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Abstract: Image interpolation is one of key contents in image processing. We present an interpolation
algorithm based on a rational function model with constraint parameters. Firstly, based on
the construction principle of the rational function, the detection threshold is selected through
contour analysis. The smooth and non-smooth areas are interpolated by bicubic interpolation and
general rational interpolation, respectively. In order to enhance the contrast in non-smooth areas and
preserve the details, the parameter optimization technique is applied to get optimal shape parameters.
Experimental results on benchmark test images demonstrate that the proposed method achieves
competitive performance with the state-of-the-art interpolation algorithms, especially in image details
and texture features.
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1. Introduction

Interpolation acts as a bridge between the continuous world and the discrete one. As an
important technique, it pervades many applications [1,2]. A digital image is not an exact snapshot
of reality, it is only a discrete approximation. Image interpolation focuses on the issue which obtains
a high-resolution image from a low-resolution one. Image interpolation plays an important role in
image processing, and it is widely used in various fields, such as aerospace, medical, military, scientific
research, communications, remote sensing satellite, television, film production, etc.

Generally speaking, the interpolation technique is used in nearly every geometric transformation,
such as translation, scaling, rotation, etc. Such operations are utilized in many commercial
digital image processing software [3]. The main issue of image interpolation is to maintain
texture details and edge structure, while eliminating blocking artifacts, texture disorder, and
other visual artifacts. Quantities of image interpolation methods have been proposed in several
articles [4–13]. In these existing methods, linear filters (as the simplest technique) have been widely
used in image interpolation, such as the bilinear, bicubic [4], and cubic spline algorithms [5]. Although
these traditional methods are effective, they have disadvantages in ringing artifacts, blurred details, and
so forth. Because the image can be affected by many factors, including the light, natural background,
and the characteristics of its own texture, all in all, the relationship between pixels is not linear [14].

With ever-increasing capacity of computation power, many image interpolation methods have
been proposed in the past few years. Jeong et al. [15] presented a multi-frame example-based
super-resolution (SR) algorithm using locally directional self-similarity. Jha et al. [16] proposed
a new image interpolation method using adaptive weights based on inverse gradients and distances
from the pixels used in prediction. In [17], an edge-guided interpolation approach was proposed,
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which improved the accuracy of interpolation by detecting edges and fitting them with templates.
In [18], predetermined edge patterns were used to obtain optimal parameters. As a consequence,
according to the original images’ edge structures, high quality interpolated images could be obtained.
Edge-Directed interpolation (EDI) methods have been presented [19]. Said and Pearlman [20] proposed
a source model which focuses on the integrity of detected edges and modifies the interpolation to adapt
to the original one. Then, a New Edge-Directed Interpolation (NEDI) adaptive method was presented,
which obtains better subjective quality than EDI. Based on the geometric duality between the
low-resolution covariance and the high-resolution covariance, the relationship of high-resolution
covariance and the low-resolution one can be estimated [6]. A soft-decision interpolation technique
(SAI) was proposed, which estimates unknown pixels in groups [13].

We dedicated our research to the integration of image interpolation and human visual perception.
However, how to design the interpolation algorithm that combines with visual perception for the
purpose of getting an “ideal” interpolated image is still a challenge for image interpolation methods.
In this paper, a new image interpolation method based on rational function model is proposed.
Considering the speed and quality of the interpolated image, the input image will be classified into
smooth areas and non-smooth areas. For smooth areas, a bicubic interpolation is used to lower
time complexity. For non-smooth areas, the proposed optimal rational interpolation function is used
to improve the accuracy of interpolation. The bicubic interpolation function is a special form of
the same interpolation function model on the condition that the parameters are chosen with some
specific values. Namely, parameters α and β equal 1. The mean value of nine interpolation data
points is the threshold, and is used for non-smooth area detection. Image interpolation, processing,
region detection, different region interpolation, and visual contrast enhancement are all based on one
rational interpolation model. Experimental results show good image quality results in both edges and
details. The algorithm framework is shown in Figure 1.

Figure 1. Algorithm framework.

This paper is organized as follows: Section 2 introduces the fundamental principles of the
rational function model and its properties. Section 3 presents the proposed interpolation algorithm.
Experimental results are shown for demonstration in Section 4. Section 5 concludes this paper.

2. A Bivariate Rational Interpolation

In recent years, the univariate rational spline interpolations with parameters have been
developed [21–23]. These kinds of interpolation splines have a simple mathematical representation
and can preserve property of interpolated curve and surface. Motivated by the univariate rational
spline interpolation, the bivariate rational interpolation with parameters based on the function values
has been studied in [24–29]. The interpolation function has a piecewise explicit rational mathematical
representation with parameters, and it can be represented by its basis.

Let Ω : [a, b; c, d] be the plane region, let f (x, y) be a bivariate function defined in the region Ω, and
let a = x1 < x2 < · · · < xn < xn+1 = b and c = y1 < y2 < · · · < ym < ym+1 = d be the knot sequences.
Denote f (xi, yj) by fi,j; then, {(xi, yj, fi,j), i = 1, 2, . . . n, n + 1; j = 1, 2, . . . m, m + 1} are the given set of
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data points. For any point (x, y) ∈ [xi, xi+1; yj, yj+1] in the xy-plane, let hi = xi+1 − xi, θ = x−xi
hi

,

and lj = yj+1 − yj, η =
y−yj

lj
. For each y = yj, j = 1, 2, · · ·m + 1, construct the x-direction

interpolation curve; this is given by

P∗i,j(x) =
p∗i,j(x)

q∗i,j(x)
, x ∈ [xi, xi+1], i = 1, 2, · · · n− 1, (1)

where

p∗i,j(x) = (1− θ)3αi,j fi,j + θ(1− θ)2V∗i,j + θ2(1− θ)W∗i,j
+ θ3 fi+1,j,

q∗i,j(x) = (1− θ)αi,j + θ,

and

V∗i,j = (αi,j + 1) fi,j + αi,j fi+1,j,

W∗i,j = (αi,j + 2) fi+1,j − hi∆∗i+1,j,

with αi,j > 0, and ∆∗i,j = ( fi+1,j − fi,j)/hi. This interpolation is called the rational cubic interpolation
based on function values which satisfies

p∗i,j(xi) = fi,j, p∗i,j(xi+1) = fi+1,j,

p∗
′

i,j(xi) = ∆∗i,j, p∗
′

i,j(xi+1) = ∆∗i+1,j.

Obviously, the interpolation is a local one, it is defined in the interval [xi, xi+1] and depends on
the data at three points {(xr, yj, fr,j), r = i, i + 1, i + 2} and the parameter αi,j.

For each pair (i, j), i = 1, 2, · · · n− 1 and j = 1, 2, · · ·m− 1, using the x-direction interpolation
function P∗i,j(x), define the bivariate rational interpolating function Pi,j(x, y) on [xi, xi+1; yj, yj+1]

as follows
Pi,j(x, y) =

pi,j(x,y)
qi,j(y)

,

i = 1, 2, · · · , n− 1; j = 1, 2, · · · , m− 1
(2)

where

pi,j(x, y) = (1− η)3βi,jP∗i,j(x) + η(1− η)2Vi,j

+ η2(1− η)Wi,j + η3P∗i,j+1(x),

qi,j(y) = (1− η)βi,j + η,

and

Vi,j = (βi,j + 1)P∗i,j(x) + βi,jP∗i,j+1(x),

Wi,j = (βi,j + 2)P∗i,j+1(x)− lj∆i,j+1(x),

with βi,j > 0, and ∆i,j(x) = (P∗i,j+1(x)− P∗i,j(x))/lj.
In the subregion [xi, xi+1; yj, yj+1], the function Pi,j(x, y) is called a bivariate rational interpolation

function based on function values. It depends on the data at nine points {(xr, ys, fr,s), r = i, i + 1, i + 2,
s = j, j + 1, j + 2} and which satisfies

Pi,j(xr, ys) = f (xr, ys), r = i, i + 1, s = j, j + 1.
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Consider the equally spaced knots case; namely, for all i = 1, 2, · · · , n and j = 1, 2, · · · , m, hi = hj
and li = lj. The interpolating function Pi,j(x, y) is C1 in the whole interpolating region. The bivariate
rational interpolating function Pi,j(x, y) can be expressed as follows:

Pi,j(x, y) =
2

∑
r=0

2

∑
s=0

ωrs(θ, αi; η, β j) fi+r,j+s (3)

where

ωrs(θ, αi; η, β j) = ωr(θ, αi)ωs(η, β j)

ω0(θ, αi) =
(1− θ)2(αi + θ)

(1− θ)αi + θ

ω1(θ, αi) =
θ(1− θ)αi + 3θ2 − 2θ3

(1− θ)αi + θ

ω2(θ, αi) =
−θ2(1− θ)

(1− θ)αi + θ
.

The terms ωrs(θ, αi; η, β j), r = 0, 1, 2; s = 0, 1, 2 are called the basis of the bivariate interpolation,
which satisfy

2

∑
r=0

2

∑
s=0

ωrs(θ, αi; η, β j) = 1.

From Equation (3), the interpolating function Pi,j(x, y) is defined by a given set of data points
{ fi,j, fi+1,j, fi+2,j; fi,j+1, fi+1,j+1, fi+2,j+1; fi,j+2, fi+1,j+2, fi+2,j+2}. Applying the interpolating function,
we can construct a patch through points fi,j, fi+1,j, fi,j+1, fi+1,j+1.

3. Basic Algorithms

Generally speaking, there is always a contradiction between the processing speed of interpolation
and the resultant quality in image interpolation. The commonly used methods [6,7,13] usually adopt
different interpolation functions for different regions Furthermore, the different region detection
algorithm is not related to the interpolation. Namely, the used methods are not based on the
interpolation function. Because the image has natural attributes, its inherent attributes are inevitably
affected by using the commonly used methods. Thus, we present a novel interpolation model to
solve this problem. Moreover, the processing speed of interpolation and the resultant quality are all
preserved using the new algorithm.

3.1. Image Non-Smooth Areas Detection

In this paper, a variety of textures and edges of the image area are called non-smooth areas.
The smooth areas contain abundant detailed information, and have critical effects on the image quality.
First of all, the non-smooth areas are detected.

From the rational function, a patch can be constructed given nine data points. All of them have
different effects on the patch through their weights ωrs(θ, α; η, β). When the weights present great
differences from each other, the patch becomes more and more non-flat, considered as non-smooth
area in the interpolated image. As mentioned above, the data points play a different role in the
structure processing. The drawing and analyses of contours depends on the decision of the sign.
On this basis, contour analysis is used to detect the non-smooth areas. The detection model is based on
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the interpolation model. As mentioned above, an interpolated patch is constructed using nine data
points. The points play different roles in the structure processing. The vertices of the patch are the key
points. The other data points are auxiliary. As the detection threshold, the mean value of the nine data
points can be used for detecting the non-smooth areas in the interpolated image. Namely, for any
given set of data ∑2

r=0 ∑2
s=0 fr,s, r, s = 0, 1, 2, the detection threshold λ is given as follows:

λ =
∑2

r=0 ∑2
s=0 fr,s

9
.

Let δ = fr,s − λ, r, s = 0, 1; from the contours drawing and analyses, if δ are all
nonpositive and have nonnegative sign, the region is regarded as non-smooth. Otherwise it is
smooth. Basically, the detection threshold is selected based on the rational function construction.
The non-smooth detection results are shown in Figure 2.

(a) (b)

Figure 2. Region detection. (a) Original image; (b) Non-smooth areas.

3.2. Image Interpolation

An image is a set of values on a 2D plane. It is affected by the material of the object surface, the
physical appearance of background objects , light strength and angle, and noise of the imaging progress.
These data are purely random and can be constructed completely. The value of these data are
gradually changed. In general, iit is nonlinear. As an nonlinear function, bivariate rational
interpolation is a good choice to implement image interpolation. As is well known, interpolation
processing speed is an important standard to measure an interpolation algorithm. Bivariate rational
interpolation with parameters has nice properties. If the parameters equal to 1, it is a bicubic
interpolation function. In this case, it may be written as

Pi,j(x, y) =
2

∑
r=0

2

∑
s=0

ωrs(θ, η) fi+r,j+s (4)

where

ωrs(θ, η) = ωr(θ)ωs(η)

and

ω0(θ) = θ3 − θ2 − θ + 1,

ω1(θ) = −2θ3 + θ2 + θ,

ω2(θ) = θ3 − θ2.
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From Section 3.1, an image should be divided into multiscale edge regions and non-multiscale
edge areas by using region detection. In order to reduce computational complexity, the multiscale
edge regions and non-multiscale edge areas are interpolated by bicubic interpolation and rational
interpolation, respectively. As follows, image interpolation based on the rational function model
is introduced.

Given a m× n image Im,n, let fi,j(0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1) be the gray value of the i line
and the j row of Im,n. The pixel coordinate is (i, j). Denote a two-dimension discrete signal by Im,n.
At the integer points it is simple. Denote the data point by the gray value of each pixel. Then, the
continuous interpolating surface can be constructed based on a bivariate rational interpolation method
for a discrete image. For the random point fi,j in an image, our concern is how to construct the white
points in a rectangular cell. First, the interpolation data must be ascertained. The data points are
∑2

r=0 ∑2
s=0 fr,s, r, s = 0, 1, 2. Then, based on the αi and β j values, we can obtain the interpolation

function P1(x, y) by substitution of the interpolation data into Equation (3). Finally, the function values
of the white points are calculated by proper x and y.

3.3. Parameters Optimization

For image interpolation based on the rational function, the following optimal equation is derived
from Equation (3).

max grad(Pi,j(x, y)) = max

√
∂P
∂x

2
+

∂P
∂y

2

then

max grad(Pi,j(x, y)) .
= max (|∂P

∂x
|+ |∂P

∂y
|).

Denote
F(θ, αi; η, β j) = |

∂P
∂x
|+ |∂P

∂y
|

the following equation is derived.

max F(θ, αi; η, β j) s.t. αi > 0, β j > 0 (5)

the parameters αi, β j are satisfied with the above equation as the optimal solution. The optimal
parameters αi, β j are denoted by α∗i , β∗j .

It must be pointed out that some interpolated image pixels are varied by selecting parameters
α∗i , β∗j . Pi,j(x, y) defined by 3 should satisfy the boundary property, and the interpolating patch can
be modified when the parameters are different. Furthermore, for the interpolated image, it also
satisfies 0 ≤ Pi,j(x, y) ≤ 255. For the case of the maximum value of Pi,j(x, y) > 255, assume that
Pi,j(x, y) reaches its maximum value P∗i,j(x, y) at point (x∗, y∗) in subregion [xi, xi+1; yj, yj+1]; i.e.,
Pi,j(x∗, y∗) > 255, Pi,j(x, y) should be redefined by

255×
Pi,j(x, y)

Pi,j(x∗, y∗)
.

4. Experiments

Experiments were conducted to evaluate the effectiveness of the interpolation algorithm.
We compare three state-of-the-art interpolation algorithms, including NEDI [6], DFDF [7], SAI [13].
All experiments are performed with software provided by the authors of these algorithms. In our
experiments, the four gray images shown in Figure 3 are applied to test visual effects. Table 1 gives



Math. Comput. Appl. 2016, 21, 48 7 of 11

the Peak Signal to Noise Ratio (PSNRs) and Structural Similarity Index (SSIMs) generated by all
algorithms for the images. It can be seen that the proposed method has a higher average PSNR and
SSIM among the compared algorithms.

(a) (b) (c) (d)

Figure 3. Images used for quantitative comparison. (a) Light-tower; (b) Dollar; (c) Cliff; (d) Barbara.

Table 1. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) results of the
reconstructed high-resolution (HR) images by different methods.

NEDI DFDF SAI Our Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Light-tower 22.78 0.7937 23.25 0.7971 22.86 0.8005 23.37 0.8009
Dollar 19.10 0.8084 19.21 0.8066 19.24 0.8055 19.36 0.8118
Cliff 25.08 0.7115 25.05 0.7184 25.16 0.7233 25.22 0.7268
Barbara 22.35 0.8513 23.64 0.8766 23.54 0.8635 24.12 0.8801
Milkdrop 30.97 0.9156 34.36 0.9196 32.39 0.9176 34.48 0.9216
Couple 28.65 0.9391 29.06 0.9413 29.32 0.9443 29.14 0.9420
Goldhill 26.60 0.7645 26.69 0.7678 26.92 0.7772 26.92 0.7750
Door 33.12 0.9446 33.08 0.9447 31.16 0.9467 33.20 0.9478
Sky 28.41 0.9154 28.95 0.8608 29.05 0.9364 28.96 0.9378
Boat 25.82 0.8941 25.54 0.8378 25.43 0.9120 25.61 0.8973

Average 25.22 0.8207 25.74 0.8225 25.58 0.8326 25.98 0.8384

NEDI: new edge-directed interpolation; SAI: a soft-decision estimationtechnique for adaptive image
interpolation; DFDF: directional filtering and data fusion.

We performed tests on natural images to show the improvements of the proposed method in
the visual effects. Figures 4–6 show the comparison of interpolation in test images. In Figure 5, all of
the interpolation algorithms had aliasing in texture, but our method gave less. In Figure 6, we can
see that NEDI suffers from some noisy interpolation artifacts. The SAI method also suffers from
noisy artifacts. Our method had better performance in maintaining image features. As shown in
Figures 7 and 8, shape loss and noisy points. were introduced in images of a door and fence by the use
of NEDI and SAI. The DFDF algorithm also introduced some errors of edge and texture. In general,
experimental results on benchmark test images demonstrate that the proposed method achieved very
competitive performance with the state-of-art interpolation algorithms, especially in image details and
texture features.
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(a) (b)

(c) (d) (e)

Figure 4. (a) Original Image; (b) NEDI; (c) DFDF; (d) SAI; (e) Proposed Method.

(a) (b)

(c) (d) (e)

Figure 5. (a) Original Image; (b) NEDI; (c) DFDF; (d) SAI; (e) Proposed Method.



Math. Comput. Appl. 2016, 21, 48 9 of 11

(a) (b)

(c) (d) (e)

Figure 6. (a) Original Image; (b) NEDI; (c) DFDF; (d) SAI; (e) Proposed Method.

(a) (b)

(c) (d) (e)

Figure 7. (a) Original Image; (b) NEDI; (c) DFDF; (d) SAI; (e) Proposed Method.

(a) (b)

(c) (d) (e)

Figure 8. (a) Original Image; (b) NEDI; (c) DFDF; (d) SAI; (e) Proposed Method.
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5. Conclusions

Although image interpolation is not the most advanced research subject, research results in this
field have come forth continuously in recent years. They are usually based on relatively simple theory
and have broad applicability However, the interpolation expression forms are various. Therefore,
according to the advantages of the different interpolation methods, we can take advantage of these
methods and get good results. However, these combination methods have complicated forms, and do
not meet the needs of timeliness and practicality. Basically, these methods often neglect the natural
image attributes. The main contributions of our method are not combination, but adopting function
constructed in Section 2. In this process, non-smooth area detection, image interpolation in different
regions, and visual perception are merged into one interpolation function model. The image details
and texture features are preserved by using this algorithm, and it can help to describe the image
more objectively; hence, more features of the image can be preserved.
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