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Abstract: Clustering analysis based on a mixture of multivariate normal distributions is commonly
used in the clustering of multidimensional data sets. Model selection is one of the most important
problems in mixture cluster analysis based on the mixture of multivariate normal distributions.
Model selection involves the determination of the number of components (clusters) and the selection
of an appropriate covariance structure in the mixture cluster analysis. In this study, the efficiency of
information criteria that are commonly used in model selection is examined. The effectiveness of
information criteria has been determined according to the success in the selection of the number of
components and in the selection of an appropriate covariance matrix.
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1. Introduction

Models for mixtures of distributions—first discussed by Newcomb [1] and Pearson [2]—are
currently very popular in clustering. Wolfe [3,4] and Day [5] proposed a multivariate normal mixture
model in cluster analysis. The most important problems in clustering are choosing the number
of components and identifying the structure of the covariance matrix, based on modeling with
multivariate normal distributions for each component that forms the data set. Oliveira-Brochado and
Martins [6] examined information criteria used in the determination of the number of components in
the mixture model. Despite the many criteria used in the determination of the number of components,
these criteria cannot always give accurate results. In particular, information criteria on real data
sets with a known number of clusters give different results. In this study, commonly used methods
for the determination of the number of clusters—Akaike Information Criterion (AIC), corrected
Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC), Classification Likelihood
Criterion (CLC), Approximate Weight of Evidence Criterion (AWE), Normalized Entropy Criterion
(NEC), Kullback Information Criterion (KIC), corrected Kullback Information Criterion (KICc), and an
approximation of Kullback Information Criterion (AKICc) are compared according to the effectiveness
of the information criteria, determined by the number of components, and determined by the success
in the selection of appropriate covariance matrices and classification accuracy (CA).

2. Clustering Based on Multivariate Finite Mixture Distributions

Mixture cluster analysis based on the mixture of multivariate distributions assumes that the data to
be clustered are from several subgroups or clusters, with distinct multivariate distributions. In mixture
cluster analysis, each cluster is mathematically represented by a parametric distribution, such as
multivariate normal distribution. The entire data set is modeled by a mixture of these distributions.
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Assume that there are n observations with p-dimensions, such that an observed random sample is
expressed as y “ pyT

1 , . . . , yT
n q

T . The probability density function of finite mixture distribution models
is given by [7],

f pyj; Ψq “

g
ÿ

i“1

πi fipyj; θiq (1)

where fipyj; θiq are probability density functions of the components and πi are the mixing proportions

or weights. Here, 0 ď πi ď 1 and
řg

i“1 πi “ 1pi “ 1, . . . , gq. The parameter vector Ψ “ pπ, θq contains
all of the parameters of the mixture models. Here θ “ pθ1, θ2, . . . , θgq denotes unknown parameters of
the probability density function of the ith components (subgroup or cluster) in the mixture models.
In Equation (1), the number of components or clusters is represented by g.

The mixture likelihood approach can be used for estimation of the parameters in the mixture
models. This approach assumes that the probability function can be the sum of weighted component
densities. If the mixture likelihood approach is used for clustering, the clustering problem becomes
a problem of estimating the parameters of a mixture distribution model. The maximum-likelihood
function is given as follows [8],

LMpθ1, θ2, . . . , θg; π1, . . . , πg
ˇ

ˇyq “
źn

j“1

ÿg

i“1
πi fipyj

ˇ

ˇ

ˇ
θi q (2)

The most widely used approach for parameter estimation is the Expectation-Maximization (EM)
algorithm [9].

In the EM framework, the data y “ pyT
1 , yT

2 , . . . , yT
n q

T are considered incomplete because their
associated component label vectors z1, z2, . . . , zn are not observed. The component label variables zij
are consequently introduced, where zij is defined to be one or zero, according to whether yj did or did
not arise from the ith component of the mixture model (i “ 1, 2, . . . , g; j “ 1, 2, . . . , n). The completed
data vector is represented as follows

yc “ py
T , zTq

T
(3)

where
z “ pzT

1 , zT
2 , . . . , zT

n q
T

(4)

is the unobservable vector of component-indicator variables. The log-likelihood function for the
completed data is shown as

logLcpΨq “
ÿg

i“1

ÿn

j“1
zij

”

logπi ` log fipyj; θiq
ı

(5)

3. EM Algorithm

The EM algorithm is applied to this problem by treating the zij as missing data. In this part, the E
and M steps of the EM algorithm are described for the mixture distribution models [7].

E step: Log-likelihood function of the complete data, since zij is linear in terms of its label values in
the E step; given y observed value, the instant conditional expected values of the categorical variables
of Zij are calculated. Here, Zij is a random variable corresponding to zij. For parameter vector Ψ,
the initial value Ψp0q is assigned. In the first loop of the EM algorithm, while y is given for the E step,
the conditional expected value of logLcpΨq is calculated with the initial value of Ψp0q.

QpΨ; Ψp0qq “ EΨp0q t logLcpΨq|yu (6)

In the (k + 1)th loop of the E step of the EM algorithm, the expression QpΨ; Ψpkqq must be
represented. Here, Ψpkq is a value of vector Ψ which is obtained from the kth step of EM. Since the
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Eth step of the (k + 1)th loop of the EM algorithm, where i “ 1, 2, . . . , g and j “ 1, 2, . . . , n the formula
below is calculated.

EΨpkqpZij|yq “ prΨpkq
 

Zij “ 1|y
(

“ τipyj; Ψpkqq “
π
pkq
i fipyj; θi

pkqq

řg
m“1 π

pkq
m fmpyj; θm

pkqq
(7)

Here, the expression of τipyj; Ψpkqq is the membership probability of pattern yj in segment i
(posterior probability). While y is given using the expression in Equation (7), the conditional probability
in Equation (5) can be calculated as follows

QpΨ; Ψpkqq “
ÿg

i“1

ÿn

j“1
τipyj; Ψpkqq

!

logπi ` log fipyj; θiq
)

(8)

M step: In the (k + 1)th loop of the EM algorithm, the estimated value Ψpk`1q of Ψ, defined in
parameter space Ω, that makes the QpΨ; Ψpkqq function maximum is calculated. In the finite mixture
probability distribution model, the current estimate π

pk`1q
i of πi is done independently from the

updated vector of the unknown parameters in component density ξ.
If zij’s are observed, the maximum likelihood estimation of πi for completed data can be found as

π̂i “
ÿn

j“1

zij

n
, pi “ 1, 2, . . . , gq (9)

If the logarithm takes in completed data in the Eth step of the EM algorithm, τipyj; Ψpkqq values

are used instead of the zij expression. Similarly, when the current estimate π
pk`1q
i of πi is calculated,

τipyj; Ψpkqq is used instead of the zij expression in Equation (9), as shown below:

π
pk`1q
i “

ÿn

j“1

τipyj; Ψpkqq

n
, pi “ 1, 2, . . . , gq (10)

In the (k + 1)th iteration of the Mth step of the EM algorithm, the current value ξpk`1q of ξ is
defined as

ÿg

i“1

ÿn

j“1

τipyj; ΨpkqqBlog fipyj; θiq

Bξ
“ 0 (11)

The E and M steps are repeated until the convergence criterion in the EM algorithm is satisfied.
As a convenient stopping rule for convergence, if the difference of LpΨpk`1qq ´ LpΨpkqq is quite small
or stable, the algorithm is terminated.

4. The Mixture of Multivariate Normal Distribution

The mixture density function of the multivariate normal distribution is given by [7];

f pyj; Ψq “

g
ÿ

i“1

πiΦipyj; µi, Σiq (12)

where Φipyj; µi, Σiq is a multivariate normal distribution function, such that

Φipyj; µi, Σiq “ p2πq´
p
2 |Σi|

´ 1
2 et´

1
2 pxj´µiq

TΣ´1
k pxj´µiqu (13)

Here, the mean vector is µi, and the covariance matrix is Σi, i “ 1, 2, . . . , g, and j “ 1, 2, . . . , n.

In this case, all unknown parameters of the model are shown as Ψ “ pπ1, . . . , πg´1, ξTq
T

. Here, ξ
occurs from the mean compound vectors µ “ pµ1, µ2, . . . , µgq and the compound covariance matrix
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Σ “ pΣ1, Σ2, . . . , Σgq of the parameters of the compound probability density function in the mixture
distribution model. Posterior probability is given as

τipyj; Ψq “
πiΦpyj; µi, Σiq

řg
h“1 πiΦpyj; µh, Σhq

, i “ 1, 2, . . . , g and j “ 1, 2, . . . , n (14)

Maximum likelihood estimators of updated mixture proportions πi, and mean vector µi of the
(k + 1)th iteration of the Mth step is calculated, respectively, by

π
pk`1q
i “

n
ÿ

j“1

τipyj; Ψpkqq

n
(15)

µ
pk`1q
i “

řn
j“1 τipyj; Ψpkqqyj
řn

j“1 τipyj; Ψpkqq
(16)

Current estimates of the covariance matrix (Σi) of the component probability density are calculated
via the following formula

Σ
pk`1q
i “

řn
j“1 τipyj; Ψpkqqpyj ´ µ

pk`1q
i qpyj ´ µ

pk`1q
i q

T

řn
j“1 τipyj; Ψpkqq

, pi “ 1, 2, . . . , gq (17)

5. Information Criteria for Model Selection in Model Based Clustering

Model selection is one of the most important problems in mixture cluster analysis based on
the mixture of multivariate normal distributions. Model selection includes the determination of
the number of components (cluster) and the selection of an appropriate covariance structure in the
mixture cluster analysis. Information criteria are often used in the model selection in mixture cluster
analysis. In the literature, information criteria are usually computed as twice a negative value of the
bias correction

´ 2logLpΨ̂q ` 2C (18)

Here, the first term represents the lack of harmonization, and the second term C is a measure of
complexity. C is usually called the penalty term. The best model that makes the term ´2logLpΨ̂q ` 2C
minimum is selected. Some commonly used information criteria in the literature are given
below [6,7,10]:

‚ If the number of parameters in the model is shown by d, this is called as Akaike’s Information
Criterion (AIC), defined as

AIC “ ´2logLpΨ̂q ` 2d (19)

A model that makes the AIC score minimum can be selected as the best model [11].
‚ When d is large relative to the sample size n (which includes when n is small, for any d) there is a

small-sample version called AICc. AICc is defined as

AICc “ ´2logLpΨ̂q ` 2dn{pn´ d´ 1q (20)

The model that yields the minimum AICc score can be selected as the best model [12].
‚ If we take the number of parameters in the mixture distribution models d, and the number of

observations n, the Bayesian Information Criterion (BIC) can be calculated as

BIC “ ´2logLpΨ̂q ` dlogpnq (21)

The model that gives the minimum BIC score can be selected as the best model [13].
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‚ The Hathaway [14] mixture logarithmic likelihood is formulated as

logLpΨq “ logLcpΨq ´ ENpτq (22)

Here, Equation (23) is defined as

ENpτq “ ´
ÿg

i“1

ÿn

j“1
τijlogτij (23)

where´ENpτq is the entropy of the fuzzy classification matrix C “
 

pτijq
(

.The CLC (Classification
Likelihood Criterion) is defined as

CLC “ ´2logLpΨ̂q ` 2ENpτ̂q (24)

A model that gives the minimum CLC score can be selected as the best model [15].
‚ The Approximate Weight of Evidence (AWE) is expressed as

AWE “ ´2logLc ` 2dp3{2` lognq (25)

A model that gives the minimum AWE score can be selected as the best model [16].
‚ The Normalized Entropy Criterion (NEC) is shown as below [17]

NECg “
ENpτ̂q

logLpΨ̂q ´ logLpΨ̂˚q
(26)

Here, Ψ̂
˚ is a maximum likelihood estimator for Ψ when (g = 1). The minimum NEC for the

number of components g is selected as the number of clusters. When g “ 1, entropy takes the
value of zero. For this case, Biernacki et al. [18] suggested the selection of the minimum value of
NEC where the number of components g ą 1, including NEC < 1.

‚ Cavanaugh [19] has proposed an asymptotic unbiased estimator of the Kullback information
criterion (KIC). KIC is defined as

KIC “ ´2logLpΨ̂q ` 3pd` 1q (27)

‚ Bias correction of the Kullback information criterion (KICc) and an approximation of the Kullback
information criterion (AKICc) are shown as below [20,21]

KICc “ ´2logLpΨ̂q `
2pd` 1qn
n´ d´ 2

´ nψp
n´ d

2
q ` nlogp

n
2
q (28)

AKICc “ ´2logLpΨ̂q `
pd` 1qp3n´ d´ 2q

n´ d´ 2
`

d
n´ d

(29)

Here, d is the number of parameters in the model, n is the sample size, and ψ(.) is the digamma or
the psi function.

6. Application and Results

In this section, the performances of the information criteria used for the determination of the
number of clusters are compared. Moreover, the efficiency of the different types of covariance matrices
are investigated in the model based on clustering. The comparison of the information criteria is
performed using two different settings. First, commonly used real data sets are used. Second, synthetic
data sets are generated by using the properties of these real data sets, and they are used for comparison.

The properties of real data sets are given in Table 1. Moreover, the computed information criteria
for each different data set are provided in Tables 2–8.
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Table 1. Descriptions of real data sets.

Data Sets * Sample Size (n) Number of Variables (p) Number of Clusters (g)

Liver Disorders 345 6 2
Iris 150 4 3

Wine 178 13 3
Ruspini 75 2 4

Vehicle Silhouettes 846 18 4
Landsat Satellite 6435 36 6

Image Segmentation 2310 19 7

Note: * Data sets are taken from the website of UCI Machine Learning Repository [22].

Table 2. Information criteria results in the determination of the number of clusters for the Liver
Disorders data set.

Liver Disorders Data Set

g 2 * 3 4 5

AIC 14,752.43 14,693.75 14,605.72 * 14,643.68
AICc 14,773.75 14,747.17 14,712.44 * 14,833.53

AKICc 14,832.79 14,834.99 14,829.30 * 14,979.88
AWE 15,503.68 * 15,865.24 16,176.27 16,582.91
BIC 14,963.83 * 15,012.76 15,032.36 15,177.93
CLC 14,695.89 14,646.21 14,546.00 14,541.41 *
KIC 14,810.43 14,779.75 14,719.72 * 14,785.68
KICc 14,837.70 * 14,846.93 14,852.24 15,018.79
NEC 0.06956 * 0.13412 0.15797 0.16811

Note: * True value of g or value of g given by criterion. AIC: Akaike information criterion; AICc: corrected Akaike
information criterion; AKICc: approximation of Kullback information criterion; AWE: approximate weight of
evidence criterion; BIC: Bayesian information criterion; CLC: classification likelihood criterion; KIC: Kullback
information criterion; KICc: corrected Kullback information criterion; NEC: normalized entropy criterion.

Table 3. Information criteria results in the determination of the number of clusters for the Iris data set.

Iris Data Set

g 2 3 * 4 5

AIC 487.11 449.15 448.86 * 474.12
AICc 501.61 486.86 * 527.53 622.12

AKICc 534.98 * 536.37 593.75 706.14
AWE 806.74 * 944.15 1126.55 1378.81
BIC 574.42 * 581.61 626.49 696.90
CLC 429.12 371.21 358.29 * 415.24
KIC 519.11 496.15 * 510.86 551.12
KICc 538.21 * 544.45 609.73 734.14
NEC 0.00003 * 0.02524 0.06393 0.20542

Note: * True value of g or value of g given by criterion.

Table 4. Information criteria results in the determination of the number of clusters for the Wine data set.

Wine Data Set

g 2 3 * 4 5

AIC 6446.14 6255.42 * 6258.49 6382.48
AICc 3703.01 * 4811.48 4804.11 4796.89

AKICc 3965.94 * 5127.50 5223.44 5320.90
AWE 8821.75 * 9827.04 11,021.22 12,345.63
BIC 7111.13 * 7254.50 7591.66 8049.74
CLC 6028.77 5630.88 5421.88 5343.12 *
KIC 6658.14 6572.42* 6680.49 6909.48
KICc - - - -
NEC 0.00099 * 0.00334 0.00112 0.00650

Note: * True value of g or value of g given by criterion. KICc could not be calculated because d is greater than n.
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Table 5. Information criteria results in the determination of the number of clusters for the Ruspini
data set.

Ruspini Data Set

g 2 3 4 * 5

AIC 1409.23 1369.92 1329.89 1322.48 *
AICc 1413.42 1380.66 1351.54 * 1361.15

AKICc 1428.43 1402.43 1380.33 * 1397.39
AWE 1515.21 * 1534.05 1552.26 1602.17
BIC 1434.72 1409.32 1383.19 * 1389.69
CLC 1387.23 1336.26 1284.66 1264.76 *
KIC 1423.23 1389.92 1355.89 1354.48 *
KICc 1429.34 1404.71 1384.81 * 1405.06
NEC 0.00001 * 0.00184 0.00328 0.00108

Note: * True value of g or value of g given by criterion.

Table 6. Information criteria results in the determination of the number of clusters for the Vehicle
Silhouettes data set.

Vehicle Silhouettes Data Set

g 2 3 4 * 5

AIC 80,747.84 78,171.46 76,987.29 * 77,496.43
AICc 81,365.96 80,521.67 90,402.17 60,158.93 *

AKICc 81,753.37 81,112.56 91,366.48 61,230.64 *
AWE 86,249.13 * 86,431.40 88,003.06 91,282.76
BIC 82,544.50 80,868.81 80,585.34 * 81,995.18
CLC 80,002.82 77,053.69 75,493.95 * 75,642.25
KIC 81,129.84 78,743.46 77,749.29 * 78,448.43
KICc 81,877.05 81,488.13 * 92,531.84 -
NEC 0.00204 * 0.00217 0.00227 0.00408

Note: * True value of g or value of g given by criterion. KICc (g “ 5) could not be calculated because d is greater than n.

Table 7. Information criteria results in the determination of the number of clusters for the Landsat
Satellite data set.

Landsat Satellite Data Set

g 5 6 * 7 8

AIC 1,255,771.79 1,251,929.66 * 1,253,394.33 1,252,217.99
AICc 1,264,231.87 * 1,267,975.95 1,285,377.58 1,330,205.05

AKICc 1,267,757.79 * 1,272,212.70 1,290,337.97 1,335,962.02
AWE 1,321,382.18 1,330,827.27 1,345,663.27 1,357,765.53
BIC 1,279,559.84 * 1,280,476.68 1,286,700.30 1,290,282.93
CLC 1,249,208.09 1,244,214.25 1,244,611.32 1,242,274.65 *
KIC 1,259,288.79 1,256,149.66 * 1,258,317.33 1,257,843.99
KICc 1,269,326.31 * 1,274,849.92 1,294,725.15 1,343,659.52
NEC 0.00447 0.00659 0.00969 0.01167

Note: * True value of g or value of g given by criterion. AWE and NEC have found g “ 2.

The appropriate number of clusters is determined as the value which gives the minimum
information criteria. According to Table 2, the number of clusters of the Liver Disorders data set
is correctly determined via AWE, BIC, KICc, and NEC. In Table 3, AICc and KIC could accurately
determine the number of clusters of the Iris data set. The number of clusters of the Wine data set is
correctly determined via AIC and KIC in Table 4.
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According to Table 5, the number of clusters of the Ruspini [23] data set is correctly determined
via AICc, AKICc, BIC, and KICc. In Table 6, the number of clusters of the Vehicle Silhouettes data set is
correctly determined by AIC, BIC, CLC, and KIC.

Table 8. Information criteria results in the determination of the number of clusters for the Image
Segmentation data set.

Image Segmentation Data Set

g 5 6 7 * 8

AIC 67,666.74 64,307.94 59,502.75 * 61,395.91
AICc 68,423.32 65,517.43 61,352.58 * 64,152.73

AKICc 69,193.28 66,441.60 62,431.40 * 65,386.90
AWE 80,315.60 79,480.18 77,188.94 * 81,663.54
BIC 72,055.92 69,576.11 65,649.90 * 68,422.05
CLC 66,189.23 62,524.84 57,404.63 * 59,050.26
KIC 68,433.74 65,227.94 60,575.75 * 62,621.91
KICc 69,356.93 66,692.97 62,798.53 * 65,905.24
NEC 0.00066 0.00063 0.00049 * 0.00119

Note: * True value of g or value of g given by criterion.

According to Table 7, the number of clusters for the Landsat Satellite data set is correctly
determined via AIC and KIC. In Table 8, the number of clusters for the Image Segmentation data set is
correctly determined by all information criteria.

In Tables 2–8, the performance of each information criterion varies in each data set. In order to
make general conclusions, a simulation study is provided. By using the properties of each real data set,
synthetic data sets are generated. In this simulation, we generated 1000 data sets according to each
real data set. The synthetic data sets are generated from Liver, Iris, Wine, Ruspini, Vehicle, Landsat,
and Image data sets. The cluster number determination accuracy is computed for each information
criterion. The results are given in Table 9 and Figure 1. According to simulation results, better results
are obtained by using KIC.

The efficiency of different types of covariance structures in mixture clustering based on a mixture
of multivariate normal distributions is investigated.

According to the number of clusters regarding each data set, classification accuracy and
information criteria are computed for each covariance structure. The results are given in Table 10.
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Table 9. The accuracy of determining the cluster numbers from the information criteria according to
synthetic data sets.

Synthetic Data Sets AIC AICc AKICc AWE BIC CLC KIC KICc NEC

Data1 (Generated from Liver) 46.8 97.9 98.9 98.6 99.1 52.5 95.8 98.9 91.3
Data2 (Generated from Iris) 42 66.9 50.9 1.4 42.4 4.7 68.3 44.1 2.3

Data3 (Generated from Wine) 48.9 0 0 0 39.1 0.8 64 0 34.1
Data4 (Generated from Ruspini) 35.4 56.8 58.1 13.4 54 21.7 45.4 58.4 19.3
Data5 (Generated from Vehicle) 58 0 0 3.2 59.6 12 59 0 18.3
Data6 (Generated from Landsat) 37.6 0.1 0 0 0.3 2.4 38 0 0.1
Data7 (Generated from Image) 36.6 37.3 37.5 32.1 37.2 26.7 37 37.3 9.5

The average of success 43.6 37 35.1 21.2 47.4 17.3 58.2 34.1 25

Note: The best performance is indicated in bold.

Table 10. Classification accuracy (CA) and information criteria results for real data sets, according to
different types of covariance structures.

Data Sets Covariance Types CA AIC AICc AKICc BIC KIC KICc

Liver
Disorders

I 43.48 15,371.1 15,378.8 15,416.4 15,501.8 15,408.1 15,418.2
II 43.77 15,605.7 15,608.1 15,630.4 15,678.7 15,627.7 15,630.9
III 49.86 14,752.4 14,773.7 14,832.8 14,963.8 14,810.4 14,837.7
IV 49.28 14,905.2 14,909.3 14,937.7 15,001.3 14,933.2 14,938.6

Iris

I 43.33 799.5 809.1 837.1 871.7 826.5 839.3
II 83.33 1326.9 1332.1 1353.9 1381.1 1347.9 1355.1
III 96.67 449.1 486.9 536.4 581.6 496.1 544.5
IV 90.00 666.5 677.9 708.1 744.8 695.5 710.7

Wine

I 41.01 6851.2 7631.5 7799.2 7271.2 6986.2 7908.1
II 97.19 7528.8 7662.4 7751.0 7783.3 7611.8 7777.2
III 85.39 6255.4 4811.5 5127.5 7254.5 6572.4 4864.0
IV 93.26 6757.1 6890.7 6979.3 7011.7 6840.1 7005.6

Ruspini

I 26.67 1546.8 1553.8 1572.2 1579.3 1563.8 1573.7
II 69.33 1545.0 1551.0 1568.2 1575.1 1561.0 1569.5
III 100.00 1329.9 1351.5 1380.3 1383.2 1355.9 1384.8
IV 98.67 1324.2 1338.0 1362.1 1368.2 1346.2 1365.0

Vehicle
Silhouettes

I 29.79 85,618.6 85,821.4 86,072.8 86,784.7 85,867.6 86,117.5
II 35.70 111,399.9 111,423.2 111,519.8 111,840.8 111,495.9 111,525.4
III 46.45 76,987.3 90,402.2 91,366.5 80,585.3 77,749.3 92,531.8
IV 36.64 102,899.9 102,962.3 103,113.4 103,596.8 103,049.9 103,127.9

Landsat
Satellite

I 62.46 1,349,241.4 1,349,525.3 1,350,416.2 1,355,245.9 1,350,131.4 1,350,483.6
II 67.69 1,828,135.0 1,828,156.5 1,828,416.7 1,829,874.8 1,828,395.0 1,828,422.0
III 56.67 1,251,929.7 1,267,975.9 1,272,212.7 1,280,476.7 1,256,149.7 1,274,849.9
IV 65.87 1,618,062.2 1,618,126.1 1,618,566.4 1,621,020.5 1,618,502.2 1,618,582.0

Image
Segmentation

I 28.70 38,937.2 39,000.2 39,257.9 40,396.4 39,194.2 39,273.0
II 66.54 286,194.3 286,210.9 286,348.3 286,964.1 286,331.3 286,352.3
III 65.93 59,502.7 61,352.6 62,431.4 65,649.9 60,575.7 62,798.5
IV 63.68 198,790.6 198,841.7 199,075.3 200,111.9 199,023.6 199,087.5

Type I pΣq: Covariance matrix of the data set used for clustering.
Type II pσ2

i Iq: Variance matrix of the data set used for clustering.
Type III pΣkq: Covariance matrix of each subgroup in the data set.
Type IV pσ2

ikIq: Variance matrix of each subgroup in the data set.

Note: The best performances are indicated in bold.

According to Table 10, the Type III pΣkq covariance matrix of each subgroup has generally
performed better in the results, both in terms of the correct classification and the minimum information
criteria value. The classification accuracy in mixture clustering based on a mixture of multivariate
normal distributions according to covariance types is given in Figure 2.
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In this study, we compared the effectiveness of information criteria in clustering analysis based
on the mixture of multivariate normal distributions. As a result of this simulation study, KIC gave
better results than other information criteria in the determination of the number of clusters in mixture
clustering based on a mixture of multivariate normal distributions. Also, the efficiency of different
types of covariance matrices are investigated in the model based clustering. The better results are
obtained by the using covariance matrix of each subgroup (Type III) in mixture clustering based on a
mixture of multivariate normal distributions.
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