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Abstract:



Traditional first order JWKB method ([image: there is no content]) is a conventional semiclassical approximation method mainly used in quantum mechanical systems for accurate solutions. [image: there is no content] general solution of the Time Independent Schrodinger’s Equation (TISE) involves application of the conventional asymptotic matching rules to give the accurate wavefunction in the Classically Inaccessible Region (CIR) of the related quantum mechanical system. In this work, Bessel Differential Equation of the first order ([image: there is no content]) is chosen as a mathematical model and its [image: there is no content] solution is obtained by first transforming into the normal form via the change of independent variable. The [image: there is no content] general solution for appropriately chosen initial values in both normal and standard form representations is analyzed via the generalized [image: there is no content] asymptotic matching rules regarding the [image: there is no content] matrix elements given in the literature. Instead of applying the common [image: there is no content] asymptotic matching rules relying on the physical nature of the quantum mechanical system, i.e., a physically acceptable (normalizable) wavefunction, a pure semiclassical analysis is studied via the [image: there is no content] model mathematically. Finally, an application to a specific case of the exponential potential decorated quantum mechanical bound state problem is presented.
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1. Introduction


The [image: there is no content] method (we simply refer to the “n-th order JWKB (or WKB)” by a simple abbreviation: [image: there is no content]) is conventionally known to be a strong and effective semiclassical approximation method enabling accurate analytical solutions in quantum mechanical systems, i.e., [1,2,3,4,5,6,7,8,9,10]. Quantum mechanical systems described by the Time Independent Schrodinger’s Equation (TISE), which is in the form of a linear second order homogenous (normal form) differential equation:


[image: there is no content]



(1a)






[image: there is no content]



(1b)




where these terms have their usual meanings (m represents mass; ℏ represents Planck’s constant divided by [image: there is no content]; E represents total energy; and [image: there is no content] represents the potential function), have exact and approximate [image: there is no content] solutions in the following forms:


[image: there is no content]



(2a)






[image: there is no content]



(2b)




where [image: there is no content] and [image: there is no content] are the arbitrary constants and, [image: there is no content] and [image: there is no content] are the exact and [image: there is no content] complementary solutions, respectively. These constant coefficients in the exact and [image: there is no content] general solutions can be found from given initial values. The [image: there is no content] solution has a typical property that both complementary [image: there is no content] solutions (and hence, the [image: there is no content] general solution) diverge at a small region around the classical turning point where [image: there is no content], i.e., [3,4,5]. Moreover, the [image: there is no content] general solution in (2b) can be accurate for the Classically Accessible Region (CAR) under some circumstances, but always needs asymptotic matching in the Classically Inaccessible Region (CIR) for accurate [image: there is no content] solutions [3,4]. CAR is the classically accessible region where the particle can classically exist since its potential energy is smaller than its total energy: [image: there is no content]; and CIR is the classically inaccessible region where it cannot classically exist since its potential energy is greater than its total energy: [image: there is no content]. Conventional [image: there is no content] asymptotic matching rules require either of the complementary solutions in (2b) to be canceled in the CIR as follows [3,4]:


y˜m.(x)=y˜(x)forCAR:f(x)>0eitherk˜1y˜1(x)ork˜2y˜2(x)forCIR:f(x)<0,



(3)




and the resultant asymptotically-matched solution should assure:


y˜m.(x)→limx→−∞y˜(x)=0ifCIRliesontheLHSlimx→∞y˜(x)=0ifCIRliesontheRHS,



(4)




where [image: there is no content] represents the asymptotically-matched [image: there is no content] general solution. In other words, the asymptotically diverging term in the CIR should be canceled in the general solution so that (4) can hold. The formal [image: there is no content] approximation formula involving both complementary functions in (2b) is actually in the form of an infinite series:


[image: there is no content]



(5)




where [image: there is no content] for the TISE and [image: there is no content] represents the expansion terms given in [3,4], and the two-valuedness of these expansion terms gives two complementary [image: there is no content] functions. However, only the first two terms (with indices [image: there is no content] and 1) are used in the [image: there is no content] approximation. Moreover, [image: there is no content] gives accurate-enough solutions for slowly-changing potentials in the TISE, and a criterion for this is given as follows [3,4,5]:


[image: there is no content]



(6)







As the potential in the TISE in (1b) gets sharper, (6) fails, and some of the higher order terms can no longer be neglected; and the higher order JWKB approximation (= [image: there is no content]) is required for accurate-enough solutions [1,2,3,4,5,6,7]. Therefore, for a general potential [image: there is no content] involving both smooth and sharp sub-domains in the corresponding normal form (the TISE), say [image: there is no content] (for the smooth) and [image: there is no content] (for the sharp), respectively, the [image: there is no content] approximation always gives accurate general solution in [image: there is no content] and inaccurate (but asymptotically matchable) solutions in [image: there is no content]; however, [image: there is no content] is required for [image: there is no content] [3,4,5]. Such a potential with obedient (smooth potential = [image: there is no content]) and non-obedient (sharp potential = [image: there is no content]) subdomains in the corresponding TISE is studied semiclassically by the first order Bessel Differential Equation, [image: there is no content], as a chosen model differential equation here. Our aim here is to show these physical results by a successful semiclassical analysis mathematically only (not physically).



Since the [image: there is no content] method is generally applied to the quantum mechanical systems, the main principles of the existing asymptotic matching rules rely on the nature of the physical system under study, i.e., a physically-acceptable bound state wave function (solution of the TISE) in the CIR should not asymptotically diverge to infinity (which means Equation (4)) so that it can be normalized in [image: there is no content] [3,4,5]. This result is the physical consequence of the asymptotic matching rule in the [image: there is no content] for the [image: there is no content]. Its semiclassical explanation for the Simple Linear Potential (SLP), as a model potential where the [image: there is no content] applicability criterion is satisfied in the entire domain, was studied in terms of the [image: there is no content] expansion terms in [4]. In this work, similarly, a pure semiclassical analysis of the asymptotic matching rules is studied for the intentionally-chosen [image: there is no content] where the [image: there is no content] applicability criterion is now partially satisfied in some subdomains involving both CAR and CIR. In other words, [image: there is no content] and [image: there is no content] coexist in the whole domain of our [image: there is no content] with a successive turning point so that [image: there is no content] and [image: there is no content] are guaranteed. In our analysis, appropriately-chosen associated initial values are used to compare the general asymptotically-unmatched and -matched [image: there is no content] solutions with the related exact general solutions. [image: there is no content] solutions of some quantum mechanical systems involving exponential potential-decorated TISE, which is associated with the [image: there is no content], were studied by the use of the common asymptotic matching rules given in (4) in the literature [10,11,12]. Our aim here is rather to search the asymptotic modifications of the [image: there is no content] approximation for the [image: there is no content] mathematically via the semiclassical theories where the physical nature of the system regarding the bound and unbound quantum mechanical system analysis is no longer interfered. We expect to find the same asymptotically-matched [image: there is no content] wavefunction solution as in [10,11,12]. It is also shown here for a specific case of the exponential potential decorated TISE in Section 5.



The [image: there is no content] is given in the standard form by:


[image: there is no content]



(7)




whose exact general solution in (2a) is the linear combination of two kinds of first order Bessel functions, namely:


y1(x)=J1(x)andy2(x)=Y1(x).



(8a)







Their expressions in terms of infinite series are given as follows [13,14]:


J1(x)=∑i=0∞(−1)i(x/2)1+2ii!Γ(i+2)=∑i=0∞(−1)i(x/2)1+2ii!(1+i)!,



(8b)






[image: there is no content]



(8c)







The [image: there is no content] solution of the [image: there is no content] in (7) can similarly be written (when solved) as a linear combination of two complementary functions as given in (2b). However, to follow this procedure, one has to face with the problem arising from the fact that one cannot find the [image: there is no content] general solution given in (2b) directly by the conventional methods since the [image: there is no content] technique including the famous [image: there is no content] connection formulas requires (rather than that in (7)) a Linear Differential Equation (LDE) in the normal form given in (1a). Therefore, we have to study it in the normal form with a suitable change of variable. Complementary [image: there is no content] functions (solutions) in (2b) can then be easily found by using the famous [image: there is no content] connection formulas given in [1,2,3,4,5]. Once the [image: there is no content] solution of either region (CAR or CIR) is found, the other region can directly be determined via these connection formulas.



Therefore, our interest here can be summarized as follows: (i) to find the [image: there is no content] general solution of the [image: there is no content] whose structure is given in (2b) by using some appropriate change of variable to transform into a normal form (which is not unique); (ii) to check its accuracy in the (sub)domains of the CAR and the CIR where the [image: there is no content] applicability criterion in (6) holds; and (iii) to find ways to do the correct asymptotic matching in the necessary (sub)domains by semiclassical analyses mathematically only. Our analyses should also show that asymptotic matching is required only for [image: there is no content] as the physical requirement (normalizability of quantum mechanical wave functions, which is in a bound state form here).



The [image: there is no content] general solution of the [image: there is no content] is obtained here after having been transformed into the normal form via change of the independent variable so that the conventional [image: there is no content] connection formulas given in [1,2,3,4,5] can be used along with the associated initial values, which have been intentionally chosen in the CAR. Comparisons with the exact solutions are being achieved by applying these carefully-chosen common initial values. Since our asymptotic matching rule gives a criterion for a semiclassically (not physically) acceptable [image: there is no content] solution, we have the following semiclassical outcomes: (i) why [image: there is no content] solutions are accurate in some domains in the CAR ([image: there is no content]) and why they give inaccurate results in some other domains in the CIR ([image: there is no content]); (ii) which complementary function in the general solution in (2b) (and also in the corresponding transformed representation) should be canceled in order to give an accurate general solution as desired by a successful asymptotic matching. Therefore, it can be thought of as an alternative and more general semiclassical matching rule for the present conventional [image: there is no content] theories.



In Section 2, we give the statement and re-statement of our analyses based on the initial value-aided comparison in both standard and normal form representations. [image: there is no content] solutions of the [image: there is no content] and their asymptotic matching in the transformed representations (in the normal form) are studied in Section 3, and the same calculations for the re-transformed representations (in the standard form) are studied in Section 4. Our semiclassical asymptotic matching rule neither involving exact solutions nor reasoning about the physical (quantum mechanical) nature of the system should give the correct asymptotic matching in both representations. We use the exact solutions only to show the accuracy and reliability of our alternative pure semiclassical asymptotic matching rule given in Section 3.2 (by Proposition 2). In Section 5, a physical application of our semiclassical asymptotic matching rule for a specific case of the exponential potential decorated bound state problem is presented. Preliminary work regarding the part “Calculations in The Normal Form” of Section 3 was discussed in the 19th International Conference on Applied Mathematics (AMATH’14)-Istanbul where some 2D analyses are available in [15]. (Note that Equations: (40) and (41a)–(41b) here are in the corrected form when compared with the misprints in [15]).




2. Statement and Re-Statement of the Problem


2.1. Associated IVP and Statement of The Problem


The process being followed here can be stated by the following proposition:



Proposition 1.

Once the [image: there is no content] general solution in the form of (2b) is obtained, one can test the accuracy (or exactness) of this solution by comparing it with the exact general solution by applying the following initial values:


y(d1)=y(x)|x=d1=α1(c),y′(d1)=dy(x)dx|x=d1=β1(c),



(9)




where [image: there is no content] is some real constant and c is some parameter in the domain D where the [image: there is no content] method is suitable for ([image: there is no content])[image: there is no content].





For the common initial values in (9), the exact general solution in (2a) gives:


[image: there is no content]



(10)




where [image: there is no content] are the c dependent coefficients satisfying the initial values given in (9), and the [image: there is no content] general solution in (2b) gives:


[image: there is no content]



(11)




where similarly, [image: there is no content] are the c dependent coefficients satisfying the same initial values in (9). Since the common initial values are defined in continuous (or discrete) spectra in the domain of parameter c, both exact and [image: there is no content] general solutions span the whole domain with parameter c to enable a successful comparison in two variables according to our proposition (Proposition 1) just as in [4]. However, we have to apply an appropriate change of variable and study it in the normal form as explained above. Note that parameter c is used in continuous spectra here, but in the application of the bound state problem in Section 5, it is a turning point parameter involving total energy, which is discrete.




2.2. Change of the Independent Variable and Re-Statement of the Problem


Lemma 1.

Although [image: there is no content] given in (7) is not in the normal form given in (1a), a simple change of the variable in the independent variable:


x:(−∞,∞)→(0,∞),x(ρ)=ec−ρ2



(12)




transforms the [image: there is no content] in the standard form in (7) to the following desired normal form (just as in (1a)) in a new independent variable, ρ:


[image: there is no content]



(17)









Proof. 

Our proof is based on the following neat theorem:





Theorem 1.

The change of variable:


ρ(x)=∫exp−∫p(x)dxdx,u(ρ)=y(x)



(14)




transforms the differential equation in the standard form with the independent variable x given by:


[image: there is no content]



(15)




into the normal form with the independent variable ρ as follows:


[image: there is no content]



(16)









Proof. 

Suppose we have a change of variable [image: there is no content] with [image: there is no content], then the derivatives:


ddx=dρdxddρ=f′ddρ;d2dx2=f′2d2dρ2+f″ddρ








in (15) gives:


f′2u″+f″u′+pf′u′+qu=0.













In order to eliminate the [image: there is no content] term, f must satisfy:


[image: there is no content]








which gives:


[image: there is no content]











Additionally, the differential equation for u is in the form:


[image: there is no content]








which is equivalent with (16). ☐       



☐



Various change of variable applications to transform the [image: there is no content] (with [image: there is no content] here) into any of the normal forms, which is not unique, are available in the literature, i.e., [14,16,17]. However, change of the independent variable given in (12) is suggested and followed here.



The procedure regarding the comparison of the [image: there is no content] general solution with the exact general solution of our Initial Value Problem (IVP) here can be achieved as follows: Equation (13) can be re-written with two variables, ρ and c, where ρ represents the changed coordinates (rather than x, as explained above), and c (without loss of generality) represents the classical turning point [image: there is no content] satisfying [image: there is no content], so that:


[image: there is no content]



(17a)




where:


[image: there is no content]



(17b)




whose initial values via Proposition (1) can now be used in the form:


y(c,ρ)|ρ=d2=α2(c);∂y(c,ρ)∂ρ|ρ=d2=β2(c).



(18)




Note that our notation here is as follows: we show the initial values in the original (standard form) system (in x) by subscript 1 (i.e., [image: there is no content]) and in the transformed (normal form) system (in ρ) by 2 (i.e., [image: there is no content]); see also Equation (9) for a comparison with (18).



Therefore, the exact and [image: there is no content] general solutions of the normal form IVP in (17a) and (17b) with (18) takes the desired forms as in the solutions of the previous standard form IVP in (10) and (11):


[image: there is no content]



(19a)




where:


y1(c,ρ)=J1(x(ρ),c)andy2(c,ρ)=Y1(x(ρ),c)



(19b)




and:


[image: there is no content]



(20)







In this work, the results of the transformed (normal form) representation in [image: there is no content] and the re-transformed final representation in [image: there is no content] for the associated IVP is analyzed graphically by means of the semiclassical analysis only. Pure semiclassical asymptotic matching rules (without interference of the physical nature of the system) proposed here should give accurate results in the corresponding (sub)domains for both representations.





3. Calculations in the Normal Form


3.1. Exact and [image: there is no content] Solutions of the [image: there is no content] in the Normal Form


There are some important points in the choice of the initial values in this comparison-based IVP method, and it will soon be shown that the initial values in (18) can safely be chosen to be:


d2=0;α2(c)=0;β2(c)=1.



(21)







These important points can be summarized as follows:

	(i)

	
The numerical value of [image: there is no content] (=constant) chosen in (18) should not correspond to the classical turning points of the associated normal form differential equation (where [image: there is no content] in the TISE in Equation (17a)) at which the [image: there is no content] method typically fails.




	(ii)

	
Similarly, since [image: there is no content] fails also in the CIR, [image: there is no content] should not be chosen in the CIR, either.




	(iii)

	
Numerical values of either [image: there is no content] or [image: there is no content] chosen in (18) should not diverge to infinity for all c in the domain of [image: there is no content].




	(iv)

	
Either [image: there is no content] or [image: there is no content] in (18) can be chosen as constant functions provided that solutions of the IVP are in the forms of (19a) and (20).









Note that initial values in (18) are theoretically defined to be c-dependent functions (as a consequence of the calculations via Proposition 1); however, we can choose them as constant functions as a specific case of this generalization (as we do here via (21)), which is not in contradiction with the function theories.



One can simply show that the exact general solution of the [image: there is no content] in the transformed normal form in (17a) and (17b) can be written as:


y(c,ρ)=c1(c)J1(ec−ρ2)+c2(c)Y1(ec−ρ2),−∞<ρ<∞.



(22)




and applying the initial values in (18), we have:


[image: there is no content]



(23)




from which the c-dependent coefficients can be found via the applications of the initial values in (21) to give:


c1(c)=α2(c)∂∂ρy2(c,ρ)ρ=d2−β2(c)y2(c,d2)Δ(c,d2)|d2=0α2(c)=0β2(c)=1=−4e−c/2Y1(ec/2)[Y2(ec/2)−Y0(ec/2)]J1(ec/2)+[J0(ec/2)−J2(ec/2)]Y1(ec/2),



(24a)




and:


c2(c)=−α2(c)∂∂ρy1(c,ρ)ρ=d2−β2(c)y1(c,d2)Δ(c,d2)|d2=0α2(c)=0β2(c)=1=4e−c/2J1(ec/2)[Y2(ec/2)−Y0(ec/2)]J1(ec/2)+[J0(ec/2)−J2(ec/2)]Y1(ec/2),



(24b)




where the discriminant [image: there is no content] (the Wronskian determinant) is defined by:


Δ(c,d2)=y1(c,d2)y2(c,d2)∂∂ρy1(c,ρ)ρ=d2∂∂ρy2(c,ρ)ρ=d2.



(25)







As to the [image: there is no content] general solutions, let us first see how well the [image: there is no content] applicability criterion given in (6) are satisfied via function [image: there is no content]. The following inequality should hold if the [image: there is no content] method is applicable with a good-enough accuracy for a given [image: there is no content] as in our case with (17b) here [4,5]:


[image: there is no content]



(26)







In other words, one cannot expect to have accurate [image: there is no content] solutions in the region(s) where the inequality condition (26) does not hold (since the potential in the TISE gets sharper and higher order [image: there is no content] approximation is required [3,4,5]). If this inequality holds, it corresponds to [image: there is no content], and otherwise, it corresponds to [image: there is no content] regarding the discussion in the Introduction section. Calculation of [image: there is no content] in (26) for the [image: there is no content] with (17b) gives:


[image: there is no content]



(27)




whose graph with the graph of [image: there is no content] for some c values is given in Figure 1. We see that the classical turning point where [image: there is no content] is at [image: there is no content], the CIR where [image: there is no content] lies on the right-hand side of this turning point and the CAR where [image: there is no content] lies on the left-hand-side of it. Therefore, we know in advance from (3) and (4) that we should make the asymptotic matching (modification) in the CIR (since it is located at the RHS of the turning point ([image: there is no content])) as follows [3,4]:


[image: there is no content]



(28a)






[image: there is no content]



(28b)






Figure 1. Graph of f and g functions for some c values (solid red curve: [image: there is no content]; dotted green: [image: there is no content]; dashed blue: [image: there is no content]).



[image: Mca 21 00041 g001]






Moreover, a narrow subregion not obeying (27) for each c value in the domain cannot be expected to give accurate results by the [image: there is no content] method since it is lying at just about the turning points (as a typical property of the [image: there is no content] method, as mentioned above). Analysis of such regions in need of higher order JWKB approximation ([image: there is no content]) are beyond the scope of our study.



The width of this narrow sub-region (corresponding to [image: there is no content] discussed in the Introduction section) can be found from the solution of [image: there is no content] in (27) for real ρ and c values as follows:


SD2:ρ∈(c−0.968889,c+1.17808).



(29a)







The remaining wide region (corresponding to [image: there is no content] discussed in the Introduction section):


SD1:−∞<ρ<<(c−0.968889)∪(c+1.17808)<<ρ<∞



(29b)




is our main concern for a good-enough [image: there is no content] general solution here.



In the [image: there is no content] calculations, the entire domain can be considered as a unification of two neighboring regions (CAR-CIR), and if we start with the CAR located at the left-hand side of the turning point and connect it to the CIR by using the conventional [image: there is no content] connection formulas given in [3,4,5] in the reverse direction, we find the same formulas for [image: there is no content] and [image: there is no content] as in ([4] (see Example 1)) (but in [image: there is no content] in this section, rather than [image: there is no content]) to give:


y˜(c,ρ)=y˜L(c,ρ),for−∞<ρ≤cy˜R(c,ρ),forc≤ρ<∞,



(30)




where:


[image: there is no content]



(31a)




and:


[image: there is no content]



(31b)







The constituent functions, η and ζ, in (31a) and (31b) now give:


[image: there is no content]



(32a)




(where k and κ have the usual meanings: [image: there is no content]), and the c dependent coefficients can be found from the applications of the initial values given in (21) as follows:


[image: there is no content]



(32b)






⇒A(c)=−2(ec−1)1/4(for0<c<∞)α(c)=ic2−ec−1−iln(1+1−ec),0<c<∞.



(32c)







Note that [image: there is no content] in (32b) corresponds to [image: there is no content] according to (30), since the initial values are chosen at [image: there is no content], which is in the CAR: [image: there is no content]. The [image: there is no content] general solution in the other form given in (20), which is very important in our analysis, can similarly be written as follows [3,4]:


y˜1(c,ρ)=2k(c,ρ)sin[η(c,ρ)+π/4],−∞<ρ≤c1κ(c,ρ)exp[−ζ(c,ρ)],c≤ρ<∞










y˜2(c,ρ)=1k(c,ρ)sin[−η(c,ρ)+π/4],−∞<ρ≤c1κ(c,ρ)exp[ζ(c,ρ)],c≤ρ<∞,



(33)




where [image: there is no content] and [image: there is no content] are given in (32a), and applications of the initial values in (18) give:


y˜(c,d2)=c˜1(c)y˜1(c,d2)+c˜2(c)y˜2(c,d2)=α2(c)∂ρy˜(c,ρ)ρ=d2=c˜1(c)∂ρy˜1(c,ρ)+c˜2(c)∂ρy˜2(c,ρ)ρ=d2=β2(c),



(34)




whose solutions for the c-dependent coefficients via the applications of the initial values in (21) give:


c˜1(c)=α2(c)∂ρy˜2(c,ρ)ρ=d2−β2(c)y˜2(c,d2)Δ˜(c,d2)|d2=0α2(c)=0β2(c)=1=−cos±ic2+ec−1∓iln(1+1−ec)+π42(ec−1)1/4,



(35a)






c˜2(c)=−α2(c)∂ρy˜1(c,ρ)ρ=d2−β2(c)y˜1(c,d2)Δ˜(c,d2)|d2=0α2(c)=0β2(c)=1=2sin±ic2+ec−1∓iln(1+1−ec)+π4(ec−1)1/4,



(35b)




where the discriminant [image: there is no content] (the Wronskian determinant) is similarly defined by:


Δ˜(c,d2)=y˜1(c,d2)y˜2(c,d2)∂∂ρy˜1(c,ρ)ρ=d2∂∂ρy˜2(c,ρ)ρ=d2.



(36)







Remark 1.

Note that choosing either [image: there is no content] or [image: there is no content] zero as we do here in (21) obviously simplifies the calculations of the coefficients in the [image: there is no content] general solutions (see Equations (35a) and (35b)).






3.2. Asymptotic Matching of the [image: there is no content] in the Normal Form


Results of our unmatched calculations are given in Figure 2. 3D graphs here are cut at appropriate planes for a better view as much as possible. We can see that [image: there is no content] solutions diverge at some turning points where [image: there is no content]. However, we would see it for the missing turning points (as a typical property of [image: there is no content] solutions for all of the classical turning points) if they were cut at smaller heights, but then the visible ones in Figure 2 would be suppressed since their divergence width and divergence tendency are different for different [image: there is no content] values. What we are interested is that [image: there is no content] solutions here are consistent with the exact solutions in the CAR where [image: there is no content], but asymptotically are not (as ρ increases in the CIR where [image: there is no content]) as expected. Now, the question is whether we can see this without either interference of the exact solutions (we did it in Figure 2 for now) or consulting the present asymptotic matching rules given in (3) and (4) (it gives (28b) here) and under what conditions they can be asymptotically-matched (in other words, what the asymptotic matching rule is).


Figure 2. Results of the normal form [image: there is no content] solutions: 3D graphs of: (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content]; (e) [image: there is no content]; (f) [image: there is no content].
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From the JWKB theories, we know that the formal expression of the [image: there is no content] approximation written in (5) takes the form:


[image: there is no content]



(37)




where the first three of them can be written in [image: there is no content] as follows [3,4]:


[image: there is no content]



(38a)






[image: there is no content]



(38b)






S2(c,ρ)=±∫∂2κ2(c,ρ)/∂ρ28κ3(c,ρ)−5∂κ2(c,ρ)/∂ρ32κ5(c,ρ)dρ=:±A2(c,ρ)=S21(c,ρ)=−A2(c,ρ)S22(c,ρ)=A2(c,ρ),



(38c)




where [image: there is no content] has the usual meaning. Here, in [image: there is no content], the first index [image: there is no content] represents the first three JWKB expansion terms, and the second index j(=[image: there is no content] represents two different sets due to the two-valuedness of these expansion terms as in [4]. For the [image: there is no content] approximation, only the first two terms ([image: there is no content] and up to [image: there is no content] only) in (37) are used to give the well-known [image: there is no content] formula in [image: there is no content] as follows:


[image: there is no content]



(39)




which is equivalent to (33). As discussed above, according to (28b), the [image: there is no content] solution in the CIR requires a cancellation of either [image: there is no content] or [image: there is no content] in Equation (20) for the subdomain where the [image: there is no content] applicability criterion holds (in [image: there is no content]). Note that both the exact solution in (22) and the [image: there is no content] solution in (33) involve asymptotically diverging exponential terms in the CIR. As a result, this modification can fulfill the physical requirement, according to which the corresponding quantum mechanical system in the normal form (the TISE) does not allow any asymptotically diverging term in the CIR (in both the exact and [image: there is no content] solution) [3,4,5].



Semiclassically, a successful (accurate with respect to the exact solution) [image: there is no content] solution of the TISE should have asymptotically-descending [image: there is no content] expansion terms with indices [image: there is no content] and [image: there is no content], and they should be bounded by the next term with index [image: there is no content] (which is not involved in the [image: there is no content] solution, though) [3,4]. These requirements can be written by considering [image: there is no content] to give [4]:


1>>δS2<S1<S0/δ,δ→=1.



(40)







Due to the two-valuedness, we can write the following proposition to determine which term ([image: there is no content] or [image: there is no content]) exhibits the asymptotic requirements:



Proposition 2.

In order to be an accurate [image: there is no content] solution (and hence, in order to be a properly asymptotically-matched [image: there is no content] solution), the general JWKB expansion terms should satisfy the following inequalities:


1>>S˜21(c,ρorρ(x))<S˜11(c,ρorρ(x))<S˜01(c,ρorρ(x)),



(41a)






1>>S˜22(c,ρorρ(x))<S˜12(c,ρorρ(x))<S˜02(c,ρorρ(x)),



(41b)




where the definition of [image: there is no content] in [4] can be generalized (so as to involve also the transformed representation of our model [image: there is no content] under study) as follows:


S˜ij(c,ρorρ(x))=Sij(c,ρorρ(x)),ifSij(c,ρorρ(x))∈CSij(c,ρorρ(x)),ifSij(c,ρorρ(x))∈R.



(42)









Proof. 

Expansion terms in a specific problem (depending on the corresponding f(c,ρorρ(x)) (where f(c,ρorρ(x))⟺f(c,ρ) or [image: there is no content])) in (17a) may give real or complex Sij(c,ρorρ(x)) (where Sij(c,ρorρ(x))⟺Sij(c,ρ) or [image: there is no content]) functions in various (sub)domains. Therefore, the requirements given in (41a) and (41b), which are the natural consequence of (40) exhibiting a successful comparison according to their two-valuedness, make the proof complete. ☐





Corollary 1.

The expansion term(s) in the [image: there is no content] solutions ([image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]) in (39) (building (33) for the [image: there is no content]), whose associated [image: there is no content] or [image: there is no content] elements determined from (42) do not obey (41a) and (41b), should be canceled for successful asymptotic modification.





Inequalities in (41a) and (41b) and the definition in (42) can freely be used in both representations independently, and what we have for the transformed coordinates in [image: there is no content], which is also our main concern here, becomes:


S˜ij(c,ρ)=Sij(c,ρ),ρ<c∵Sij(c,ρ)∈CintheCARSij(c,ρ),c<ρ∵Sij(c,ρ)∈RintheCIR,



(43)




since from (38a)–(38c), we have:


S01(c,ρ)=−S02(c,ρ)=−1−ec−ρ[−2eρ−ec+ρeρ/2+2eρ/2ln(1+e−ρ/2eρ−ec)]2eρ−ec,



(44a)






S11(c,ρ)=S12(c,ρ)=−14ln(1−ec−ρ4),



(44b)






S21(c,ρ)=−S22(c,ρ)=−6ec−4eρ481−ec−ρ(eρ−ec),



(44c)




from which we see that [image: there is no content] in the CAR (where [image: there is no content]) and [image: there is no content] in the CIR (where [image: there is no content])). It should be noted here in advance that the result of the application of (42) for the re-transformed representation, [image: there is no content], will be different than that in (43) of the [image: there is no content] system (see Section 4). In order to make the comparison given in (41a) and (41b), we determine whether the elements are real or complex similar to [4]. Therefore, the general expression (also including the SLP case in [4]) for the asymptotic matching can be written by (41a), (41b) and (42) as the generalized asymptotic matching rule. If both (41a) and (41b) hold (we obviously see that this happens in the CAR), then the [image: there is no content] general solution involves both [image: there is no content] complementary functions ([image: there is no content] and [image: there is no content]). However, if either of them does not hold (we obviously see this in the CIR), then the related complementary [image: there is no content] function not obeying (either [image: there is no content] or [image: there is no content]) should cancel in the [image: there is no content] general solution for that non-obedient domain. This generalization involves also the SLP case in [4] where there is no such subdomain, but a non-obedient domain (corresponding to the CIR). Note that (39) with (38a)–(38c) has an implication that [image: there is no content] (and hence, [image: there is no content]) contributes to [image: there is no content], whereas [image: there is no content] (and hence, [image: there is no content]) contributes to [image: there is no content]. Therefore, the non-obedient [image: there is no content] terms require a cancellation of [image: there is no content], and similarly, non-obedient [image: there is no content] terms require a cancellation of [image: there is no content] in the related subdomains.



Graphs of the [image: there is no content] and [image: there is no content] for some c values are given in Figure 3. Comparing with the graph of [image: there is no content] given in Figure 1, we can see that [image: there is no content] solutions should be consistent with the exact solutions except for the non-obedient narrow regions given by (29a). We can also see that both (41a) and (41b) hold for the CAR, whereas the CIR does not hold for both and, hence, needs a cancellation in the non-obedient [image: there is no content] term (left column graphs) in this region ([image: there is no content]). This is the most remarkable consequence of our pure [image: there is no content] analysis via Figure 3 without any interference of either the exact solutions or physical nature of the corresponding quantum mechanical system. In Figure 3, we have non-obedient [image: there is no content] functions, requiring a cancellation of [image: there is no content], which contributes to [image: there is no content] (exhibiting exponentially-increasing behavior) in the CIR.


Figure 3. Graphs of [image: there is no content] (left column) and [image: there is no content] (right column) (wherei=0,1,2) in the normal form in [image: there is no content] for some specific c values (solid-red curves: [image: there is no content][image: there is no content]; dotted-green curves: f ori=1; and dashed-blue curves: f ori=2).
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As a result, the necessary modifications according to our pure semiclassical analyses for the asymptotic matching of the [image: there is no content] in the transformed normal form representation should be as follows:

	
Modification of the exact general solution in (22) (which will be used to compare with the modified [image: there is no content] solutions):


y(m.)(c,ρ)=y,−∞<ρ≤c(CAR)c1(c)J1(ec−ρ2),c≤ρ<∞(CIR).



(45)







Note that both exact and [image: there is no content] solutions in (22) and (31b) of (30) (or (33) of (20)) have the common form of exponentially-increasing terms in the CIR, [image: there is no content], where a cancellation according to (41a), (41b) and (42) is required for both exact and [image: there is no content] solutions (see also (47a) below for a comparison).



	
Modification of the [image: there is no content] general solution in (30):


y˜(m.)(c,ρ)=y˜L,for−∞<ρ≤c(CAR)y˜R(m.),forc≤ρ<∞(CIR),



(46a)




where:


[image: there is no content]



(46b)







	
Modification of the [image: there is no content] general solution in the other form (see Equation (20) via (33)):


[image: there is no content]



(47a)




where:


y˜2(m.)(c,ρ)=1k(c,ρ)sin[−η(c,ρ)+π/4],−∞<ρ≤c(CAR)0,c≤ρ<∞(CIR).



(47b)












The superscript “(m.)” shows successfully asymptotically-matched solutions here. Error graphs in 3D given in Figure 4 show the success of these asymptotic matchings when compared with the error graphs in Figure 2e,f. These asymptotic modifications are the results of our generalized asymptotic matching rules suggested here in (41a), (41b) and (42), which is a semiclassical establishment of the existing asymptotic matching rules in (28a) and (28b) (or (3) and (4)). Therefore, they can be used as an alternative, more general and pure semiclassical (without interfering either exact solutions or physical nature of the system) asymptotic modification rules. It is now clear that after the modification, the anomalies in the CIR have been removed successfully for the subdomain where the [image: there is no content] applicability criterion holds according to (29b) as has been aimed by the asymptotic modification (matching) process.


Figure 4. 3D error graphs of asymptotically-modified normal form [image: there is no content] general solutions: (a) [image: there is no content]; (b) [image: there is no content].
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4. Calculations in the Standard Form


4.1. Exact and [image: there is no content] Solutions of the [image: there is no content] in the Standard Form


One can obviously find the exact general solutions in the re-transformed variable representation, in [image: there is no content], either by substituting (12) in the reverse form:


ρ:(0,∞)→(−∞,∞),ρ(x)=c−2lnx



(48)




in (22) or, alternatively, by directly solving (7) with the following associated initial values in (9) (see also Remark 2 for the relations of the initial values in both equivalent representations):


{y(x)x=d1=ec/2=α1(c)=0y′(x)x=d1=ec/2=β1(c)=−2e−c/2,



(49)




where prime denotes derivative with respect to x.



Note that implicitly equivalent definitions: [image: there is no content], [image: there is no content] and [image: there is no content] can be used to refer to the functions y,f, or g expressed in variables c and x; however, it is clear that they are actually not equal to each other explicitly, i.e., [image: there is no content]. Therefore, explicit definitions in [image: there is no content] are shown with a double tilde for [image: there is no content] as given in Equation (52) (see the notations in Equations: (42) and (52) for a comparison).



Although y in the latter case is in single variable (in x only), we have the general solution of the associated IVP in two variables (in [image: there is no content]) as required since the corresponding initial values in (49) are c-dependent to give both x and c-dependent y results in the exact general solution. However, we do not have two alternatives for finding an accurate general solution by the [image: there is no content] method since this method is not appropriate for the [image: there is no content] in the standard form given in (7) as discussed above. Therefore, in order to find the [image: there is no content] general solution in the standard form representation in [image: there is no content], we have to substitute (48) into the [image: there is no content] general solution obtained in the transformed (normal form) representation (in [image: there is no content]) in (30) (or (20) for the other form) with the related c-dependent coefficients given in (32c) (or (35a) and (35b) for the other form). In other words, [image: there is no content]. Now, both exact and [image: there is no content] solutions are consistent in the domain of x except for a small region around [image: there is no content] ([image: there is no content]). It is the typical property of the [image: there is no content] method discussed above since [image: there is no content] is the classical turning point where [image: there is no content] in Equations (17a) and (17b) is zero, and it corresponds to [image: there is no content] (since [image: there is no content] for [image: there is no content]).



Moreover, a detailed analysis shows also the following: according to the graph of [image: there is no content] and [image: there is no content] in Figure 1, the CIR involves the subdomain, [image: there is no content] for [image: there is no content], where we should have the inaccurate [image: there is no content] solution, but that can be asymptotically matched by the asymptotic matching rules we have suggested in (41a), (41b) and (42), since this subregion lies within the region where the [image: there is no content] applicability criterion holds ([image: there is no content]). For the unmodified solutions, we can see that we really have inaccurate [image: there is no content] solutions as expected in this CIR, and we can consider it in two subregions: as [image: there is no content] and as [image: there is no content], roughly. From Figure 1, we see that the [image: there is no content] method is useless as [image: there is no content], since [image: there is no content], and hence, the [image: there is no content] applicability criterion does not hold ([image: there is no content]). However, for the other subregion as [image: there is no content], we have [image: there is no content], where we can expect to have accurate [image: there is no content] solutions ([image: there is no content]), provided that some successful asymptotic modification is applied. Let us determine these two subdomains ([image: there is no content] and [image: there is no content]) corresponding to the CIR more precisely: the non-obedient narrow region for the [image: there is no content] method around [image: there is no content] given in (29a) corresponds to (via (48)):


x∈(0.554858,1.62327)for∀c∈R.



(50a)







Similarly, the obedient region (for the [image: there is no content] approximation) given in (29b) in ρ corresponds to (via (48)):


0<x<<0.554858∪1.62327<<x<∞for∀c∈R,



(50b)




where we can obtain accurate [image: there is no content] solutions if we make a proper asymptotic matching. In other words, we have two subdomains (or literally, related subregions: [image: there is no content] and [image: there is no content]):

	
[image: there is no content] (appropriate for the [image: there is no content]) and



	
[image: there is no content] (inappropriate for the [image: there is no content])





where [image: there is no content], and we are interested in [image: there is no content] in our [image: there is no content] analysis since the [image: there is no content] applicability criterion holds for it. Therefore, we can obviously apply the asymptotic matching rules suggested in (41a), (41b) and (42) to modify the CIR: [image: there is no content], so that we can obtain accurate results (as we should do according to the consequence of the [image: there is no content] applicability criterion in Equation (50b)). 3D graphs regarding our standard form solutions are given in Figure 5 (see the anomalies around [image: there is no content] and [image: there is no content] as shown above). The asymptotically-matchable narrow subdomain [image: there is no content] is studied in the next subsection.


Figure 5. Results of the standard form [image: there is no content] solutions: 3D graphs of: (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content].
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4.2. Asymptotic Matching of the [image: there is no content] in the Standard Form


Since [image: there is no content], we can directly write the modifications for the asymptotic matching given in (28a) and (28b) (via (4)) in x coordinates as follows:



For the general exact solution:


[image: there is no content]



(51a)







For the general [image: there is no content] solution:


[image: there is no content]



(51b)







Another way to do the right asymptotic modification in the x-system, which is our main concern as a pure semiclassical asymptotic matching here, is sure to use the reverse transformation in (48) via the asymptotically-modified results in the ρ-system obtained in (45), (46a) and (47a). However, for now, let us apply our asymptotic matching rules to see the accuracy of the [image: there is no content] solution directly in the x-system. If the results obtained in the [image: there is no content]-system are accurate (or inaccurate), we should also see it by the suggested asymptotic matching rules in (41a), (41b) and (42).



A careful inspection shows that, substitution of (48) in the [image: there is no content] results (in Equations (44a)–(44c)) gives complex [image: there is no content] functions for both CAR and CIR. Therefore, the expression of [image: there is no content] in (42) simply gives:


S˜˜ij(c,x)→S˜ij(c,ρ(x))=Sij(c,ρ(x)),forallx∈R



(52)




which is obviously different than what was found in (43) for the [image: there is no content] system even obtained by the use of the same definition in (42). Here, we used the double tilde to represent the [image: there is no content] function in the re-transformed coordinates, namely [image: there is no content], since they would not be equal to each other mathematically if we used both with the same function name ([image: there is no content].



We can now test the conditions in (41a) and (41b) in [image: there is no content] coordinates to see whether our [image: there is no content] general solution needs asymptotic matching somewhere according to our [image: there is no content]-based semiclassical analysis without interference of the exact solutions. Graphs of the [image: there is no content] and [image: there is no content] for some specific c values are given in Figure 6 from which we can see that final [image: there is no content] solutions in [image: there is no content] do not need asymptotic modification in [image: there is no content] (since both [image: there is no content] and [image: there is no content] obey (41a) and (41b) via the use of (42) in this region). However, the non-obedient [image: there is no content] terms (and hence, [image: there is no content] in (2b)), which should be removed from the [image: there is no content] general solution in the [image: there is no content] (for a successful asymptotic matching), are clearly seen in the graphs given in Figure 6. In other words, according to the asymptotic matching rules suggested here (in Equations (41a) and (41b) via the use of (42)), we necessarily have to do the following asymptotic modifications for a correct asymptotic matching:


[image: there is no content]



(53a)




where:


y˜2(m.)(c,ρ(x))=1k(c,ρ(x))sin[−η(c,ρ(x))+π4],1.62327<<x<∞(⊂CAR)0,0<x<0.554858(⊂CIR)



(53b)




which is similarly equivalent to (51b). Remember that [image: there is no content] lying inside the [image: there is no content] cannot be asymptotically matched as discussed above.


Figure 6. Graphs of [image: there is no content] (left column) and [image: there is no content] (right column) (wherei=0,1,2) in the standard form in [image: there is no content] for a specific c value, [image: there is no content], (solid-red curves: [image: there is no content][image: there is no content]; dotted-green curves: f ori=1; and dashed-blue curves: f ori=2).
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Similarly,


y(m.)(c,x)=:y(c,ρ(x)),1.62327<<x<∞(⊂CAR)y(m.)(c,ρ(x)),0<x<0.554858(⊂CIR)



(54a)




where [image: there is no content] can be written by the substitution of (48) in (22) to give:


[image: there is no content]



(54b)




which is equivalent to (51a). Results showing the enhancement in our asymptotic matching for the standard form representation are given in Figure 7 for a specific case of [image: there is no content].


Figure 7. Enhancement in the standard form [image: there is no content] solution by our asymptotic modifications in the [image: there is no content] for [image: there is no content].
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Remark 2.

Point [image: there is no content] at which the initial values are defined in the [image: there is no content] representation (normal form) with (18)–(21) corresponds to [image: there is no content] at which the initial values are defined in the original [image: there is no content] system (standard form) with (9)–(49) via the change of variable given in (12) or (48). Therefore, [image: there is no content], [image: there is no content] and, hence, the initial values in both representations have the following relations:



From (48),


[image: there is no content]



(55)




and consequently,


y(x)=α1(c)x=d1=y(ρ)=α2(c)ρ=d2⇒α1(c)=α2(c),



(56a)






dy(x)dx|x=d1=β1(c)=dy(ρ)dρdρ(x)dx|x=d1=−2xβ2(c)x=d1⇒β1(c)=−2xβ2(c)x=d1.



(56b)







One can check that initial values chosen (in (18)–(21) and (49)) also exhibit this relationship.







5. A Physical Application: Exponential Potential Decorated Bound State Problem


It might be interesting to test the success of our alternative asymptotic matching rules in a real quantum mechanical (physical) problem corresponding to the normal form representation via the TISE. Therefore, let us apply these calculations to a specific case of the exponential potential decorated bound state problem studied in [10], from which we have the followings (note that we use different symbols here so that we can refer to the calculations in this work, namely: [image: there is no content] in [10] are replaced by [image: there is no content] here, respectively):



For the TISE in (1a) and (1b), but in variable τ, the potential under study is given by:


[image: there is no content]



(57)







Necessarily, [image: there is no content] for the bound states and by a simple change of variable:


[image: there is no content]



(58)




we have the TISE in (1a) and (1b) in ρ:


[image: there is no content]



(59)







Now, the definitions of dimensionless a and b:


a=8mV0ℏ2α2andb=−8mEℏ2α2



(60)




give the TISE in ρ with:


[image: there is no content]



(61)







Then, the change of the independent variable:


[image: there is no content]



(62)




gives the b-th order Bessel differential equation, [image: there is no content], namely:


[image: there is no content]



(63)




whose exact general solution is the linear combination of two kinds of the b-th order Bessel functions (similar to (19a) and (19b)), namely:


[image: there is no content]



(64)







Note that, second complementary solutions for both regions in (64) are given in [10] (instead of [image: there is no content]) as [image: there is no content], since [image: there is no content] and [image: there is no content] are two linearly independent solutions for non-integer Bessel functions (just like [image: there is no content] and [image: there is no content]). Indeed, from Bessel theories, we have [13,14]:


Yb(x)=limp→bJp(x)cos(pπ)−J−p(x)sin(pπ),ifb∈ZJb(x)cos(bπ)−J−b(x)sin(bπ),ifb∉Z,



(65)




and for also integer b values, as in our study here with [image: there is no content], we can use Equation (64) as a general expression involving both integer and non-integer b values [13,14]. Now, (22) takes the form:


yEX(c,ρ≥0)=c1+(c)J1(ec−ρ2)+c2+(c)Y1(ec−ρ2)yEX(c,ρ≤0)=c1−(c)J1(ec+ρ2)+c2−(c)Y1(ec+ρ2),



(66)




and its comparison with (64) gives the following relation:


ae−ρ/2=ec−ρ2,ρ≥0aeρ/2=ec+ρ2,ρ≤0⇒a=ec.



(67)







Now, let us take [image: there is no content] as a special case and apply the asymptotic matching rules we have already found in the previous sections. Our restriction then becomes:


b=1→En=−ℏ4α416m2,



(68)




so that we have:


f(c,ρ)=f(a,b,ρ)|a→ecb→1=f1(c,ρ≥0)=ec−ρ−14f2(c,ρ≤0)=ec+ρ−14,



(69)




which is just as the form we have been using here as in (17a) and (17b). Additionally, its solution from (64) gives:


[image: there is no content]



(70)




which is just the same as our result in (22). Our intention here is not to find accurate [image: there is no content] eigenenergies ([image: there is no content]) and eigenfunctions ([image: there is no content]) where some correction terms (like Friedrich-Trost (F-T) corrections) are involved [8,11,12], but to apply our asymptotic matching rules under the assumption in (68) where the problem simplifies to the [image: there is no content] being studied here.



Conventional asymptotic modification rules in (4) were applied in [10] to give:


[image: there is no content]



(71a)




which means:


[image: there is no content]



(71b)




in our calculations. We have already shown half of it for f(c,ρ)=f1(c,ρ),ρ≥0 by our alternative semiclassical asymptotic matching rule in (41a), (41b) and (42) via Figure 3, but let us see it for (69) in the whole domain explicitly:



Now, expansion terms in (38a)–(38c) for (69) give just the same as (44a)–(44c) for [image: there is no content], but these results require [image: there is no content] for [image: there is no content], namely:


S01(c,ρ)=−S02(c,ρ)=−1−ec−ρ[−2eρ−ec+ρeρ/2+2eρ/2ln(1+e−ρ/2eρ−ec)]2eρ−ec,ρ≥0−1−ec+ρ[−2e−ρ−ec−ρe−ρ/2+2e−ρ/2ln(1+eρ/2e−ρ−ec)]2eρ−ec,ρ≤0,



(72a)






S11(c,ρ)=S12(c,ρ)=−14ln(1−ec−ρ4),ρ≥0−14ln(1−ec+ρ4),ρ≤0,



(72b)






S21(c,ρ)=−S22(c,ρ)=−6ec−4eρ481−ec−ρ(eρ−ec),ρ≥0−6ec−4e−ρ481−ec+ρ(e−ρ−ec),ρ≤0,



(72c)




from which (42) gives:


S˜ij(c,ρ)=Sij(c,ρ),for|ρ|<c(sinceSij(c,ρ)∈CintheCAR)Sij(c,ρ),forc<|ρ|(sinceSij(c,ρ)∈RintheCIR).



(73)







Graphs of functions f and g in both representations are given in Figure 8, from which we can see that [image: there is no content] solutions are consistent with the exact solutions, except for the non-obedient narrow regions (from (29a)):


[image: there is no content]



(74a)




and the remaining wide regions (from (29b)):


[image: there is no content]



(74b)




need asymptotic matching ([image: there is no content]). Graphs of [image: there is no content] and [image: there is no content] for some c values are given in Figure 9. We can obviously see that both (41a) and (41b) hold in the CAR simultaneously, but they do not hold in the CIR simultaneously and, hence, are in need of a cancellation in the CIR. Here, we have non-obedient [image: there is no content] term (and hence, a cancellation of [image: there is no content] for [image: there is no content] (see the left column in Figure 9) and [image: there is no content] term (and hence, a cancellation of [image: there is no content]) for [image: there is no content] (see the right column in Figure 9) in these CIRs. This is because, as stated above, (39) with (38a)–(38c) has an implication that [image: there is no content] (or [image: there is no content]) contributes to [image: there is no content] and [image: there is no content] (or [image: there is no content]) contributes to [image: there is no content]. Therefore, the non-obedient [image: there is no content] terms requiring a cancellation of [image: there is no content] for [image: there is no content] and [image: there is no content] terms requiring a cancellation of [image: there is no content] for [image: there is no content] give the same right asymptotic matching as given in (71b) of [10].


Figure 8. Graph of f and g functions of the exponential potential decorated bound state problem for some c values (solid-red curves: [image: there is no content]; dotted-green curves: [image: there is no content]; dashed-blue curves: [image: there is no content]). First row: normal form representation corresponding to the Time Independent Schrodinger’s Equation (TISE); second row: standard form representation corresponding to the [image: there is no content].



[image: Mca 21 00041 g008]





Figure 9. Graphs of [image: there is no content] (left column) and [image: there is no content] (right column) (where i=0,1,2) of the exponential potential decorated bound state problem (which corresponds to the normal form representation via the TISE with the related exponential potential) under study in the normal form representation in [image: there is no content] for some specific c values (solid-red curves: [image: there is no content][image: there is no content]; dotted-green curves: f ori=1; and dashed-blue curves: f ori=2).



[image: Mca 21 00041 g009]







6. Conclusions


In this work, the [image: there is no content] has been chosen as a mathematical model for a pure semiclassical analysis (without interference of the physical nature of the system) since there exist subdomains where the [image: there is no content] applicability criterion both holds (in [image: there is no content]) and fails (in [image: there is no content]). The hereby presented generalized asymptotic matching rules regarding the [image: there is no content] matrix elements obtained from the [image: there is no content] expansion terms show that the [image: there is no content] general solution of the [image: there is no content] for carefully chosen initial values needs asymptotic matching in the transformed (normal form) representation in the CIR where the [image: there is no content] applicability criterion holds ([image: there is no content]). Moreover, there is no need for asymptotic matching in the CAR where the [image: there is no content] applicability criterion holds (again [image: there is no content]). These results, obtained by our pure semiclassical analysis, are consistent with the present conventional asymptotic matching rules given in (3) and (4) via [3,4], which is a natural consequence of the physical nature of the related quantum mechanical system (the normalizability requirement of quantum mechanical wave functions). The generalized asymptotic matching rules suggested in (41a) and (41b) with the generalized definition of [image: there is no content] in (42) are the results of our pure semiclassical analyses where the physical nature of the system is not interfered.



As explained in the work in detail, physics (nature) requires asymptotic matching to the full mathematical solution. Physical systems of second order are generally of two kinds:


(i)IVP:y″+f(ρ)y=0,y′(ρ0)=k1,y(ρ0)=k2(ii)BVP:y″+f(ρ)y=0,y(ρ0)=k1,y(ρ0)=k2











(here, both are given in the normal form). We have two initial values or boundary values for both as common. However, physics require a third initial value or a third boundary value (or more correctly, an asymptotic constraint) given in (3) and (4), which is called asymptotic matching since [image: there is no content] in (4). In this work, it is studied and proven mathematically via the JWKB theories stating that JWKB expansion terms should be descending and bounded as given and studied in [3,4]. Therefore, the main idea here is the semiclassical requirement that [image: there is no content] expansion terms should be asymptotically decreasing as the term index increases and bounded by the [image: there is no content]-th indexed term as stated in [3,4]. The two valuedness of the [image: there is no content] expansion terms as given in (38a)–(38c) enables definitions of two different sets (corresponding to two complementary functions as in (39)) according to (42) for them so that the semiclassical requirements for the asymptotic matching can be tested for these two sets accordingly. Equation (39) shows that [image: there is no content] (hence, [image: there is no content] in our comparison function) contributes to [image: there is no content], and similarly, [image: there is no content] (hence, [image: there is no content] in our comparison function) contributes to [image: there is no content]. Therefore, any violation of [image: there is no content] in (41a) requires a cancellation of [image: there is no content], and any violation of [image: there is no content] in (41b) requires a cancellation of [image: there is no content] in the related non-obedient (sub)domain provided that the [image: there is no content] applicability criterion holds (=[image: there is no content]). The same definition in (42) gives (43) in the transformed normal form representation and (52) in the re-transformed standard form representation, respectively. When they are used in our alternative asymptotic matching rules given in (41a) and (41b), this gives consistent results with the present asymptotic matching rules given in (3) and (4). Moreover, our alternative analyses enable a correct determination of which complementary function (solution) and where in the semiclassically solvable (sub)domain to cancel. As a result, asymptotic matching rules suggested here gives enhanced [image: there is no content] solutions for the specifically chosen [image: there is no content] in both normal form and standard form representations. Since both standard and normal forms correspond to different sub-domains obeying the JWKB applicability criterion in (6) and (29b) being for the normal form and (50b) being for the standard form), both should require different asymptotic matching results for these different domains. In deed, our suggested asymptotic matching rule has explained both correctly and has given the correct results as the existing asymptotic matching rules given in (3) and (4). Applications of our pure semiclassical asymptotic matching rules to the exponential potential decorated bound state problem presented in Section 5 also give the same asymptotically-matched solutions as in [10], where the conventional asymptotic matching rules in (3) and (4) are applied. It can also be reminded here that the addition of an asymptotic constraint as a third initial value or boundary value does not change the correctness of the mathematical solution for sure, but matches it to the physical requirement of nature. We here have not applied the physical nature of the system, but only semiclassical theories, and the result is the correct asymptotic matching as nature requires. It may provide us deeper understanding of the relationship between the requirements of nature and mathematics. Therefore, the asymptotic matching rules in (41a), (41b) and (42) obtained by our pure semiclassical analyses here without applying (or consulting) any of the physical (quantum mechanical) nature of the system seem to be an alternative (and also more general) equivalent asymptotic matching rules besides the present conventional rules given in (3) and (4) via [3,4] in the real domain. It should be noted here that we here studied the asymptotic matching near the turning point locally via the essential principle that the JWKB expansion terms should be descending and bounded. The Stokes phenomenon where the complementary solutions flip according to the Stokes and anti-Stokes lines as a result of the argument of the phase, i.e., ([3], pp. 112–117, [18,19,20,21]), which is beyond the scope of our work here, would be involved in the far asymptotic analyses globally in the complex plane. However, JWKB connection formulas, which are known to be as a result of the Stokes phenomenon (with the restricted complex path in the calculation of the integrals in (32a)) [18], are used here. Indeed, the phase integral analyses for the higher order JWKB, where the conventional connection formulas are not valid (and the integrands in (32a) are different), would obviously require a careful consideration of the Stokes phenomenon. Note that phase integral approximation with the integrands in (32a), which are called the phase integrands, and hence, with the integrals in (32a), which are called the phase integrals, give the conventional JWKB approximation studied here [18].
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