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Abstract: To solve large scale linear equations involved in the Fast Multipole Boundary Element
Method (FM-BEM) efficiently, an iterative method named the generalized minimal residual method
(GMRES(m)) algorithm with Variable Restart Parameter (VRP-GMRES(m)) algorithm is proposed.
By properly changing a variable restart parameter for the GMRES(m) algorithm, the iteration
stagnation problem resulting from improper selection of the parameter is resolved efficiently. Based
on the framework of the VRP-GMRES(m) algorithm and the relevant properties of generalized inverse
matrix, the projection of the error vector rm+1 on rm is deduced. The result proves that the proposed
algorithm is not only rapidly convergent but also highly accurate. Numerical experiments further
show that the new algorithm can significantly improve the computational efficiency and accuracy.
Its superiorities will be much more remarkable when it is used to solve larger scale problems.
Therefore, it has extensive prospects in the FM-BEM field and other scientific and engineering
computing.
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1. Introduction

Mathematical models of partial differential equations are usually established for many problems
in scientific and engineering fields. After discretization, the equations can be concluded as the solution
of a large scale linear system of equations, which can be expressed as

Ax = b, A ∈ Rn×n, x , b ∈ Rn, (1)

where the coefficient matrix A is nonsingular. The generalized minimal residual (GMRES(m)) algorithm
based on the Galerkin principle is the most successful method to solve Equation (1). At present, it has
served as the fast solver for the Fast Multipole Boundary Element Method (FM-BEM). FM-BEM is a
combination of the fast multipole expansion method (FMM) and the traditional boundary element
method (BEM). FMM was first proposed by Greengard and Rokhlin [1,2] to accelerate the evaluation of
interactions of large ensembles of particles governed by the Laplace’s equation. The main idea behind
the FMM is a multipole expansion of the kernel in which the connection between the collocation point
and the source point is separated. Many research works have been published since then to improve
and extend the applicability of the FMM [3–7]. Recently, Gu and Chen [8,9] applied the FMM to
accelerate the solutions of the regularized meshless method (RMM) for large-scale three-dimensional
elasticity problems and extended the singular boundary method (SBM) for the solution of 3D problems
in linear elasticity. With the FMM and iterative solver GMRES(m), we are able to construct the
FM-BEM. In the last several decades, the FM-BEM has been developed and used successfully for
solving many large-scale applied mechanics problems. Shen and Liu put forward an adaptive fast
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multipole boundary element method for three-dimensional acoustic wave problems [10]; Wang and
Yao came up with a new version of FMM for the numerical analysis of mechanical properties in 3D
particle reinforced composites [11]; Gui and Huang presented an optimization FMM-BEM for a 3D
Elastic Problem [12] and more work on these topics can be found in References [13–15]. In addition,
the GMRES(m) algorithm has become the research focus in many fields [16–18]. Recent computations
showed that it was very effective when the coefficient matrix A was well-conditioned or not severely
ill-conditioned [19,20]. Otherwise preconditioned techniques must be applied [21–24].

For the GMRES(m) algorithm, the selected parameter m is fixed during the whole iterative process;
therefore, the selection of m is one of the key factors for the algorithm implementation. Research shows
that a small value of m may result in slow convergence or no convergence, while a large value
of m will cause too much of a memory requirement. Therefore, it is a difficult problem for many
scholars to properly select the parameters m. Recently, some researchers have tried to overcome these
difficulties by changing the restart parameter m in the GMRES(m) algorithm. Baker tried to improve
the convergence by selecting an arbitrary parameter m. In addition, he tried it by determining the
parameter m according to the residual vector norm ratio of two successive iterations [25–27]. However,
the effect was not so good. Peairs determined the value of m by a reinforcement learning method,
which indicated that proper changing of m could improve the computational efficiency. However, it
was only a kind of machine learning method. Thus, it had certain limitations [28].

In this paper, the GMRES(m) algorithm combined with the FM-BEM is studied, and a new kind
of GMRES(m) algorithm with Variable Restart Parameter (VRP-GMRES(m) algorithm) is presented.
By appropriately changing a variable restart parameter, the new algorithm can effectively avoid many
disadvantages caused by improper selection of parameter m in the GMRES(m) algorithm. At the same
time, the computational efficiency and accuracy will be greatly improved.

2. Fundamental Theory for the GMRES(m) Algorithm

2.1. Galerkin Principle

Give an arbitrary initial value x0 ∈ Rn. Let x = x0 + z, and then Equation (1) is equivalent to

Az = r0, (2)

where r0 = b− Ax0 indicates the initial residual vector. Suppose that Km and Lm are two m-dimensional
Krylov subspaces in Rn, and they are formed by

Km=span
{

r0, Ar0 , · · · , Am−1r0

}
,

Lm = span
{

Ar0 , A2r0, · · · , Amr0

}
=AKm.

Let v1 , v2 , · · · , vm and w1 , w2 , · · · , wm be the bases of Km and Lm, respectively; Vm = {vi}m
i=1

and Wm = {wi}m
i=1. For the solution of Equation (2) , the Galerkin principle can be described as

follows: give a fixed m > 0, and find an approximate solution zm ∈ Km, so that (r0 − Azm)⊥Lm,
namely, (r0 − AVmym)⊥Lm or (r0 − AVmym, wi) = 0 , ym ∈ Rm.

2.2. Arnoldi Process

The Arnoldi process can be described as follows:

1. For the given m > 0 and x0 ∈ Rn, compute v1 = r0
/
‖r0‖, r0 = b− Ax0 .

2. When k = 1, 2, · · · , m, compute vk+1 = Avk −
k
∑

i=1
hi,kvi, hi,k = (Avk, vi) and hk+1,k = ‖vk+1‖,

respectively. It is obvious that vk+1⊥vi (i = 1, 2, · · · , k) .
3. If hk+1,k = 0, then vk+1 = 0 and stop calculation. Otherwise, let vk+1 = vk+1

/
hk+1,k.
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The Arnoldi process has the following important property:

Theorem 1. In the Arnoldi process, let Vm+1 = (Vm | vm+1 ) and Hm =

[
Hm

hm+1,meT
m

]
, and then we have

the following relationship [28]:

AVm = VmHm + hm+1,mvm+1eT
m,

AVm = Vm+1Hm , VT
m+1Vm+1 = I,

(3)

where Hm = (hij)m is an upper Hessenberg matrix, eT
m = (0, 0, · · · , 1) ∈ Rm , and I is an m + 1 order

identity matrix .

2.3. GMRES(m) Algorithm

Theorem 2. Suppose that A ∈ Rn×n and Lm = AKm, x = x0 + z = x0 + Vmy. Then, the approximate
solution zm obtained from the Galerkin principle makes the residual ‖ r0 − Az‖ be at a minimum in the Krylov
subspace Km, and the residual satisfies [29]

‖ r ‖ = ‖ b− Ax ‖ = ‖ r0 − Az ‖ =
∥∥βe1 − Hmy

∥∥ , (4)

where β = ‖r0‖ , e1 = (1, 0, · · · , 0)T ∈ Rm+1 .

Theorem 2 indicates that min
zm∈Km

‖ r0 − Azm‖ = min
y∈Rm

∥∥βe1 − Hmy
∥∥ . The basic thought of the

GMRES(m) algorithm is to give a fixed restart parameter m and compute zm by an iterative procedure
so that ‖ rm‖ = ‖ r0 − Azm‖ < ε, ∀ε > 0 .

The GMRES(m) algorithm includes the following steps:

1. Give a fixed integer m << n and an initial value x(0) ∈ Rn, compute r(0) = b− Ax(0), and let
r0 = r(0).

2. Obtain {vi}m
i=1 and Hm through the Arnoldi process .

3. Solve the least squares problem

min
y∈Rm

∥∥βe1 − Hmy
∥∥

to obtain ym, where e1 = (1, 0, · · · , 0)T ∈ Rm+1. Then, compute zm = Vmym.

4. Form an iterative process x(k+1) = x(k) + zm or r(k+1) = r(k) − Azm , k = 0, 1, 2, · · · .
5. If

∥∥∥r(k+1)
∥∥∥ < ε, then x∗ ≈ x(k+1) and stop calculation. Otherwise, let r0 = r(k+1), and go to 2.

For the GMRES(m) algorithm, arbitrary selection of parameter m cannot guarantee convergence.
In fact, appropriate change of m can effectively improve the convergence and avoid the phenomenon
of slow convergence or even no convergence.

3. VRP-GMRES(m) Iterative Algorithm and Convergence Analysis

3.1. VRP-GMRES(m) Algorithm

The basic thought of the VRP-GMRES(m) algorithm is to appropriately change the restart
parameter m and carry out iterative procedures so that the residual vector satisfies ‖rm‖ =

‖r0 − Azm‖ < ε, ∀ε > 0. It includes the following main steps:

1. Give an integer m << n and an initial value x(0) ∈ Rn, compute r(0) = b − Ax(0), and let
r0 = r(0).

2. Carry out the Arnoldi process and obtain {vi}m
i=1 and Hm.
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3. Solve the least squares problem

min
y∈Rm

∥∥βe1 − Hmy
∥∥ (5)

and get ym. Then, compute zm = Vmym.

4. Form an iterative process by x(k+1) = x(k) + zm, k = 0, 1, 2, · · · Compute r(k+1) = b− Ax(k+1).
5. If

∥∥∥ r(k+1)
∥∥∥ < ε. Then, x∗ ≈ x(k+1) and stop. If

∥∥∥ r(k+1)
∥∥∥ ≥ ε, then let r0 = r(k+1), m = m + 1,

and go to 2.

For the VRP-GMRES(m) algorithm, slow convergence or no convergence rarely occurs. However,
the memory requirement will grow with the increase of parameter m , which can be cleverly avoided.
When m increases to some extent and the residual norm reduces to a proper value, the parameter m
can be fixed and the GMRES(m) algorithm will be carried out.

3.2. Convergence Analysis

Definition 1. Suppose that A ∈ Cm×n, X ∈ Cm×n, at the same time if
AXA = A,
XAX = X,
(AX)H = AX,
(XA)H = XA,

then X is the pseudo inverse matrix of A, denoted A+, namely X = A+ [30].

Theorem 3. Suppose that A ∈ Cm×n, and A = BC is the maximum rank decomposition of A, then
X = CH(CCH)−1(BHB)−1BH is the pseudo inverse matrix of A.

Proof of Theorem 3.

AXA = BCCH(CCH)−1(BHB)−1BHBC = BC = A,

XAX = CH(CCH)−1(BHB)−1BHBCCH(CCH)−1(BHB)−1BH

=CH(CCH)−1(BHB)−1BH = X.

Hereto, the first two Moore Penrose equations are established. The following is to verify the other
two Moore Penrose equations:

(AX)H = [BCCH(CCH)−1(BHB)−1BH]H = [B(BHB)−1BH]H

= B(BHB)−1BH = AX,

(XA)H = [CH(CCH)−1(BHB)−1BHBC]H = [CH(CCH)−1C]H

= CH(CCH)−1C = XA,

From Definition 1, the matrix X is a pseudo inverse matrix of A.

Corollary 1. Suppose that A ∈ Cm×n is a matrix with full column rank. Then, we have

A+ =
(

AH A
)−1

AH. (6)

Theorem 4. Suppose that rm and rm+1 are the error vector of the m cycle and m + 1, respectively. Then, the
following relationship is established:

cos 〈rm, rm+1〉 =
‖rm+1‖2
‖rm‖2

.
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Proof of Theorem 4. For the VRP-GMRES(m) algorithm, when m = m + 1 , the subspace Km becomes

Km+1=span {rm, Arm, · · · , Amrm} .

From the Arnoldi process, {vi}m+1
i=1 and H̄m+1 are obtained, where v1 = rm

β , β = ‖rm‖2,

cos 〈rm, rm+1〉 = cos 〈v1, rm+1〉 =
vT

1 rm+1
‖rm+1‖2

.

From Equation (5), the least squares solution ym+1 = H̄+
m+1 (βe1) , e1 ∈ Rm+2 is obtained, where

H̄+
m+1 is a real matrix with full column rank. According to Equation (6), we have

H̄+
m+1 =

(
H̄T

m+1H̄m+1

)−1
H̄T

m+1.

Then,

ym+1 =
(

H̄T
m+1H̄m+1

)−1
H̄T

m+1 (βe1) , e1 ∈ Rm+2. (7)

On the other hand, we have

rm+1 = b− Axm+1 = b− A (xm + Vm+1ym+1) = rm − AVm+1ym+1.

Accrording to Equation (3), we have AVm+1 = Vm+2H̄m+1. Then, we have

rm+1 = rm −Vm+2H̄m+1ym+1 = βv1 −Vm+2H̄m+1ym+1.

Thus,
‖rm+1‖2

2 = (βv1 −Vm+2H̄m+1ym+1)
T(βv1 −Vm+2H̄m+1ym+1)

= β2 − βvT
1 Vm+2H̄m+1ym+1 − βyT

m+1H̄T
m+1VT

m+2v1

+yT
m+1H̄T

m+1VT
m+2Vm+2H̄m+1ym+1

= β2 − βhTym+1 − (βyT
m+1H̄T

m+1VT
m+2v1

−βyT
m+1H̄T

m+1VT
m+2Vm+2H̄m+1

(
H̄T

m+1H̄m+1
)−1H̄T

m+1e1)

= β2 − βhTym+1 = β(β− hTym+1).

At the same time,

vT
1 rm+1 = vT

1 (βv1 −Vm+2H̄m+1ym+1) = β− hTym+1

(hT indicates a vector formed by the first line elements in H̄m+1), follows

cos 〈rm, rm+1〉 =
β− hTym+1√
β(β− hTym+1)

=
‖rm+1‖2
‖rm‖2

. (8)

Theorem 5. For the VRP-GMRES(m) algorithm, let E = ‖rm‖2, Ē = ‖rm+1‖2 , and therefore Ē < E.

Proof of Theorem 5. In Equation (8), cos 〈rm, rm+1〉 ≤ 1, namely,

‖rm+1‖2
‖rm‖2

≤ 1.
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Because hTym+1 6= 0, it follows

Ē = ‖rm+1‖2 < ‖rm‖2 = E. (9)

4. Numerical Experiments

In this section, three different types of numerical experiments are given to illustrate the
validity and feasibility of the VRP-GMRES(m) algorithm. In Example (1) and Example (2), take
x(0) = (0, 0, · · · , 0)T ∈ R(n−1)2

as the initial value and ε = 1× 10−8 as the convergence criterion.

Example 1. Consider the following one-dimensional Wave equation:
utt = 4uxx, 0 < x < 1, 0 < t < 0.5,
u (0, t) = u (1, t) = 0, 0 ≤ t ≤ 0.5,
u (x, 0) = f (x) = sin (πx) + sin (2πx) , 0 ≤ x ≤ 1,
ut (x, 0) = g (x) = 0, 0 ≤ x ≤ 1.

(10)

As is shown in Figure 1a, the exact solution is u (x, t) = sin (πx) cos (2πt) + sin (2πx) cos (4πt),
where u (x, t) indicates the amplitude. For the problem expressed by Equation (10), n equall divisions
along the x-direction and t-direction can be obtained by the central difference method.

Ax = b, A ∈ R(n−1)2×(n−1)2
, x, b ∈ R(n−1)2

. (11)

Equation (11) is solved by the VRP-GMRES(m) algorithm, and the numerical results are shown in
Figure 1b. From Figure 1, the numerical solution is consistent with the exact solution.
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Figure 1. Amplitude distribution (n = 10, m = 7). (a) exact solution; and (b) numerical solution.

Equation (11) is solved by the GMRES(m) algorithm and VRP-GMRES(m) algorithm, respectively.
When n = 10, m = 7, the condition number is 56.5079. For the GMRES(m) algorithm, iterative
stagnation occurs after 9 iterations, and the residual norm is 1.4099. However, for the VRP-GMRES(m)
algorithm, the residual norm has reduced to 1.4230 × 10−14 after only 3 iterations, as is shown in
Figure 2. The comparison of absolute errors in the iterative process is shown in Figures 2 and 3.
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Figure 2. Absolute errors after three iterations. (a) generalized minimal residual method (GMRES)(m)
algorithm; (b) Variable Restart Parameter(VRP)-GMRES(m) algorithm.
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Figure 3. Absolute errors after two iterations. (a) GMRES(m) algorithm; (b) VRP-GMRES(m) algorithm.

From Figures 2 and 3, for the same number of iterations, we can see that the absolute errors
generated from the VRP-GMRES(m) algorithm are much smaller than those from the GMRES(m)
algorithm. With the increase in the number of iterations, the errors from the VRP-GMRES(m) algorithm
reduces much faster. It shows that the new algorithm not only has higher computational accuracy,
but can also speedily converge.

The parameters n and m are taken as different values and the calculation results from the
two algorithms are compared. Tables 1–4 show the iteration times, computation time, computational
accuracy and convergence, respectively. From Tables 1–3, we can see that the new algorithm is fast
convergent, stable, highly accurate and effective. From Tables 1–4, the selection of parameter m is very
important for the GMRES(m) algorithm, and larger or smaller value of m will result in an algorithm
failure. However, it has no effect on the VRP-GMRES(m) algorithm because the variable restart
parameter m can partly reduce the sensitivity of m.

Table 1. Comparison of iteration times for the two algorithms.

n m GMRES(m) VRP-GMRES(m)

10 8 11 2
20 19 3 2
30 29 3 3
40 39 15 12
50 54 79 14
60 85 164 14
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Table 2. Comparison of computation times for the two algorithms.

n m GMRES(m) [s] VRP-GMRES(m) [s]

10 8 0.029415 0.018254
20 19 0.028982 0.013442
30 29 0.092144 0.086172
40 39 1.381825 0.847108
50 54 23.539635 4.683026
60 85 157.340531 14.662790

Table 3. Comparison of computational accuracy for the two algorithms.

n m GMRES(m) VRP-GMRES(m)

10 8 2.1069 × 10−9 2.9235 × 10−14

20 19 1.1751 × 10−15 1.1984 × 10−15

30 29 2.0093 × 10−12 5.4751 × 10−14

40 39 2.4647 × 10−9 2.1327e × 10−10

50 54 3.3092 × 10−11 2.0783 × 10−11

60 85 2.0593 × 10−9 6.5913 × 10−13

Table 4. Comparison of convergence for the two algorithms.

n m GMRES(m) VRP-GMRES(m)

10 8 stagnated Convergent
20 19 stagnated Convergent
30 29 stagnated Convergent
40 39 stagnated Convergent
50 54 stagnated Convergent
60 85 stagnated Convergent

In fact, the condition number of coefficient matrix A keeps growing with the increase of n.
When n = 60, it reaches 2.1098 × 103, which makes Equation (11) become severely ill-conditioned.
From Table 1, under the same accuracy, the number of iterations for the GMRES(m) algorithm is
11.7 times larger than that for the VRP-GMRES(m) algorithm, and the computation time is 10.7 times
larger. With the increase of computing scale, the VRP-GMRES(m) algorithm will be much more
effective, and its engineering application prospect is much wider.

Example 2. Consider the following two-dimensional Poisson equation:{
uxx + uyy = 2

(
3x + x2 + y2) , (x, y) ∈ Ω,

u (x, y) = x2 (x + y2)+ 2, (x, y) ∈ ∂Ω,
(12)

where Ω = { (x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }.

The exact solution is u (x, y) = x2 (x + y2)+ 2, which indicates a temperature distribution function.
The temperature distribution is shown in Figure 4a. For the problem expressed by Equation (12), n equal
divisions along the x-direction and t-direction can be obtained by a five-point difference scheme.
After discretization, a linear equation can be obtained, which is expressed as follows:

Ax = b, A ∈ R(n−1)2×(n−1)2
, x, b ∈ R(n−1)2

. (13)
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Take n = 40, m = 10, Equation (13) is solved by the VRP-GMRES(m) algorithm , and the temperature
distribution is shown in Figure 4b. From Figure 4, the numerical solution is consistent with the
exact solution.
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Figure 4. Temperature distribution (n = 40, m = 10). (a) exact solution; and (b) numerical solution.

When m = 10, Equation (13) is solved by the GMRES(m) algorithm and VRP-GMRES(m)
algorithm, respectively. With the increase of the computational scale, there are few changes in the
iteration times for the VRP-GMRES(m) algorithm, and it is much lower than that for the GMRES(m)
algorithm, as shown in Figure 5a. Thus, the new algorithm has higher computational efficiency.
At the same time, it has higher computational accuracy, as is shown in Figure 5b. In addition, the
total computation time for the VRP-GMRES(m) algorithm is much less than that for the GMRES(m)
algorithm, as is shown in Table 5.
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Figure 5. Comparison of the computational efficiency and accuracy under different meshes for
the two algorithms (m = 10). (a) comparison of computational efficiency; and (b) comparison of
computational accuracy.

Table 5. Comparison of computation times under different meshes for the two algorithms (m = 10).

n GMRES(m) [s] VRP-GMRES(m) [s]

40 1.580847 0.829866
50 5.702555 2.445235
60 16.965306 2.445235
70 43.204335 14.072318
80 100.077638 27.731674
90 189.671624 51.908418

Example 3. Consider an elastic body A, B, C (with sides of 5 mm, 4 mm, 3 mm) in contact with each other.
The model and the discrete meshes are shown in Figure 6. The discrete data are shown in Table 6. Bodies A,
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B and C are of the same material with Young modulus E = 210 GPa, Poisson ratio υ = 0.3, and the friction
coefficient f = 0.2. For body C, a uniform load P = 100 MPa is applied tothe top surface. The total load is
divided into six steps, and the contact tolerance is 0.001 mm.

(a) (b)

Figure 6. Calculation model and discrete meshes.

Table 6. Discrete data.

Body A Body B Body C Sum

Node number 152 218 98 468
Element number 150 216 96 462

Contact nodes 36 49 25 110
Contact elements 25 36 16 77
Degree number 648 801 369 1818

In the example, the VRP-GMRES(m) algorithm is used as a fast solver for the FM-BEM, and some
results are shown in Figure 7, which are consistent with those obtained by the GMRES(m) algorithm.
The iteration times by the GMRES(m) algorithm and VRP-GMRES(m) algorithm are shown in Table 7.
From Table 7, we can see that there are few changes in the iteration times for the VRP-GMRES(m)
algorithm. However, the relative error is quite small for the pressure of the same node, as is shown
in Figure 8.
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Table 7. Comparison of iteration times for the two algorithms.

m 9 11 13 15 17 19

GMRES(m) 192 173 93 67 55 37
VRP-GMRES(m) 26 26 26 26 26 26
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Figure 8. Comparison of pressure using two algorithms (x = 2.5 mm, z = 5 mm).

From Table 7 and Figure 8 , the VRP-GMRES(m) algorithm is more rapidly and stably convergent
than the GMRES(m) algorithm.

5. Conclusions

In this paper, an iterative VRP-GMRES(m) algorithm is proposed for the solution of linear
equations, which can be used as an improved solver of the FM-BEM and can be used to solve many
mathematical, mechanical, physical and engineering problems. Through theoretical analysis, the
new algorithm is proved to be rapidly convergent with higher computational accuracy. Numerical
experiments show that the presented algorithm not only has higher computational efficiency and
accuracy, but also is much more stable. The results of the last example also prove that it is highly
efficient and rapidly convergent for the elastic problems. On the whole, the new algorithm has
extensive prospects in the FM-BEM field and other large-scale scientific and engineering computing.
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