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Abstract: Traditional first order JWKB method (=: (JWKB)1) is a conventional semiclassical
approximation method mainly used in quantum mechanical systems for accurate solutions.
(JWKB)1 general solution of the Time Independent Schrodinger’s Equation (TISE) involves
application of the conventional asymptotic matching rules to give the accurate wavefunction in
the Classically Inaccessible Region (CIR) of the related quantum mechanical system. In this work,
Bessel Differential Equation of the first order (=: (BDE)1) is chosen as a mathematical model and
its (JWKB)1 solution is obtained by first transforming into the normal form via the change of
independent variable. The (JWKB)1 general solution for appropriately chosen initial values in both
normal and standard form representations is analyzed via the generalized (JWKB)1 asymptotic
matching rules regarding the S̃ij matrix elements given in the literature. Instead of applying
the common (JWKB)1 asymptotic matching rules relying on the physical nature of the quantum
mechanical system, i.e., a physically acceptable (normalizable) wavefunction, a pure semiclassical
analysis is studied via the (BDE)1 model mathematically. Finally, an application to a specific case of
the exponential potential decorated quantum mechanical bound state problem is presented.

Keywords: WKB; JWKB; asymptotic modification; asymptotic matching; exponential potential
decorated bound state problems; Schrodinger’s equation; standard form; normal form;
Bessel functions

1. Introduction

The (JWKB)1 method (we simply refer to the “n-th order JWKB (or WKB)” by a simple
abbreviation: (JWKB)n) is conventionally known to be a strong and effective semiclassical
approximation method enabling accurate analytical solutions in quantum mechanical systems,
i.e., [1–10]. Quantum mechanical systems described by the Time Independent Schrodinger’s Equation
(TISE), which is in the form of a linear second order homogenous (normal form) differential equation:

y′′(x) + f (x)y(x) = 0, (1a)

f (x) = k2(x) =
2m
h̄2 [E−V(x)] (1b)

where these terms have their usual meanings (m represents mass; h̄ represents Planck’s constant
divided by 2π; E represents total energy; and V(x) represents the potential function), have exact and
approximate (JWKB)1 solutions in the following forms:

yEX(x) =: y(x) = k1y1(x) + k2y2(x), (2a)

yJWKB(x) =: ỹ(x) = k̃1ỹ1(x) + k̃2ỹ2(x), (2b)
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where k1&k2 and k̃1&k̃2 are the arbitrary constants and, y1&y2 and ỹ1&ỹ2 are the exact and (JWKB)1

complementary solutions, respectively. These constant coefficients in the exact and (JWKB)1 general
solutions can be found from given initial values. The (JWKB)1 solution has a typical property that
both complementary (JWKB)1 solutions (and hence, the (JWKB)1 general solution) diverge at a
small region around the classical turning point where f (x) = 0 ⇒ E = V(x), i.e., [3–5]. Moreover,
the (JWKB)1 general solution in (2b) can be accurate for the Classically Accessible Region (CAR) under
some circumstances, but always needs asymptotic matching in the Classically Inaccessible Region
(CIR) for accurate (JWKB)1 solutions [3,4]. CAR is the classically accessible region where the particle
can classically exist since its potential energy is smaller than its total energy: f (x) > 0⇒ E > V(x);
and CIR is the classically inaccessible region where it cannot classically exist since its potential energy
is greater than its total energy: f (x) < 0⇒ E < V(x). Conventional (JWKB)1 asymptotic matching
rules require either of the complementary solutions in (2b) to be canceled in the CIR as follows [3,4]:

ỹm.(x) =

{
ỹ(x) for CAR: f (x) > 0
either k̃1ỹ1(x) or k̃2ỹ2(x) for CIR: f (x) < 0

, (3)

and the resultant asymptotically-matched solution should assure:

ỹm.(x)→
{

limx→−∞ ỹ(x) = 0 if CIR lies on the LHS
limx→∞ ỹ(x) = 0 if CIR lies on the RHS

, (4)

where ỹm.(x) represents the asymptotically-matched (JWKB)1 general solution. In other words, the
asymptotically diverging term in the CIR should be canceled in the general solution so that (4) can hold.
The formal (JWKB)N→∞ approximation formula involving both complementary functions in (2b) is
actually in the form of an infinite series:

ỹ∞(x) = exp

[
1
δ

N

∑
n=0

δnSn(x)

]
,

(
δ→ 0

N → ∞

)
, (5)

where δ = h̄/i → 0 for the TISE and Sn represents the expansion terms given in [3,4], and the
two-valuedness of these expansion terms gives two complementary (JWKB)N functions. However,
only the first two terms (with indices i = 0 and 1) are used in the (JWKB)1 approximation. Moreover,
(JWKB)1 gives accurate-enough solutions for slowly-changing potentials in the TISE, and a criterion
for this is given as follows [3–5]:

0 ≤ g(x) =

∣∣∣∣∣∂xxk(x)
2k3(x)

− 3 [∂xk(x)]2

4k4(x)

∣∣∣∣∣ << 1. (6)

As the potential in the TISE in (1b) gets sharper, (6) fails, and some of the higher order terms
can no longer be neglected; and the higher order JWKB approximation (= (JWKB)N>1) is required
for accurate-enough solutions [1–7]. Therefore, for a general potential V(x) involving both smooth
and sharp sub-domains in the corresponding normal form (the TISE), say SD1 (for the smooth) and
SD2 (for the sharp), respectively, the (JWKB)1 approximation always gives accurate general solution
in SD1 ∈ CAR and inaccurate (but asymptotically matchable) solutions in SD1 ∈ CIR; however,
(JWKB)N>1 is required for SD2 ∈ CAR ∪ SD2 ∈ CIR [3–5]. Such a potential with obedient (smooth
potential = SD1) and non-obedient (sharp potential = SD2) subdomains in the corresponding TISE
is studied semiclassically by the first order Bessel Differential Equation, (BDE)1, as a chosen model
differential equation here. Our aim here is to show these physical results by a successful semiclassical
analysis mathematically only (not physically).

Since the (JWKB)1 method is generally applied to the quantum mechanical systems, the main
principles of the existing asymptotic matching rules rely on the nature of the physical system under
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study, i.e., a physically-acceptable bound state wave function (solution of the TISE) in the CIR should
not asymptotically diverge to infinity (which means Equation (4)) so that it can be normalized in
x ∈ (−∞, ∞) [3–5]. This result is the physical consequence of the asymptotic matching rule in the
SD1 ∈ CIR for the (JWKB)1. Its semiclassical explanation for the Simple Linear Potential (SLP), as a
model potential where the (JWKB)1 applicability criterion is satisfied in the entire domain, was studied
in terms of the (JWKB)N expansion terms in [4]. In this work, similarly, a pure semiclassical analysis
of the asymptotic matching rules is studied for the intentionally-chosen (BDE)1 where the (JWKB)1

applicability criterion is now partially satisfied in some subdomains involving both CAR and CIR.
In other words, SD1 and SD2 coexist in the whole domain of our (BDE)1 with a successive turning
point so that CAR and CIR are guaranteed. In our analysis, appropriately-chosen associated initial
values are used to compare the general asymptotically-unmatched and -matched (JWKB)1 solutions
with the related exact general solutions. (JWKB)1 solutions of some quantum mechanical systems
involving exponential potential-decorated TISE, which is associated with the (BDE)n, were studied
by the use of the common asymptotic matching rules given in (4) in the literature [10–12]. Our aim
here is rather to search the asymptotic modifications of the (JWKB)1 approximation for the (BDE)1

mathematically via the semiclassical theories where the physical nature of the system regarding the
bound and unbound quantum mechanical system analysis is no longer interfered. We expect to find
the same asymptotically-matched (JWKB)1 wavefunction solution as in [10–12]. It is also shown here
for a specific case of the exponential potential decorated TISE in Section 5.

The (BDE)1 is given in the standard form by:

y′′ +
1
x

y′ +
(x2 − 1)

x2 y = 0, (7)

whose exact general solution in (2a) is the linear combination of two kinds of first order Bessel
functions, namely:

y1(x) = J1(x) and y2(x) = Y1(x). (8a)

Their expressions in terms of infinite series are given as follows [13,14]:

J1(x) =
∞

∑
i=0

(−1)i(x/2)1+2i

i! Γ(i + 2)
=

∞

∑
i=0

(−1)i(x/2)1+2i

i! (1 + i)!
, (8b)

Y1(x) = lim
p→1

Jp(x) cos(pπ)− J−p(x)
sin(pπ)

. (8c)

The (JWKB)1 solution of the (BDE)1 in (7) can similarly be written (when solved) as a linear
combination of two complementary functions as given in (2b). However, to follow this procedure, one
has to face with the problem arising from the fact that one cannot find the (JWKB)1 general solution
given in (2b) directly by the conventional methods since the (JWKB)1 technique including the famous
(JWKB)1 connection formulas requires (rather than that in (7)) a Linear Differential Equation (LDE) in
the normal form given in (1a). Therefore, we have to study it in the normal form with a suitable change
of variable. Complementary (JWKB)1 functions (solutions) in (2b) can then be easily found by using
the famous (JWKB)1 connection formulas given in [1–5]. Once the (JWKB)1 solution of either region
(CAR or CIR) is found, the other region can directly be determined via these connection formulas.

Therefore, our interest here can be summarized as follows: (i) to find the (JWKB)1 general
solution of the (BDE)1 whose structure is given in (2b) by using some appropriate change of variable
to transform into a normal form (which is not unique); (ii) to check its accuracy in the (sub)domains
of the CAR and the CIR where the (JWKB)1 applicability criterion in (6) holds; and (iii) to find
ways to do the correct asymptotic matching in the necessary (sub)domains by semiclassical analyses
mathematically only. Our analyses should also show that asymptotic matching is required only for
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SD1 ∈ CIR as the physical requirement (normalizability of quantum mechanical wave functions, which is in
a bound state form here).

The (JWKB)1 general solution of the (BDE)1 is obtained here after having been transformed
into the normal form via change of the independent variable so that the conventional (JWKB)1

connection formulas given in [1–5] can be used along with the associated initial values, which have been
intentionally chosen in the CAR. Comparisons with the exact solutions are being achieved by applying
these carefully-chosen common initial values. Since our asymptotic matching rule gives a criterion for
a semiclassically (not physically) acceptable (JWKB)1 solution, we have the following semiclassical
outcomes: (i) why (JWKB)1 solutions are accurate in some domains in the CAR (SD1 ∈ CAR) and why
they give inaccurate results in some other domains in the CIR (SD1 ∈ CIR); (ii) which complementary
function in the general solution in (2b) (and also in the corresponding transformed representation)
should be canceled in order to give an accurate general solution as desired by a successful asymptotic
matching. Therefore, it can be thought of as an alternative and more general semiclassical matching
rule for the present conventional (JWKB)1 theories.

In Section 2, we give the statement and re-statement of our analyses based on the
initial value-aided comparison in both standard and normal form representations. (JWKB)1

solutions of the (BDE)1 and their asymptotic matching in the transformed representations
(in the normal form) are studied in Section 3, and the same calculations for the re-transformed
representations (in the standard form) are studied in Section 4. Our semiclassical asymptotic matching
rule neither involving exact solutions nor reasoning about the physical (quantum mechanical) nature
of the system should give the correct asymptotic matching in both representations. We use the exact
solutions only to show the accuracy and reliability of our alternative pure semiclassical asymptotic
matching rule given in Section 3.2 (by Proposition 2). In Section 5, a physical application of our
semiclassical asymptotic matching rule for a specific case of the exponential potential decorated bound
state problem is presented. Preliminary work regarding the part “Calculations in The Normal Form” of
Section 3 was discussed in the 19th International Conference on Applied Mathematics (AMATH’14)-Istanbul
where some 2D analyses are available in [15]. (Note that Equations: (40) and (41a)–(41b) here are in
the corrected form when compared with the misprints in [15]).

2. Statement and Re-Statement of the Problem

2.1. Associated IVP and Statement of The Problem

The process being followed here can be stated by the following proposition:

Proposition 1. Once the (JWKB)1 general solution in the form of (2b) is obtained, one can test the accuracy
(or exactness) of this solution by comparing it with the exact general solution by applying the following
initial values:

y(d1) = y(x)
∣∣∣∣
x=d1

= α1(c), y′(d1) =
dy(x)

dx

∣∣∣∣
x=d1

= β1(c), (9)

where d1 is some real constant and c is some parameter in the domain D where the (JWKB)1 method is suitable
for (d1, c)∈ D.

For the common initial values in (9), the exact general solution in (2a) gives:

y(c, x) = k1(c)J1(x) + k2(c)Y1(x), (10)

where k1(c), k2(c) are the c dependent coefficients satisfying the initial values given in (9), and the
(JWKB)1 general solution in (2b) gives:

ỹ(c, x) = k̃1(c)ỹ1(x) + k̃2(c)ỹ2(x), (11)
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where similarly, k̃1(c), k̃2(c) are the c dependent coefficients satisfying the same initial values in (9).
Since the common initial values are defined in continuous (or discrete) spectra in the domain of
parameter c, both exact and (JWKB)1 general solutions span the whole domain with parameter c to
enable a successful comparison in two variables according to our proposition (Proposition 1) just as
in [4]. However, we have to apply an appropriate change of variable and study it in the normal form
as explained above. Note that parameter c is used in continuous spectra here, but in the application
of the bound state problem in Section 5, it is a turning point parameter involving total energy, which
is discrete.

2.2. Change of the Independent Variable and Re-Statement of the Problem

Lemma 1. Although (BDE)1 given in (7) is not in the normal form given in (1a), a simple change of the
variable in the independent variable:

x : (−∞, ∞)→ (0, ∞) , x(ρ) = e
c−ρ

2 (12)

transforms the (BDE)1 in the standard form in (7) to the following desired normal form (just as in (1a)) in a
new independent variable, ρ:

d2y(ρ)
dρ2 +

ec−ρ − 1
4

y(ρ) = 0. (13)

Proof. Our proof is based on the following neat theorem:

Theorem 1. The change of variable:

ρ(x) =
∫

exp
[
−
∫

p(x)dx
]

dx, u(ρ) = y(x) (14)

transforms the differential equation in the standard form with the independent variable x given by:

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (15)

into the normal form with the independent variable ρ as follows:

u′′(ρ) +
{

q(x) exp
[

2
∫

p(x)dx
]}

x=x(ρ)
u(ρ) = 0. (16)

Proof. Suppose we have a change of variable ρ = f (x) with u(ρ) = y(x), then the derivatives:

d
dx

=
dρ

dx
d

dρ
= f ′

d
dρ

;
d2

dx2 = f
′2 d2

dρ2 + f ′′
d

dρ

in (15) gives:
f
′2u′′ + f ′′u′ + p f ′u′ + qu = 0.

In order to eliminate the u′ term, f must satisfy:

f ′′ + p f ′ = 0,

which gives:

f ′ = exp
(
−
∫

p(x)dx
)
⇒ f =

∫
exp

(
−
∫

p(x)dx
)

dx.
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Additionally, the differential equation for u is in the form:

u′′ +
q
f ′2

u = 0,

which is equivalent with (16).

Various change of variable applications to transform the (BDE)n (with n→ 1 here) into any of
the normal forms, which is not unique, are available in the literature, i.e., [14,16,17]. However, change
of the independent variable given in (12) is suggested and followed here.

The procedure regarding the comparison of the (JWKB)1 general solution with the exact general
solution of our Initial Value Problem (IVP) here can be achieved as follows: Equation (13) can be
re-written with two variables, ρ and c, where ρ represents the changed coordinates (rather than x,
as explained above), and c (without loss of generality) represents the classical turning point ρt = c
satisfying f (c, ρ) = 0, so that:

∂2
ρy(c, ρ) + f (c, ρ)y(ρ, c) = 0, (17a)

where:

f (c, ρ) = k2(c, ρ) =
ec−ρ − 1

4
,−∞ < ρ < ∞, (17b)

whose initial values via Proposition (1) can now be used in the form:

y(c, ρ)

∣∣∣∣
ρ=d2

= α2(c);
∂y(c, ρ)

∂ρ

∣∣∣∣
ρ=d2

= β2(c). (18)

Note that our notation here is as follows: we show the initial values in the original (standard form)
system (in x) by subscript 1 (i.e., d1, α1, β1) and in the transformed (normal form) system (in ρ) by 2
(i.e., d2, α2, β2); see also Equation (9) for a comparison with (18).

Therefore, the exact and (JWKB)1 general solutions of the normal form IVP in (17a) and (17b)
with (18) takes the desired forms as in the solutions of the previous standard form IVP in (10) and (11):

y(c, ρ) = c1(c)y1(c, ρ) + c2(c)y2(c, ρ),−∞ < ρ < ∞ (19a)

where:
y1(c, ρ) = J1(x(ρ), c) and y2(c, ρ) = Y1(x(ρ), c) (19b)

and:
ỹ(c, ρ) = c̃1(c)ỹ1(c, ρ) + c̃2(c)ỹ2(c, ρ),−∞ < ρ < ∞. (20)

In this work, the results of the transformed (normal form) representation in (c, ρ) and the
re-transformed final representation in (c, x) for the associated IVP is analyzed graphically by means of
the semiclassical analysis only. Pure semiclassical asymptotic matching rules (without interference of
the physical nature of the system) proposed here should give accurate results in the corresponding
(sub)domains for both representations.

3. Calculations in the Normal Form

3.1. Exact and (JWKB)1 Solutions of the (BDE)1 in the Normal Form

There are some important points in the choice of the initial values in this comparison-based IVP
method, and it will soon be shown that the initial values in (18) can safely be chosen to be:

d2 = 0 ; α2(c) = 0 ; β2(c) = 1. (21)
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These important points can be summarized as follows:

(i) The numerical value of d2 (=constant) chosen in (18) should not correspond to the classical
turning points of the associated normal form differential equation (where f (c, ρ)|ρ=d2 = 0 in
the TISE in Equation (17a)) at which the (JWKB)1 method typically fails.

(ii) Similarly, since (JWKB)1 fails also in the CIR, d2 should not be chosen in the CIR, either.
(iii) Numerical values of either α2(c) or β2(c) chosen in (18) should not diverge to infinity for all c

in the domain of f (c, ρ).
(iv) Either α2(c) or β2(c) in (18) can be chosen as constant functions provided that solutions of the

IVP are in the forms of (19a) and (20).

Note that initial values in (18) are theoretically defined to be c-dependent functions (as a
consequence of the calculations via Proposition 1); however, we can choose them as constant functions
as a specific case of this generalization (as we do here via (21)), which is not in contradiction with the
function theories.

One can simply show that the exact general solution of the (BDE)1 in the transformed normal
form in (17a) and (17b) can be written as:

y(c, ρ) = c1(c)J1(e
c−ρ

2 ) + c2(c)Y1(e
c−ρ

2 ),−∞ < ρ < ∞ . (22)

and applying the initial values in (18), we have:{
y(c, d2) = c1(c)y1(c, d2) + c2(c)y2(c, d2) = α2(c)[
∂ρy(c, ρ)

]
ρ=d2

=
[
c1(c)∂ρy1(c, ρ) + c2(c)∂ρy2

]
ρ=d2

= β2(c)
, (23)

from which the c-dependent coefficients can be found via the applications of the initial values in (21)
to give:

c1(c) =
α2(c) ∂

∂ρ y2(c, ρ)
∣∣∣ρ=d2 − β2(c)y2(c, d2)

4(c, d2)

∣∣∣∣∣
d2 = 0

α2(c) = 0
β2(c) = 1


=

−4e−c/2Y1(ec/2)

[Y2(ec/2)−Y0(ec/2)]J1(ec/2) + [J0(ec/2)− J2(ec/2)]Y1(ec/2)
,

(24a)

and:

c2(c) =
−α2(c) ∂

∂ρ y1(c, ρ)
∣∣∣ρ=d2 − β2(c)y1(c, d2)

4(c, d2)

∣∣∣∣∣
d2 = 0
α2(c) = 0
β2(c) = 1


=

4e−c/2 J1(ec/2)

[Y2(ec/2)−Y0(ec/2)]J1(ec/2) + [J0(ec/2)− J2(ec/2)]Y1(ec/2)
,

(24b)

where the discriminant4(c, d2) (the Wronskian determinant) is defined by:

4(c, d2) =

∣∣∣∣∣ y1(c, d2) y2(c, d2)
∂

∂ρ y1(c, ρ)
∣∣∣ρ=d2

∂
∂ρ y2(c, ρ)

∣∣∣ρ=d2

∣∣∣∣∣ . (25)
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As to the (JWKB)1 general solutions, let us first see how well the (JWKB)1 applicability criterion
given in (6) are satisfied via function g(c, ρ). The following inequality should hold if the (JWKB)1

method is applicable with a good-enough accuracy for a given k(c, ρ) as in our case with (17b) here [4,5]:

0 ≤ g(c, ρ) =

∣∣∣∣ 1
2k3(c, ρ)

∂2k(c, ρ)

∂ρ2 − 3
4k4(c, ρ)

[
∂k(c, ρ)

∂ρ
]2
∣∣∣∣ << 1. (26)

In other words, one cannot expect to have accurate (JWKB)1 solutions in the region(s) where the
inequality condition (26) does not hold (since the potential in the TISE gets sharper and higher order
(JWKB)n>1 approximation is required [3–5]). If this inequality holds, it corresponds to ρ ∈ SD1, and
otherwise, it corresponds to ρ ∈ SD2 regarding the discussion in the Introduction section. Calculation
of g(c, ρ) in (26) for the (BDE)1 with (17b) gives:

0 ≤ g(c, ρ) =
1
4

eRe(ρ+c)
∣∣∣∣4eρ + ec

eρ − ec

∣∣∣∣ << 1, (27)

whose graph with the graph of f (c, ρ) for some c values is given in Figure 1. We see that the classical
turning point where f (c, ρ) = 0 is at ρt = c, the CIR where f (c, ρ) < 0 lies on the right-hand side of
this turning point and the CAR where f (c, ρ) > 0 lies on the left-hand-side of it. Therefore, we know
in advance from (3) and (4) that we should make the asymptotic matching (modification) in the CIR
(since it is located at the RHS of the turning point (ρt = c)) as follows [3,4]:

ym.(c, ρ)→ lim
ρ→∞

y(c, ρ) = 0, (28a)

ỹm.(c, ρ)→ lim
ρ→∞

ỹ(c, ρ) = 0. (28b)

Moreover, a narrow subregion not obeying (27) for each c value in the domain cannot be expected
to give accurate results by the (JWKB)1 method since it is lying at just about the turning points (as a
typical property of the (JWKB)1 method, as mentioned above). Analysis of such regions in need of
higher order JWKB approximation ((JWKB)N>1) are beyond the scope of our study.
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Figure 1. Graph of f and g functions for some c values (solid red curve: c = 0; dotted green: c = 1;
dashed blue: c = 2).
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The width of this narrow sub-region (corresponding to SD2 discussed in the Introduction section)
can be found from the solution of g(c, ρ) in (27) for real ρ and c values as follows:

SD2 : ρ ∈ (c− 0.968889, c + 1.17808). (29a)

The remaining wide region (corresponding to SD1 discussed in the Introduction section):

SD1 : −∞ < ρ << (c− 0.968889) ∪ (c + 1.17808) << ρ < ∞ (29b)

is our main concern for a good-enough (JWKB)1 general solution here.
In the (JWKB)1 calculations, the entire domain can be considered as a unification of two

neighboring regions (CAR-CIR), and if we start with the CAR located at the left-hand side of the
turning point and connect it to the CIR by using the conventional (JWKB)1 connection formulas
given in [3–5] in the reverse direction, we find the same formulas for yL(c, ρ) and yR(c, ρ) as in ([4]
(see Example 1)) (but in (c, ρ) in this section, rather than (c, x)) to give:

ỹ(c, ρ) =

{
ỹL (c, ρ), for −∞ < ρ ≤ c

ỹR (c, ρ), for c ≤ ρ < ∞
, (30)

where:

ỹL(c, ρ) =
A(c)√
k(c, ρ)

sin[η(c, ρ) + α(c)], (31a)

and:

yR(c, ρ) =
A(c)

2
√

κ(c, ρ)
cos [α(c)− π/4] e[−ζ(c,ρ)] +

A(c)√
κ(c, ρ)

sin [α(c)− π/4] e[ζ(c,ρ)]. (31b)

The constituent functions, η and ζ, in (31a) and (31b) now give:

η(c, ρ) =
∫ c

ρ k(c, ρ)dρ =
√

ec−ρ − 1 + i[ ρ−c
2 + ln(

√
1− ec−ρ) + 1], ρ < c

ζ(c, ρ) =
∫ ρ

c κ(c, ρ)dρ = − c
2 −
√

1− ec−ρ + ln[eρ/2 +
√

eρ − ec], c < ρ
(32a)

(where k and κ have the usual meanings: κ2 = −k2), and the c dependent coefficients can be found
from the applications of the initial values given in (21) as follows: ỹ(c, d2) = yL(c, d2) = α2(c)

∂ρỹ(c, ρ)

∣∣∣∣
ρ=d2

= ∂ρyL(c, ρ)

∣∣∣∣
ρ=d2

= β2(c)

 ∣∣∣∣∣
d2 = 0

α2(c) = 0
β2(c) = 1


(32b)

⇒
{

A(c) = −
√

2
(ec−1)1/4 (for 0 < c < ∞)

α(c) = ic
2 −
√

ec − 1− i ln(1 +
√

1− ec),0 < c < ∞
. (32c)

Note that ỹ(c, d2) in (32b) corresponds to yL(c, d2) according to (30), since the initial values are
chosen at ρ = d2, which is in the CAR: −∞ < d2 = 0 < c. The (JWKB)1 general solution in the other
form given in (20), which is very important in our analysis, can similarly be written as follows [3,4]:

ỹ1(c, ρ) =


2√

k(c,ρ)
sin[η(c, ρ) + π/4],−∞ < ρ ≤ c

1√
κ(c,ρ)

exp[−ζ(c, ρ)] , c ≤ ρ < ∞

ỹ2(c, ρ) =


1√

k(c,ρ)
sin[−η(c, ρ) + π/4] ,−∞ < ρ ≤ c

1√
κ(c,ρ)

exp[ζ(c, ρ)] , c ≤ ρ < ∞
, (33)



Math. Comput. Appl. 2016, 21, 41 10 of 25

where η(c, ρ) and ζ(c, ρ) are given in (32a), and applications of the initial values in (18) give:
ỹ(c, d2) = c̃1(c)ỹ1(c, d2) + c̃2(c)ỹ2(c, d2) = α2(c)[
∂ρỹ(c, ρ)

]
ρ=d2

=

[
c̃1(c)∂ρỹ1(c, ρ)

+ c̃2(c)∂ρỹ2(c, ρ)

]
ρ=d2

= β2(c)
, (34)

whose solutions for the c-dependent coefficients via the applications of the initial values in (21) give:

c̃1(c) =
α2(c)∂ρỹ2(c, ρ)

∣∣∣ρ=d2 − β2(c)ỹ2(c, d2)

4̃(c, d2)

∣∣∣∣∣
d2 = 0

α2(c) = 0
β2(c) = 1


= −

cos
[
±i c

2 +
√

ec − 1∓ i ln(1 +
√

1− ec) + π
4
]

√
2(ec − 1)1/4

,

(35a)

c̃2(c) =
−α2(c)∂ρỹ1(c, ρ)

∣∣∣ρ=d2 − β2(c)ỹ1(c, d2)

4̃(c, d2)

∣∣∣∣∣
d2 = 0

α2(c) = 0
β2(c) = 1


=

√
2 sin

[
±i c

2 +
√

ec − 1∓ i ln(1 +
√

1− ec) + π
4
]

(ec − 1)1/4 ,

(35b)

where the discriminant 4̃(c, d) (the Wronskian determinant) is similarly defined by:

4̃(c, d2) =

∣∣∣∣∣ ỹ1(c, d2) ỹ2(c, d2)
∂

∂ρ ỹ1(c, ρ)
∣∣∣ρ=d2

∂
∂ρ ỹ2(c, ρ)

∣∣∣ρ=d2

∣∣∣∣∣ . (36)

Remark 1. Note that choosing either α2 or β2 zero as we do here in (21) obviously simplifies the calculations of
the coefficients in the (JWKB)1 general solutions (see Equations (35a) and (35b)).

3.2. Asymptotic Matching of the (BDE)1 in the Normal Form

Results of our unmatched calculations are given in Figure 2. 3D graphs here are cut at appropriate
planes for a better view as much as possible. We can see that (JWKB)1 solutions diverge at some
turning points where ρ = c. However, we would see it for the missing turning points (as a typical
property of (JWKB)1 solutions for all of the classical turning points) if they were cut at smaller heights,
but then the visible ones in Figure 2 would be suppressed since their divergence width and divergence
tendency are different for different ρ = c values. What we are interested is that (JWKB)1 solutions
here are consistent with the exact solutions in the CAR where −∞ < ρ < c, but asymptotically are
not (as ρ increases in the CIR where c < ρ < ∞) as expected. Now, the question is whether we can see
this without either interference of the exact solutions (we did it in Figure 2 for now) or consulting the
present asymptotic matching rules given in (3) and (4) (it gives (28b) here) and under what conditions
they can be asymptotically-matched (in other words, what the asymptotic matching rule is).



Math. Comput. Appl. 2016, 21, 41 11 of 25

Figure 2. Results of the normal form (JWKB)1 solutions: 3D graphs of: (a) yEX(c, ρ); (b) −yEX(c, ρ);
(c) yJWKB(c, ρ); (d) −yJWKB(c, ρ); (e) ∆y(c, ρ) = yEX(c, ρ)− yJWKB(c, ρ); (f) −∆y(c, ρ) = −[yEX(c, ρ)−
yJWKB(c, ρ)].

From the JWKB theories, we know that the formal expression of the (JWKB)N approximation
written in (5) takes the form:

ỹN(c, ρ) = exp

[
1
δ

N

∑
n=0

δnSn(c, ρ)

]
, (δ→ 0) (37)

where the first three of them can be written in (c, ρ) as follows [3,4]:

S0(c, ρ) = ±
∫ √

κ2(c, ρ)dρ =: ±A0(c, ρ) =

{
S01(c, ρ) = −A0(c, ρ)

S02(c, ρ) = A0(c, ρ)
, (38a)

S1(c, ρ) = −1
4

ln κ2(c, ρ) =: A1(c, ρ) =

{
S11(c, ρ) = A1(c, ρ)

S12(c, ρ) = A1(c, ρ)
, (38b)

S2(c, ρ) = ±
∫ {

∂2 [κ2(c, ρ)
]

/∂ρ2

8κ3(c, ρ)
−

5∂
[
κ2(c, ρ)

]
/∂ρ

32κ5(c, ρ)

}
dρ (38c)

=: ±A2(c, ρ) =

{
S21(c, ρ) = −A2(c, ρ)

S22(c, ρ) = A2(c, ρ)
,
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where κ2 = −k2 has the usual meaning. Here, in Sij, the first index i = 0, 1, 2 represents the first
three JWKB expansion terms, and the second index j (=1, 2) represents two different sets due to the
two-valuedness of these expansion terms as in [4]. For the (JWKB)1 approximation, only the first two
terms (n = 0 and up to N = 1 only) in (37) are used to give the well-known (JWKB)1 formula in (c, ρ)

as follows:
ỹ1(c, ρ) = exp[ S01(c,ρ)

δ + S11(c, ρ)]

ỹ2(c, ρ) = exp[ S02(c,ρ)
δ + S12(c, ρ)]

}
, δ→ 0, (39)

which is equivalent to (33). As discussed above, according to (28b), the (JWKB)1 solution in the
CIR requires a cancellation of either ỹ1 or ỹ2 in Equation (20) for the subdomain where the (JWKB)1

applicability criterion holds (in SD1). Note that both the exact solution in (22) and the (JWKB)1

solution in (33) involve asymptotically diverging exponential terms in the CIR. As a result, this
modification can fulfill the physical requirement, according to which the corresponding quantum
mechanical system in the normal form (the TISE) does not allow any asymptotically diverging term in
the CIR (in both the exact and (JWKB)1 solution) [3–5].

Semiclassically, a successful (accurate with respect to the exact solution) (JWKB)1 solution of the
TISE should have asymptotically-descending (JWKB)1 expansion terms with indices n = 0 and n = 1,
and they should be bounded by the next term with index n = 2 (which is not involved in the (JWKB)1

solution, though) [3,4]. These requirements can be written by considering δ→= 1 to give [4]:

1 >> δS2 < S1 < S0/δ , δ→= 1. (40)

Due to the two-valuedness, we can write the following proposition to determine which term
(ỹ1 or ỹ2) exhibits the asymptotic requirements:

Proposition 2. In order to be an accurate (JWKB)1 solution (and hence, in order to be a properly
asymptotically-matched (JWKB)1 solution), the general JWKB expansion terms should satisfy the
following inequalities:

1 >> S̃21(c, ρ or ρ(x)) < S̃11(c, ρ or ρ(x)) < S̃01(c, ρ or ρ(x)) , (41a)

1 >> S̃22(c, ρ or ρ(x)) < S̃12(c, ρ or ρ(x)) < S̃02(c, ρ or ρ(x)), (41b)

where the definition of S̃ij in [4] can be generalized (so as to involve also the transformed representation of our
model (BDE)1 under study) as follows:

S̃ij(c, ρ or ρ(x)) =

{ ∣∣Sij(c, ρ or ρ(x))
∣∣ , if Sij(c, ρ or ρ(x)) ∈ C

Sij(c, ρ or ρ(x)) , if Sij(c, ρ or ρ(x)) ∈ R
. (42)

Proof. Expansion terms in a specific problem (depending on the corresponding f (c, ρ or ρ(x)) (where
f (c, ρ or ρ(x)) ⇐⇒ f (c, ρ) or f (c, ρ(x)))) in (17a) may give real or complex Sij(c, ρ or ρ(x)) (where
Sij(c, ρ or ρ(x)) ⇐⇒ Sij(c, ρ) or Sij(c, ρ(x))) functions in various (sub)domains. Therefore, the
requirements given in (41a) and (41b), which are the natural consequence of (40) exhibiting a successful
comparison according to their two-valuedness, make the proof complete.

Corollary 1. The expansion term(s) in the (JWKB)1 solutions (S01, S02, S11, and S12 = S11) in (39)
(building (33) for the (BDE)1), whose associated S̃ij(c, ρ) or S̃ij(c, ρ(x)) elements determined from (42) do not
obey (41a) and (41b), should be canceled for successful asymptotic modification.
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Inequalities in (41a) and (41b) and the definition in (42) can freely be used in both representations
independently, and what we have for the transformed coordinates in (c, ρ), which is also our main
concern here, becomes:

S̃ij(c, ρ) =

{ ∣∣Sij(c, ρ)
∣∣ , ρ < c ∵ Sij(c, ρ) ∈ C in the CAR

Sij(c, ρ), c < ρ ∵ Sij(c, ρ) ∈ R in the CIR
, (43)

since from (38a)–(38c), we have:

S01(c, ρ) = −S02(c, ρ) =

−
√

1− ec−ρ [−2
√

eρ − ec + ρeρ/2 + 2eρ/2ln(1 + e−ρ/2√eρ − ec)]

2
√

eρ − ec
, (44a)

S11(c, ρ) = S12(c, ρ) = −1
4

ln(
1− ec−ρ

4
) , (44b)

S21(c, ρ) = −S22(c, ρ) =
−6ec − 4eρ

48
√

1− ec−ρ(eρ − ec)
, (44c)

from which we see that Sij(c, ρ) ∈ C in the CAR (where ρ < c) and Sij(c, ρ) ∈ R in the CIR (where
c < ρ)). It should be noted here in advance that the result of the application of (42) for the
re-transformed representation, (c, x), will be different than that in (43) of the (c, ρ) system (see Section 4).
In order to make the comparison given in (41a) and (41b), we determine whether the elements are
real or complex similar to [4]. Therefore, the general expression (also including the SLP case in [4])
for the asymptotic matching can be written by (41a), (41b) and (42) as the generalized asymptotic
matching rule. If both (41a) and (41b) hold (we obviously see that this happens in the CAR), then the
(JWKB)1 general solution involves both (JWKB)1 complementary functions (ỹ1 and ỹ2). However,
if either of them does not hold (we obviously see this in the CIR), then the related complementary
(JWKB)1 function not obeying (either ỹ1 or ỹ2) should cancel in the (JWKB)1 general solution for that
non-obedient domain. This generalization involves also the SLP case in [4] where there is no such
subdomain, but a non-obedient domain (corresponding to the CIR). Note that (39) with (38a)–(38c)
has an implication that Si1 (and hence, S̃i1) contributes to ỹ1, whereas Si2 (and hence, S̃i2) contributes
to ỹ2. Therefore, the non-obedient Si1 terms require a cancellation of ỹ1, and similarly, non-obedient
Si2 terms require a cancellation of ỹ2 in the related subdomains.

Graphs of the S̃i1(c, ρ) and S̃i2(c, ρ) for some c values are given in Figure 3. Comparing with
the graph of g(c, ρ) given in Figure 1, we can see that (JWKB)1 solutions should be consistent with
the exact solutions except for the non-obedient narrow regions given by (29a). We can also see that
both (41a) and (41b) hold for the CAR, whereas the CIR does not hold for both and, hence, needs a
cancellation in the non-obedient S̃i1 term (left column graphs) in this region (c < ρ < ∞). This is the
most remarkable consequence of our pure (JWKB)1 analysis via Figure 3 without any interference of
either the exact solutions or physical nature of the corresponding quantum mechanical system. In
Figure 3, we have non-obedient S̃i1 functions, requiring a cancellation of Si1, which contributes to ỹ1

(exhibiting exponentially-increasing behavior) in the CIR.
As a result, the necessary modifications according to our pure semiclassical analyses for the

asymptotic matching of the (BDE)1 in the transformed normal form representation should be
as follows:

• Modification of the exact general solution in (22) (which will be used to compare with the modified
(JWKB)1 solutions):

y(m.)(c, ρ) =

{
y,−∞ < ρ ≤ c (CAR)
c1(c)J1(e

c−ρ
2 ),c ≤ ρ < ∞ (CIR)

. (45)
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Note that both exact and (JWKB)1 solutions in (22) and (31b) of (30) (or (33) of (20)) have the
common form of exponentially-increasing terms in the CIR, c < ρ < ∞, where a cancellation
according to (41a), (41b) and (42) is required for both exact and (JWKB)1 solutions (see also (47a)
below for a comparison).

• Modification of the (JWKB)1 general solution in (30):

ỹ(m.)(c, ρ) =

{
ỹL , for −∞ < ρ ≤ c (CAR)
ỹ(m.)

R , for c ≤ ρ < ∞ (CIR)
, (46a)

where:

ỹ(m.)
R (c, ρ) =

A(c)
2
√

κ(c, ρ)
cos [α(c)− π/4] Exp [−ζ(c, ρ)] . (46b)

• Modification of the (JWKB)1 general solution in the other form (see Equation (20) via (33)):

ỹ(m.)(c, ρ) = c̃1(c)ỹ1(c, ρ) + c̃2(c)ỹ
(m.)
2 (c, ρ), (47a)

where:

ỹ(m.)
2 (c, ρ) =

{ 1√
k(c,ρ)

sin[−η(c, ρ) + π/4] ,−∞ < ρ ≤ c (CAR)

0 , c ≤ ρ < ∞ (CIR)
. (47b)
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Figure 3. Graphs of S̃i,j=1 (left column) and S̃i,j=2 (right column) (where i = 0, 1, 2) in the normal form
in (c, ρ) for some specific c values (solid-red curves: f or i = 0; dotted-green curves: f or i = 1; and
dashed-blue curves: f or i = 2).
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The superscript “(m.)” shows successfully asymptotically-matched solutions here. Error graphs
in 3D given in Figure 4 show the success of these asymptotic matchings when compared with the error
graphs in Figure 2e,f. These asymptotic modifications are the results of our generalized asymptotic
matching rules suggested here in (41a), (41b) and (42), which is a semiclassical establishment of the
existing asymptotic matching rules in (28a) and (28b) (or (3) and (4)). Therefore, they can be used
as an alternative, more general and pure semiclassical (without interfering either exact solutions or
physical nature of the system) asymptotic modification rules. It is now clear that after the modification,
the anomalies in the CIR have been removed successfully for the subdomain where the (JWKB)1

applicability criterion holds according to (29b) as has been aimed by the asymptotic modification
(matching) process.

Figure 4. 3D error graphs of asymptotically-modified normal form (JWKB)1 general solutions:
(a) ∆ym.(c, ρ) = ym.

EX(c, ρ)− ym.
JWKB(c, ρ); (b) −∆ym.(c, ρ) = −[ym.

EX(c, ρ)− ym.
JWKB(c, ρ)].

4. Calculations in the Standard Form

4.1. Exact and (JWKB)1 Solutions of the (BDE)1 in the Standard Form

One can obviously find the exact general solutions in the re-transformed variable representation,
in (c, x), either by substituting (12) in the reverse form:

ρ : (0, ∞)→ (−∞, ∞) , ρ(x) = c− 2 ln x (48)

in (22) or, alternatively, by directly solving (7) with the following associated initial values in (9) (see also
Remark 2 for the relations of the initial values in both equivalent representations):{

y(x)
∣∣∣x=d1=ec/2 = α1(c) = 0

y′(x)
∣∣∣x=d1=ec/2 = β1(c) = −2e−c/2

, (49)

where prime denotes derivative with respect to x.
Note that implicitly equivalent definitions: y(c, x) =: y(c, ρ(x)), f (c, x) =: f (c, ρ(x)) and

g(c, x) =: g(c, ρ(x)) can be used to refer to the functions y, f , or g expressed in variables
c and x; however, it is clear that they are actually not equal to each other explicitly,
i.e., f (c, ρ(x)) = f (c, ζ)|ζ→ρ(x) 6= f (c, ζ)|ζ→x = f (c, x). Therefore, explicit definitions in (c, x) are
shown with a double tilde for S̃ij as given in Equation (52) (see the notations in Equations: (42)
and (52) for a comparison).

Although y in the latter case is in single variable (in x only), we have the general solution of the
associated IVP in two variables (in (c, x)) as required since the corresponding initial values in (49)
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are c-dependent to give both x and c-dependent y results in the exact general solution. However, we
do not have two alternatives for finding an accurate general solution by the (JWKB)1 method since
this method is not appropriate for the (BDE)1 in the standard form given in (7) as discussed above.
Therefore, in order to find the (JWKB)1 general solution in the standard form representation in (c, x),
we have to substitute (48) into the (JWKB)1 general solution obtained in the transformed (normal form)
representation (in (c, ρ)) in (30) (or (20) for the other form) with the related c-dependent coefficients
given in (32c) (or (35a) and (35b) for the other form). In other words, yJWKB(c, x) =: yJWKB[c, ρ(x)] =
y(c, ζ)|ζ→ρ(x). Now, both exact and (JWKB)1 solutions are consistent in the domain of x except for a
small region around x = 1 (SD2). It is the typical property of the (JWKB)1 method discussed above
since ρ = c is the classical turning point where f (c, ρ) in Equations (17a) and (17b) is zero, and it
corresponds to x = 1 (since limρ→cx(ρ) = limρ→ce(c−ρ)/2 = 1 for ∀c ∈ R).

Moreover, a detailed analysis shows also the following: according to the graph of f [c, ρ(x)] and
g[c, ρ(x)] in Figure 1, the CIR involves the subdomain, 0 < x < 1 for ∀c ∈ R, where we should
have the inaccurate (JWKB)1 solution, but that can be asymptotically matched by the asymptotic
matching rules we have suggested in (41a), (41b) and (42), since this subregion lies within the region
where the (JWKB)1 applicability criterion holds (SD1). For the unmodified solutions, we can see
that we really have inaccurate (JWKB)1 solutions as expected in this CIR, and we can consider it in
two subregions: as x → 1 and as x → 0, roughly. From Figure 1, we see that the (JWKB)1 method
is useless as x → 1, since limx→1g[c, ρ(x)] > 1, and hence, the (JWKB)1 applicability criterion does
not hold (SD2). However, for the other subregion as x → 0, we have limx→0g[c, ρ(x)] < 1, where
we can expect to have accurate (JWKB)1 solutions (SD1), provided that some successful asymptotic
modification is applied. Let us determine these two subdomains (SD1 and SD2) corresponding to the
CIR more precisely: the non-obedient narrow region for the (JWKB)1 method around ρ = c given
in (29a) corresponds to (via (48)):

x ∈ (0.554858, 1.62327) f or ∀c ∈ R. (50a)

Similarly, the obedient region (for the (JWKB)1 approximation) given in (29b) in ρ corresponds to
(via (48)):

0 < x << 0.554858∪ 1.62327 << x < ∞ f or ∀c ∈ R, (50b)

where we can obtain accurate (JWKB)1 solutions if we make a proper asymptotic matching. In other
words, we have two subdomains (or literally, related subregions: SR1 and SR2):

SD1 : 0 < x << 0.554858 (appropriate for the (JWKB)1) and
SD2 : 0.554858 < x < 1 (inappropriate for the (JWKB)1)

where CIR = SD1 ∪ SD2, and we are interested in SD1 in our (JWKB)1 analysis since the (JWKB)1

applicability criterion holds for it. Therefore, we can obviously apply the asymptotic matching rules
suggested in (41a), (41b) and (42) to modify the CIR: 0 < x < 1, so that we can obtain accurate results
(as we should do according to the consequence of the (JWKB)1 applicability criterion in Equation (50b)).
3D graphs regarding our standard form solutions are given in Figure 5 (see the anomalies around
x = 0 and x = 1 as shown above). The asymptotically-matchable narrow subdomain SD1 is studied in
the next subsection.
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Figure 5. Results of the standard form (JWKB)1 solutions: 3D graphs of: (a) yEX(c, x); (b) yJWKB(c, x);
(c) ∆y(c, x) = yEX(c, x)− yJWKB(c, x); (d) −∆y(c, x) = −[yEX(c, x)− yJWKB(c, x)].

4.2. Asymptotic Matching of the (BDE)1 in the Standard Form

Since limρ→∞x = 0+, we can directly write the modifications for the asymptotic matching given
in (28a) and (28b) (via (4)) in x coordinates as follows:

For the general exact solution:

y(m.)
EX [c, ρ(x)] = ym.[c, ρ(x)] =: y(m.)

EX [c, ρ(x)]→ lim
x→0+

yEX [c, ρ(x)] = 0. (51a)

For the general (JWKB)1 solution:

y(m.)
(JWKB)1

[c, ρ(x)] = ỹm.[c, ρ(x)] =: ỹm.(c, x)→ lim
x→0+

yJWKB[c, ρ(x)] = 0. (51b)

Another way to do the right asymptotic modification in the x-system, which is our main concern
as a pure semiclassical asymptotic matching here, is sure to use the reverse transformation in (48) via
the asymptotically-modified results in the ρ-system obtained in (45), (46a) and (47a). However, for
now, let us apply our asymptotic matching rules to see the accuracy of the (JWKB)1 solution directly
in the x-system. If the results obtained in the (c, x)-system are accurate (or inaccurate), we should also
see it by the suggested asymptotic matching rules in (41a), (41b) and (42).

A careful inspection shows that, substitution of (48) in the Sij(c, ρ) results (in Equations (44a)–(44c))
gives complex Sij(c, ρ(x)) functions for both CAR and CIR. Therefore, the expression of S̃ij(c, ρ(x))
in (42) simply gives:

˜̃Sij(c, x)→ S̃ij(c, ρ(x)) =
∣∣Sij(c, ρ(x))

∣∣ , for all x ∈ R (52)

which is obviously different than what was found in (43) for the (c, ρ) system even obtained by
the use of the same definition in (42). Here, we used the double tilde to represent the S̃ function
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in the re-transformed coordinates, namely ˜̃Sij(c, x) = S̃ij(c, ζ)|ζ→ρ(x) = S̃ij(c, ρ(x)), since they
would not be equal to each other mathematically if we used both with the same function name
(S̃ij(c, x) 6= S̃ij(c, ρ(x)).

We can now test the conditions in (41a) and (41b) in (c, x) coordinates to see whether our (JWKB)1

general solution needs asymptotic matching somewhere according to our S̃ij-based semiclassical

analysis without interference of the exact solutions. Graphs of the ˜̃Si1(c, x) and ˜̃Si2(c, x) for some
specific c values are given in Figure 6 from which we can see that final (JWKB)1 solutions in (c, x) do

not need asymptotic modification in 1 < x < ∞ (since both ˜̃Si1(c, x) and ˜̃Si2(c, x) obey (41a) and (41b)

via the use of (42) in this region). However, the non-obedient ˜̃Si1(c, x) terms (and hence, ỹ1 in (2b)),
which should be removed from the (JWKB)1 general solution in the SD1 (for a successful asymptotic
matching), are clearly seen in the graphs given in Figure 6. In other words, according to the asymptotic
matching rules suggested here (in Equations (41a) and (41b) via the use of (42)), we necessarily have to
do the following asymptotic modifications for a correct asymptotic matching:

ỹ(m.)(c, x) =: ỹ(m.)(c, ρ(x)) = c̃1(c)ỹ1(c, ρ(x)) + c̃2(c)ỹ
(m.)
2 (c, ρ(x)) (53a)

where:

ỹ(m.)
2 (c, ρ(x)) =

{ 1√
k(c,ρ(x))

sin[−η(c, ρ(x)) + π
4 ],1.62327 << x < ∞ (⊂ CAR)

0 ,0 < x < 0.554858 (⊂ CIR)
(53b)

which is similarly equivalent to (51b). Remember that SD2 lying inside the CIR cannot be
asymptotically matched as discussed above.
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Figure 6. Graphs of ˜̃Si,j=1 (left column) and ˜̃Si,j=2 (right column) (where i = 0, 1, 2) in the standard
form in (c, x) for a specific c value, c = 1, (solid-red curves: f or i = 0; dotted-green curves: f or i = 1;
and dashed-blue curves: f or i = 2).
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Similarly,

y(m.)(c, x) =:

{
y(c, ρ(x)),1.62327 << x < ∞ (⊂ CAR)
y(m.)(c, ρ(x)),0 < x < 0.554858 (⊂ CIR)

(54a)

where y(c, ρ(x)) can be written by the substitution of (48) in (22) to give:

y(c, ρ(x)) = c1(c)J1(x) + c2(c)Y1(x),
y(m.)(c, ρ(x)) = c1(c)J1(x)

(54b)

which is equivalent to (51a). Results showing the enhancement in our asymptotic matching for the
standard form representation are given in Figure 7 for a specific case of c = 1.
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Figure 7. Enhancement in the standard form (JWKB)1 solution by our asymptotic modifications in the
SD1 for c = 1.

Remark 2. Point d2 at which the initial values are defined in the (c, ρ) representation (normal form)
with (18)–(21) corresponds to d1 at which the initial values are defined in the original (c, x) system (standard
form) with (9)–(49) via the change of variable given in (12) or (48). Therefore, d1, d2 and, hence, the initial
values in both representations have the following relations:

From (48),

d2 ∈ (−∞, ∞)→ d1 = exp(
c− d2

2
) ∈ (0, ∞) (55)

and consequently, [
y(x) = α1(c)

]
x=d1

=

[
y(ρ) = α2(c)

]
ρ=d2

⇒ α1(c) = α2(c) , (56a)

dy(x)
dx

∣∣∣∣
x=d1

= β1(c) =
dy(ρ)

dρ

dρ(x)
dx

∣∣∣∣
x=d1

= −
[

2
x

β2(c)
]

x=d1

⇒ β1(c) = −
[ 2

x β2(c)
]

x=d1
. (56b)

One can check that initial values chosen (in (18)–(21) and (49)) also exhibit this relationship.
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5. A Physical Application: Exponential Potential Decorated Bound State Problem

It might be interesting to test the success of our alternative asymptotic matching rules in a real
quantum mechanical (physical) problem corresponding to the normal form representation via the TISE.
Therefore, let us apply these calculations to a specific case of the exponential potential decorated bound
state problem studied in [10], from which we have the followings (note that we use different symbols
here so that we can refer to the calculations in this work, namely: {ψ, x, X, y} in [10] are replaced by
{y, τ, ρ, x} here, respectively):

For the TISE in (1a) and (1b), but in variable τ, the potential under study is given by:

V(τ) = −V0e−α|τ| =

{
−V0e−ατ , 0 ≥ τ

−V0eατ , 0 ≤ τ
(V0 > 0, α > 0, E < 0,−∞ < τ < ∞). (57)

Necessarily, E < 0 for the bound states and by a simple change of variable:

ρ = ατ, (58)

we have the TISE in (1a) and (1b) in ρ:

V(ρ) = −V0e−|ρ| =

{
−V0e−ρ, 0 ≥ ρ

−V0eρ, 0 ≤ ρ
(V0 > 0, E < 0,−∞ < ρ < ∞). (59)

Now, the definitions of dimensionless a and b:

a =

√
8mV0

h̄2α2
and b =

√
−8mE
h̄2α2

(60)

give the TISE in ρ with:

f (a, b, ρ) =

{
f1(a, b, ρ ≥ 0) = a2e−ρ−b2

4
f2(a, b, ρ ≤ 0) = a2eρ−b2

4

. (61)

Then, the change of the independent variable:

x = ae−ρ/2 (62)

gives the b-th order Bessel differential equation, (BDE)b, namely:

y′′ +
1
x

y′ +
(x2 − b2)

x2 y = 0 (63)

whose exact general solution is the linear combination of two kinds of the b-th order Bessel functions
(similar to (19a) and (19b)), namely:{

yEX(a, b, ρ ≥ 0) = c+1 (a)Jb(ae−ρ/2) + c+2 (a)Yb(ae−ρ/2)

yEX(a, b, ρ ≤ 0) = c−1 (a)Jb(aeρ/2) + c−2 (a)Yb(aeρ/2)
. (64)

Note that, second complementary solutions for both regions in (64) are given in [10] (instead
of Yb(aeρ/2)) as J−b(aeρ/2), since Jb(aeρ/2) and J−b(aeρ/2) are two linearly independent solutions for
non-integer Bessel functions (just like Jb(aeρ/2) and Yb(aeρ/2)). Indeed, from Bessel theories, we
have [13,14]:

Yb(x) =

 limp→b
Jp(x) cos(pπ)−J−p(x)

sin(pπ)
, i f b ∈ Z

Jb(x) cos(bπ)−J−b(x)
sin(bπ)

, i f b /∈ Z
, (65)
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and for also integer b values, as in our study here with b = 1, we can use Equation (64) as a general
expression involving both integer and non-integer b values [13,14]. Now, (22) takes the form:{

yEX(c, ρ ≥ 0) = c+1 (c)J1(e
c−ρ

2 ) + c+2 (c)Y1(e
c−ρ

2 )

yEX(c, ρ ≤ 0 ) = c−1 (c)J1(e
c+ρ

2 ) + c−2 (c)Y1(e
c+ρ

2 )
, (66)

and its comparison with (64) gives the following relation:

ae−ρ/2 = e
c−ρ

2 , ρ ≥ 0

aeρ/2 = e
c+ρ

2 , ρ ≤ 0

}
⇒ a =

√
ec . (67)

Now, let us take b = 1 as a special case and apply the asymptotic matching rules we have already
found in the previous sections. Our restriction then becomes:

b = 1→ En = − h̄4α4

16m2 , (68)

so that we have:

f (c, ρ) = f (a, b, ρ)

∣∣∣∣ a→
√

ec

b→ 1


=

{
f1(c, ρ ≥ 0) = ec−ρ−1

4
f2(c, ρ ≤ 0) = ec+ρ−1

4
, (69)

which is just as the form we have been using here as in (17a) and (17b). Additionally, its solution
from (64) gives:

y(c, ρ) = y(a, b, ρ)

∣∣∣∣ a→
√

ec

b→ 1


=

{
y(c, ρ ≥ 0) = c+1 (c)J1(e

c−ρ
2 ) + c+2 (c)Y1(e

c−ρ
2 )

y(c, ρ ≤ 0) = c−1 (c)J1(e
c+ρ

2 ) + c−2 (c)Y1(e
c+ρ

2 ) (70)

which is just the same as our result in (22). Our intention here is not to find accurate (JWKB)1

eigenenergies (En) and eigenfunctions (ỹn) where some correction terms (like Friedrich-Trost (F-T)
corrections) are involved [8,11,12], but to apply our asymptotic matching rules under the assumption
in (68) where the problem simplifies to the (BDE)1 being studied here.

Conventional asymptotic modification rules in (4) were applied in [10] to give:

y(τ → ±∞) = y(a, b, ρ→ ±∞) = 0⇒ c+2 (a) = c−2 (a) = 0, (71a)

which means:
y(c, ρ→ ±∞) = 0⇒ c+2 (c) = c−2 (c) = 0 (71b)

in our calculations. We have already shown half of it for f (c, ρ) = f1(c, ρ), ρ ≥ 0 by our alternative
semiclassical asymptotic matching rule in (41a), (41b) and (42) via Figure 3, but let us see it for (69) in
the whole domain explicitly:

Now, expansion terms in (38a)–(38c) for (69) give just the same as (44a)–(44c) for ρ ≥ 0, but these
results require ρ→ −ρ for ρ ≤ 0, namely:

S01(c, ρ) = −S02(c, ρ) = −
√

1−ec−ρ [−2
√

eρ−ec+ρeρ/2+2eρ/2ln(1+e−ρ/2√eρ−ec)]

2
√

eρ−ec , ρ ≥ 0

−
√

1−ec+ρ [−2
√

e−ρ−ec−ρe−ρ/2+2e−ρ/2ln(1+eρ/2
√

e−ρ−ec)]

2
√

eρ−ec , ρ ≤ 0
, (72a)

S11(c, ρ) = S12(c, ρ) =

{
− 1

4 ln( 1−ec−ρ

4 ), ρ ≥ 0
− 1

4 ln( 1−ec+ρ

4 ), ρ ≤ 0
, (72b)
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S21(c, ρ) = −S22(c, ρ) =


−6ec−4eρ

48
√

1−ec−ρ(eρ−ec)
, ρ ≥ 0

−6ec−4e−ρ

48
√

1−ec+ρ(e−ρ−ec)
, ρ ≤ 0

, (72c)

from which (42) gives:

S̃ij(c, ρ) =

{ ∣∣Sij(c, ρ)
∣∣ , for |ρ| < c (since Sij(c, ρ) ∈ C in the CAR)

Sij(c, ρ) , for c < |ρ| (since Sij(c, ρ) ∈ R in the CIR)
. (73)

Graphs of functions f and g in both representations are given in Figure 8, from which we can see
that (JWKB)1 solutions are consistent with the exact solutions, except for the non-obedient narrow
regions (from (29a)):

|ρ| ∈ (c− 0.968889, c + 1.17808), (74a)

and the remaining wide regions (from (29b)):

−∞ < |ρ| << (c− 0.968889) ∪ (c + 1.17808) << |ρ| < ∞ (74b)

need asymptotic matching (SD1). Graphs of S̃i1(c, ρ) and S̃i2(c, ρ) for some c values are given in
Figure 9. We can obviously see that both (41a) and (41b) hold in the CAR simultaneously, but they
do not hold in the CIR simultaneously and, hence, are in need of a cancellation in the CIR. Here, we
have non-obedient S̃i1 term (and hence, a cancellation of ỹ1) for 0 < c < ρ < ∞ (see the left column in
Figure 9) and S̃i2 term (and hence, a cancellation of ỹ2) for −∞ < ρ < −c < 0 (see the right column
in Figure 9) in these CIRs. This is because, as stated above, (39) with (38a)–(38c) has an implication
that Si1 (or S̃i1) contributes to ỹ1 and Si2 (or S̃i2) contributes to ỹ2. Therefore, the non-obedient Si1
terms requiring a cancellation of ỹ1 for 0 < c < ρ < ∞ and Si2 terms requiring a cancellation of ỹ2 for
−∞ < ρ < −c < 0 give the same right asymptotic matching as given in (71b) of [10].
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Figure 8. Graph of f and g functions of the exponential potential decorated bound state problem for
some c values (solid-red curves: c = 0; dotted-green curves: c = 1; dashed-blue curves: c = 2). First
row: normal form representation corresponding to the Time Independent Schrodinger’s Equation
(TISE); second row: standard form representation corresponding to the (BDE)1.
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Figure 9. Graphs of S̃i,j=1 (left column) and S̃i,j=2 (right column) (where i = 0, 1, 2) of the exponential
potential decorated bound state problem (which corresponds to the normal form representation via the
TISE with the related exponential potential) under study in the normal form representation in (c, ρ) for
some specific c values (solid-red curves: f or i = 0; dotted-green curves: f or i = 1; and dashed-blue
curves: f or i = 2).

6. Conclusions

In this work, the (BDE)1 has been chosen as a mathematical model for a pure semiclassical
analysis (without interference of the physical nature of the system) since there exist subdomains where
the (JWKB)1 applicability criterion both holds (in SD1) and fails (in SD2). The hereby presented
generalized asymptotic matching rules regarding the S̃ij matrix elements obtained from the (JWKB)N
expansion terms show that the (JWKB)1 general solution of the (BDE)1 for carefully chosen initial
values needs asymptotic matching in the transformed (normal form) representation in the CIR where
the (JWKB)1 applicability criterion holds (SD1). Moreover, there is no need for asymptotic matching
in the CAR where the (JWKB)1 applicability criterion holds (again SD1). These results, obtained by
our pure semiclassical analysis, are consistent with the present conventional asymptotic matching
rules given in (3) and (4) via [3,4], which is a natural consequence of the physical nature of the related
quantum mechanical system (the normalizability requirement of quantum mechanical wave functions).
The generalized asymptotic matching rules suggested in (41a) and (41b) with the generalized definition
of S̃ij in (42) are the results of our pure semiclassical analyses where the physical nature of the system
is not interfered.
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As explained in the work in detail, physics (nature) requires asymptotic matching to the full
mathematical solution. Physical systems of second order are generally of two kinds:

(i) IVP : y′′ + f (ρ)y = 0, y′(ρ0) = k1, y(ρ0) = k2

(ii) BVP : y′′ + f (ρ)y = 0, y(ρ0) = k1, y(ρ0) = k2

(here, both are given in the normal form). We have two initial values or boundary values for
both as common. However, physics require a third initial value or a third boundary value (or more
correctly, an asymptotic constraint) given in (3) and (4), which is called asymptotic matching since
x0 → ±∞ in (4). In this work, it is studied and proven mathematically via the JWKB theories
stating that JWKB expansion terms should be descending and bounded as given and studied in [3,4].
Therefore, the main idea here is the semiclassical requirement that (JWKB)N expansion terms should
be asymptotically decreasing as the term index increases and bounded by the (N + 1)-th indexed
term as stated in [3,4]. The two valuedness of the (JWKB)N expansion terms as given in (38a)–(38c)
enables definitions of two different sets (corresponding to two complementary functions as in (39))
according to (42) for them so that the semiclassical requirements for the asymptotic matching can
be tested for these two sets accordingly. Equation (39) shows that Si1 (hence, S̃i1 in our comparison
function) contributes to ỹ1, and similarly, Si2 (hence, S̃i2 in our comparison function) contributes to ỹ2.
Therefore, any violation of S̃i1 in (41a) requires a cancellation of ỹ1, and any violation of S̃i2 in (41b)
requires a cancellation of ỹ2 in the related non-obedient (sub)domain provided that the (JWKB)1

applicability criterion holds (= SD1). The same definition in (42) gives (43) in the transformed normal
form representation and (52) in the re-transformed standard form representation, respectively. When
they are used in our alternative asymptotic matching rules given in (41a) and (41b), this gives consistent
results with the present asymptotic matching rules given in (3) and (4). Moreover, our alternative
analyses enable a correct determination of which complementary function (solution) and where in
the semiclassically solvable (sub)domain to cancel. As a result, asymptotic matching rules suggested
here gives enhanced (JWKB)1 solutions for the specifically chosen (BDE)1 in both normal form
and standard form representations. Since both standard and normal forms correspond to different
sub-domains obeying the JWKB applicability criterion in (6) and (29b) being for the normal form
and (50b) being for the standard form), both should require different asymptotic matching results
for these different domains. In deed, our suggested asymptotic matching rule has explained both
correctly and has given the correct results as the existing asymptotic matching rules given in (3) and
(4). Applications of our pure semiclassical asymptotic matching rules to the exponential potential
decorated bound state problem presented in Section 5 also give the same asymptotically-matched
solutions as in [10], where the conventional asymptotic matching rules in (3) and (4) are applied. It
can also be reminded here that the addition of an asymptotic constraint as a third initial value or
boundary value does not change the correctness of the mathematical solution for sure, but matches
it to the physical requirement of nature. We here have not applied the physical nature of the system,
but only semiclassical theories, and the result is the correct asymptotic matching as nature requires.
It may provide us deeper understanding of the relationship between the requirements of nature and
mathematics. Therefore, the asymptotic matching rules in (41a), (41b) and (42) obtained by our pure
semiclassical analyses here without applying (or consulting) any of the physical (quantum mechanical)
nature of the system seem to be an alternative (and also more general) equivalent asymptotic matching
rules besides the present conventional rules given in (3) and (4) via [3,4] in the real domain. It should be
noted here that we here studied the asymptotic matching near the turning point locally via the essential
principle that the JWKB expansion terms should be descending and bounded. The Stokes phenomenon
where the complementary solutions flip according to the Stokes and anti-Stokes lines as a result of
the argument of the phase, i.e., ([3], pp. 112–117, [18–21]), which is beyond the scope of our work
here, would be involved in the far asymptotic analyses globally in the complex plane. However, JWKB
connection formulas, which are known to be as a result of the Stokes phenomenon (with the restricted
complex path in the calculation of the integrals in (32a)) [18], are used here. Indeed, the phase integral
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analyses for the higher order JWKB, where the conventional connection formulas are not valid (and
the integrands in (32a) are different), would obviously require a careful consideration of the Stokes
phenomenon. Note that phase integral approximation with the integrands in (32a), which are called
the phase integrands, and hence, with the integrals in (32a), which are called the phase integrals, give
the conventional JWKB approximation studied here [18].
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