to be completely monotonic on an interval I if f has derivatives of all orders
on I and

0 ≤ (−1)k−1 f (k−1)(x) < ∞

for x ∈ I and k ∈ N, where f (0)(x) means f (x) and N is the set of all positive integers. See ([6]
Chapter XIII), ([7] Chapter 1), and ([8] Chapter IV). The class of completely monotonic functions may
be characterized by the celebrated Bernstein-Widder Theorem ([8] p. 160, Theorem 12a) which reads
that a necessary and sufficient condition that f (x) should be completely monotonic in 0 ≤ x < ∞
is that

f (x) =
∫ ∞

0
e−xt d α(t), (1)

where α(t) is bounded and non-decreasing and the integral converges for 0 ≤ x < ∞. The integral (1)
means that f (x) is the Laplace transform of the measure α(t).

Theorem 1. For x > 0 and n ∈ N, we have the integral representation

φ(x) = − ln 2−
∫ ∞

0

tanh t
t

e−2xt d t (2)

and the double inequality

− ln 2−
2n

∑
k=1

(
22k − 1

)
B2k

k(2k− 1)
1

x2k−1 < φ(x) < − ln 2−
2n−1

∑
k=1

(
22k − 1

)
B2k

k(2k− 1)
1

x2k−1 , (3)

where B2k are the Bernoulli numbers which can be generated by

z
ez − 1

= 1− 1
2

z +
∞

∑
k=0

B2k
z2k

(2k)!
, |z| < 2π.

Consequently, the function −φ(x)− ln 2 is a Laplace transform, or say, completely monotonic on (0, ∞).

Proof. Using Legendre’s formula

2x−1Γ
(

x
2

)
Γ
(

x + 1
2

)
=
√

π Γ(x)
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and the integral representation

ln Γ(x) =
(

x− 1
2

)
ln x− x + ln

√
2π +

∫ ∞

0

(
1
2
− 1

t
+

1
et − 1

)
e−xt

t
d t, x > 0

in [9], Slavić [10] obtained the relation

Γ(x + 1)
Γ(x + 1/2)

=
√

x exp
(∫ ∞

0

tanh t
2t

e−4xt d t
)

, x > 0 (4)

and the double inequality

√
x exp

[
2n

∑
k=1

(1− 2−2k)B2k

k(2k− 1)x2k−1

]
<

Γ(x + 1)
Γ(x + 1/2)

<
√

x exp

[
2l−1

∑
k=1

(1− 2−2k)B2k

k(2k− 1)x2k−1

]
(5)

for x > 0, where l, n ∈ N and B2k are the Bernoulli numbers. Replacing x by x
2 in (4) and (5) and

taking the logarithm lead to (2) and (3). Theorem 1 is thus proved.

Remark 1. The double inequality (1.1) in [5] is a special case of the double inequality (3).

Remark 2. The integral representation (2) or the double inequality (3) means readily that

lim
x→∞

φ(x) = − ln 2. (6)

3. An Asymptotic Formula for φ(x)

We now supply an asymptotic formula of the function φ(x), which is of a form different from
the one presented in [5].

Theorem 2. The function φ(x) satisfies the asymptotic formula

φ(x) ∼ − ln 2−
∞

∑
m=0

2
(
22m+2 − 1

)
B2m+2

(2m + 2)(2m + 1)
1

x2m+1 , x → ∞. (7)

Proof. Using the expansion

T(t) =
tanh(t/2)

t
=

∞

∑
m=1

2(22m − 1)B2m

(2m)!
t2m−2, |t| < π

and Watson’s lemma (see [11,12]), we have

∫ ∞

0

tanh(t/2)
t

e−xt d t ∼
∞

∑
r=0

T(r)(0)
xr+1 , x → ∞,

where

T(2r+1)(0) = 0 and T(2r)(0) =
2
(
22r+2 − 1

)
B2r+2

(2r + 2)(2r + 1)
, r ≥ 0.

Hence ∫ ∞

0

tanh(t/2)
t

e−xt d t ∼
∞

∑
r=0

2
(
22r+2 − 1

)
B2r+2

(2r + 2)(2r + 1)x2r+1 , x → ∞.

The Formula (7) is thus proved.
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4. Monotonicity and Inequalities of φ(x)

In this section, we present an inequality for the function φ(x), find a necessary and sufficient
condition on α such that the function φ(x)+ln α

xr is increasing with respect to x ∈ (0, ∞), and establish
three properties of the function Q(x). As a consequence of a property of Q(x), the above-mentioned
two problems are confirmatively answered.

Theorem 3. The function φ(x) satisfies the following properties:

1. if p ≤ q and x ≥ q, then
φ(x + p) + φ(x− q)

2
<

p
q

φ(x); (8)

2. for x > 0 and r > 0, the function φ(x)+ln α
xr is strictly increasing if and only if 0 < α ≤ 2.

Proof. Using the integral representation (2), we obtain

φ(x + p) + φ(x− q)− 2p
q

φ(x) = −
∫ ∞

0

tanh t
t

e−2xt
(

e−2pt + e2qt − 2p
q

)
d t−

(
1− p

q

)
ln 4

for x ≥ q. Because

e−2pt + e2qt − 2p
q

=
∞

∑
n=1

(2qt)n

n!

[
1 +

(
− p

q

)n]
+ 2
(

1− p
q

)
> 0

for p ≤ q, we procure

φ(x + p) + φ(x− q)− 2p
q

φ(x) < 0

for p ≤ q and x ≥ q.
It is clear that

d
d x

(
φ(x) + ln α

xr

)
=

1
xr

∫ ∞

0
Mt,r,α(x)e−xt d t,

where

Mt,r,α(x) = r ln
(

2
α

)
+

(
r
xt

+ 1
)

tanh
t
2

, t, r, α > 0,

and Mt,r,α(x) is obviously a decreasing function and

lim
x→∞

Mt,r,α(x) = r ln
(

2
α

)
+ tanh

t
2

.

This means that

Mt,r,α(x) ≥ 0 if and only if
2
α
≥ exp

[
− tanh(t/2)

r

]
.

Moreover, the function fr(t) = exp
[
− tanh(t/2)

r
]

is decreasing for r > 0. As a result, it follows that

Mt,r,α(x) ≥ 0 if and only if
2
α
≥ lim

t→0
exp

[
− tanh(t/2)

r

]
= 1.

The proof of Theorem 3 is complete.

Theorem 4. The function

Q(x) =
1
x

[
Γ((x + 1)/2

)
Γ(x/2)

]2

, x > 0

has the following properties:
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1. the limit limx→∞ Q(x) = 1
2 is valid;

2. for fixed r > 0, the function [αQ(x)]1/xr
is strictly increasing with respect to x if and only if 0 < α ≤ 2;

3. the function Q(x) satisfies the Pául type inequality

Q(x + p)Q(x− q) < [Q(x)]2p/q, p ≤ q, x ≥ q; (9)

in particular, when p = q = 1 and x ∈ N in (9), the strictly logarithmic concavity of the sequence Qm

follows, that is,
Qm+1Qm−1 < Q2

m, m ∈ N.

Proof. Using the relation
Q(x) = eφ(x), x > 0

and the limit (6), we obtain limx→∞ Q(x) = 1
2 . From the second property in Theorem 3 and

the relation
d

d x
[αQ(x)]1/xr

= [αQ(x)]1/xr d
d x

[
ln α + φ(x)

xr

]
,

we obtain that the function [αQ(x)]1/xr
is strictly increasing with respect to x > 0 for fixed r > 0 if

and only if 0 < α ≤ 2.
By using the inequality (8), we have

ln Q(x + p) + ln Q(x− q)− 2p
q

ln Q(x) < 0, p ≤ q, x ≥ q

which gives us the inequality (9). The proof of Theorem 4 is complete.

Remark 3. For x ∈ N, the third conclusion in Theorem 4 was proved in [5] with a different proof.

Remark 4. Using the second conclusion in Theorem 4, for x ∈ N and r = 1, we can see that the
sequence m

√
αQm is increasing with respect to m ∈ N if and only if 0 < α ≤ 2. This gives a solution to

two problems posed in [5].

Remark 5. In the papers [13,14], the authors investigated by probabilistic methods and approaches
the monotonicity of incomplete gamma functions and their ratios and applied their results to
probability and actuarial area.

5. Conclusions

The main results, including an integral representation, a double inequality, an asymptotic
formula, an inequality, and complete monotonicity of a function involving the gamma function and
originating from geometric probability for pairs of hyperplanes intersecting with a convex body, of
this paper are deeper and more extensive researches of the papers [2,5] and references cited therein.
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