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Abstract:



This paper develops an optimal stopping rule by characterizing the take-profit level. The optimization problem is modeled by geometric Brownian motion with two switchable regimes and solved by stochastic calculation. A closed-form profitability function for the trading strategies is given, and based on which the optimal take-profit level is numerically achievable with small cost of computational complexity.
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1. Introduction


Derivative trading has been reshaped by quantitative techniques in recent decades [1]. This paper aims to solve the optimization problem of setting take-profit levels to maximize the profitability. Considerable studies on closing a deal are implemented into trading practice. Eloe et al. [2] optimized the threshold levels of taking profit and stopping loss based on a regime-switching model. On the other hand, modeling with regime-switching has the advantage of flexibility in changing parameters. Since first introduced by [3], intensive research interests have been drawn to this area, for example the research by Yao et al. [4] on pricing the European option by a regime-switching model.



In this paper, we also apply switched regimes, but not driven by another independent process or external factors. To optimize the take-profit level, regime-switching in our model is triggered by the price process itself; hence, our model is less subject to parameter estimation and prediction, and performs more neutrally to unveil the variation brought by the take-profit level.



We proceed as follows. In Section 2, we formulate the optimal selling problem. Section 3 gives the probability distribution of the transaction time. In Section 4, the profitability function is explicitly expressed in closed-form and optimal take-profit level is achievable from this expression. Section 5 proceeds the numerical simulation to show that the results obtained by our method are consistent with those by crude Monte Carlo simulation [5] , but ours consume less time.




2. Problem Formulation


Suppose a pair of opposite trades are opened by the the current ask price [image: there is no content] and bid price [image: there is no content] at time t, the price [image: there is no content] is recognized as [image: there is no content] and denoted as x. Thereby, the cost for a pair of orders are [image: there is no content], assumed as a constant [image: there is no content]. Let [image: there is no content] be the closing price for long trades, and [image: there is no content] for short trades, [image: there is no content] is the profit gained in each single deal, where [image: there is no content] as the take-profit rate. The price dynamic is simulated by the process [image: there is no content] formulated by the following equation:


dXt=μ−(μ−σ22)1{X^0,t≥X0(1+η)orXˇ0,t≤X0(1−η)}Xtdt+σXtdWt



(1)




where μ∈IR, [image: there is no content], [image: there is no content], and [image: there is no content], [image: there is no content]. The nature filtration (Ft)t∈IR+ is generated by a Wiener process (Wt)t∈IR+. For any [image: there is no content], consider the process [image: there is no content]; to make it under a risk-neutral setting, a new probability measure [image: there is no content] is defined by


[image: there is no content]








where the process [image: there is no content] is given by


φt:=μ−(μ−σ22)1{X^0,t≥X0(1+η)orXˇ0,t≤X0(1−η)},t∈[0,T],








hence under this measure, [image: there is no content], [image: there is no content] is a standard Brownian motion and [image: there is no content] is also a martingale. Without loss of generality and for convenience of notation, we still proceed under the original measure P instead of [image: there is no content] for the remaining part. For any t∈IR+, in the event that [image: there is no content] for all [image: there is no content], [image: there is no content] follows a geometry Brownian motion as in the Black–Scholes model. The drift factor μ is set according to the predicted trend based on the previous information. Therefore, once the threshold level is achieved, we abandon the previously obtained value of the drift factor μ, and make no more prediction for the uncertainty; rather, the price thereafter is simulated by a martingale—namely, letting the drift factor vanish. According to our stopping rule, two stopping times are defined as follows,


T1:=inf{s≥0|Xs≥X0(1+η)orXs≤X0(1−η)},



(2)






T2:=inf{s≥0|X^0,T1+s≥X0(1+η)andXˇ0,T1+s≤X0(1−η)}.



(3)







To measure the efficiency of profit-taking, we define the profitability function:


[image: there is no content]



(4)




for any take-profit rate [image: there is no content]. With definition (2) of [image: there is no content], SDE (1) is rewritten equivalently: [image: there is no content]. Next, we define two geometric Brownian motions (Yt)t∈IR+ and (Zt)t∈IR+ by [image: there is no content] and [image: there is no content]. For any positive sequence {ti}i∈IN that [image: there is no content] for any i∈IN, in the event [image: there is no content] for all i, {Yti}i∈IN has the same joint distribution as {Xti}i∈IN. On the other hand, {Zti}i∈IN has the same joint distribution as {Xti}i∈IN in the event that [image: there is no content] for all i. Therefore, in the following computation, we may substitute [image: there is no content] by [image: there is no content] and [image: there is no content] in each case, respectively.



For convenience, we define [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content].




3. Computation of Transaction Time


3.1. Independence between [image: there is no content] and [image: there is no content]


In this subsection, we show by Lemma 1 the independence between [image: there is no content] and [image: there is no content] for further computation.



Lemma 1.

For any [image: there is no content], P(T1∈dt1,T2∈dt2)=P(T1∈dt1)P(T2∈dt2), where [image: there is no content], [image: there is no content] are defined by (2) and (3).





Proof. 

By definition (2) of [image: there is no content], [image: there is no content] since [image: there is no content], then [image: there is no content] or [image: there is no content], hence we have


P(T1∈dt1,T2∈dt2)=E[1{T1∈dt1}E[1{T2∈dt2}|T1∈dt1,XT1=X0(1+η)]]P(XT1=X0(1+η))+E[1{T1∈dt1}E[1{T2∈dt2}|T1∈dt1,XT1=X0(1−η)]]P(XT1=X0(1−η)).



(5)







To simplify (5), by definition (3), we note that


E[1{T2∈dt2}|T1,XT1=X0(1−η)]=P(inf{s≥0|Z^T1,T1+s≥X0(1+η)}∈dt2|T1,ZT1=X0(1−η)),



(6)







Applying the strong Markov property of (Zt)t∈IR+ for all [image: there is no content] given [image: there is no content], we have


P(inf{s≥0|Z^T1,T1+s≥X0(1+η)}∈dt2|T1,ZT1=X0(1−η))=Plog(1+η)−log(1−η)σ∈dSt2,



(7)




where for the property of Wiener process, we apply Theorem 1.12 of [6]. Combining (6) and (7), we see that


E[1{T2∈dt2}|T1,XT1=X0(1−η)]=Plog(1+η)−log(1−η)σ∈dSt2.



(8)







By the symmetric property of Wiener process (see Chapter 2 of [7]),


E[1{T2∈dt2}|T1∈dt1,XT1=X0(1−η)]=E[1{T2∈dt2}|T1∈dt1,XT1=X0(1+η)].



(9)







By (5), (8), and (9), we obtain


[image: there is no content]



(10)







On the other hand, repeating the approach above, we see that


[image: there is no content]



(11)




hence we conclude Lemma 1 by (10) and (11).                                   ☐






3.2. Distribution of [image: there is no content]


Define a function [image: there is no content] for any [image: there is no content] and t∈IR+ by


G(y,a,b,t)=∑n=1∞[κ(t,y−2b+2(n−1)(a−b))+κ(t,y−2a−2(n−1)(a−b))−κ(t,−y+2n(a−b))−κ(t,−y−2n(a−b))],



(12)




where the normal density function κ is defined by [image: there is no content] for any t>0,x∈IR. Then, the distribution of [image: there is no content] is given by Proposition 2 as follows.



Proposition 1.

For any [image: there is no content],


P(T1<t)=∫log(1−η)σlog(1+η)σeλy−12λ2tGy,log(1+η)σ,log(1−η)σ,tdy+1−Φlog(1+η)σt−tλ+Φlog(1−η)σt−tλ,








where [image: there is no content] denotes the distribution function of a standard normal variable.





Proof. 

By the definition (2) of [image: there is no content], for any [image: there is no content], we have P(T1<t)=P(Y^0,t≥X0(1+η)orYˇ0,t≤X0(1−η)). Applying the standard technique of Girsanov theorem, cf. Theorem 8.6.4 of B. Oksendal [8], we obtain that P(T1<t)=E[1{St≥1σlog(1+η)orIt≤1σlog(1−η)}eλWt−12λ2t], for which we then apply the Lemma 3 proved by some similar arguments as in Chapter 2.8 of [9]; the details of the proof are stated in the Appendix.             ☐





Lemma 3.

For any [image: there is no content], [image: there is no content] and [image: there is no content], we have


P(St≥aorIt≤b;Wt≤c|W0=x)=∑n=1∞Φc+x−2n(a−b)−2at+Φc+x+2n(a−b)−2bt−Φc−x+2n(a−b)t−Φc−x−2n(a−b)t−Φb+x−2n(a−b)−2at−Φb+x+2n(a−b)−2bt+Φb−x+2n(a−b)t+Φb−x−2n(a−b)t.















4. Optimization of Take-Profit Levels


In this section, we express the profitability function in a closed-form and consider the maximization problem over [image: there is no content]. By (4) and (11), and Proposition 2, we have


[image: there is no content]



(13)




where the probability density functions are given by


φ1(t):=∫log(1−η)σlog(1+η)σeλy−12λ2t∂G∂ty,log(1+η)σ,log(1−η)σ,tdy−12λ2∫log(1−η)σlog(1+η)σeλy−12λ2tGy,log(1+η)σ,log(1−η)σ,tdy−12πe−log(1−η)−σλt22σ2tlog(1−η)2σt3+λ2t+12πe−log(1+η)−σλt22σ2tlog(1+η)2σt3+λ2t








for [image: there is no content], where the function G is defined by (12), and [image: there is no content] for [image: there is no content]. Then, we consider the maximization problem of setting suitable η. First, to enlarge [image: there is no content], we ensure it to be positive; therefore, η should satisfy the condition that [image: there is no content]. Note that [image: there is no content] and [image: there is no content] as we assumed before, η should be within [image: there is no content]. Next, we check the convergence of the integration in (13). Actually, under the condition that [image: there is no content], we see that [image: there is no content] which also provides a uniform upper bound for the profitability function. The optimal take-profit rate η*=maxη∈θ2X0,1|ϕ(η)=maxθ2X0≤r≤1ϕ(r), is ready to be solved numerically.




5. Numerical Simulation


In Table 1 below, we compare the testing errors and running time for both approaches. Note that the average testing errors are measured by comparison with the result obtained by programming with much more samples and smaller time discretization steps, which consume several times the running time. From the average running time listed, we conclude that our approach is much more efficient than that of crude Monte Carlo simulation. The reason is also mathematically obvious , as it is well known that [image: there is no content] while [image: there is no content] is finite, it is quite time-consuming to sample the stopping time [image: there is no content] (so is [image: there is no content]). From the data of difference pairs of [image: there is no content] obtained by both approaches, we find that the optimal take-profit level is more sensitive to the changes of σ than that of μ. Besides, larger volatility σ yields large optimal take-profit level, which reinforces the widely-held financial wisdom that the larger the volatility, the larger the take-profit level we can set.



Table 1. For 25 pairs of parameters [image: there is no content], we report the value of η obtained by Monte Carlo simulations and our approach of maximization of the closed-form.
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Average Testing Errors

	
0.028




	
Average Running Time

	
54.60 min
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Average Testing Errors

	
0.011




	
Average Running Time

	
30.11 min











6. Conclusion and Future Work


This paper gives an optimal stopping rule by characterizing the take-profit level. Compared to others’ effects on this, ours has less computational complexity and is applicable to improving the trading strategy for the issue of closing position. Our work can be extended to other more difficult models with regime switching, such as that with Markov chains; however, it could be challenging to get a closed form, since our work benefits from the advantages of Brownian motion.
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Appendix A


In this section, we proceed to prove Lemma 3 by applying the technique in Chapter 2.8 of [9]. For any [image: there is no content], [image: there is no content], [image: there is no content], we have


Px(St≥aorIt≤b;Wt≤c)=∑n=1∞Φc+x−2n(a−b)−2at+Φc+x+2n(a−b)−2bt−Φc−x+2n(a−b)t−Φc−x−2n(a−b)t−Φb+x−2n(a−b)−2at−Φb+x+2n(a−b)−2bt+Φb−x+2n(a−b)t+Φb−x−2n(a−b)t.











Proof. 

First, several sequences of stopping time are defined as follows:


σ0=0,τ0=inf{t≥0|It≤b};










π0=0,ρ0=inf{t≥0|St≥a};










σn=inf{t≥πn−1|Wt=a};










τn=inf{t≥σn−1|Wt=b};










πn=inf{t≥ρn−1|Wt=b};










ρn=inf{t≥πn−1|Wt=a}.











With the reflection property of Brownian motion (refer to [9]), for [image: there is no content],


Px(Wt≥y|Fτn)=Px(Wt≤2b−y|Fτn)on{τn≤t};










Px(Wt≥y|Fτn)=Px(Wt≤2b−y|Fπn)on{πn≤t};










Px(Wt≤y|Fτn)=Px(Wt≥2a−y|Fσn)on{σn≤t};










Px(Wt≤y|Fτn)=Px(Wt≥2a−y|Fρn)on{ρn≤t}.











Note that [image: there is no content] and [image: there is no content]; thereby, for any [image: there is no content],


Px(Wt≥y,τn≤t)=Px(Wt≤2b−y,τn≤t)=Px(Wt≤2b−y,σn≤t);










Px(Wt≤y,σn≤t)=Px(Wt≥2a−y,σn≤t)=Px(Wt≥2a−y,τn−1≤t);










Px(Wt≤y,ρn≤t)=Px(Wt≥2a−y,ρn≤t)=Px(Wt≥2a−y,πn≤t);










Px(Wt≥y,πn≤t)=Px(Wt≤2b−y,πn≤t)=Px(Wt≤2b−y,ρn−1≤t).











The above formulas are alternately and recursively applied to gain the following expressions. Therefore we have,


Px(Wt≥y,τn≤t)=Px(Wt≤2b−y,σn≤t)=Px(Wt≥2a−(2b−y),τn−1≤t)=Px(Wt≤2b−y−2(a−b),σn−1≤t)=Px(Wt≥y+2n(a−b),τn−n≤t)=Px(Wt≤2b−y−2n(a−b),σ0≤t),








and


Px(Wt≤y,σn≤t)=Px(Wt≥2a−y,τn−1≤t)=Px(Wt≤y−2(a−b),σn−1≤t)=Px(Wt≤y−2n(a−b),σ0≤t).











Similarly, another two formulas are:


Px(Wt≤y,ρn≤t)=Px(Wt≥2a−y+2n(a−b)).










Px(Wt≥y,πn≤t)=Px(Wt≥y+2n(a−b)).











Taking the derivative regarding y in the above four formulas, another four expressions are gained.


Px(Wt∈dy,τn≤t)=κ(t,x+y−2b+2n(a−b))dy,










Px(Wt∈dy,σn≤t)=κ(t,x−y+2n(a−b))dy,










Px(Wt∈dy,ρn≤t)=κ(t,x+y−2a−2n(a−b))dy,










Px(Wt∈dy,πn≤t)=κ(t,x−y−2n(a−b))dy,








where [image: there is no content] as defined before, for any [image: there is no content]. Note that [image: there is no content] and [image: there is no content] for any [image: there is no content], then for any integer [image: there is no content],


Px(Wt∈dy,τk∧ρk≤t)=Px(Wt∈dy,τk≤t)+Px(Wt∈dy,ρk≤t)−Px(Wt∈dy,σk∧πk≤t)=Px(Wt∈dy,τk≤t)+Px(Wt∈dy,ρk≤t)−[Px(Wt∈dy,τk−1≤t)+Px(Wt∈dy,ρk−1≤t)−Px(Wt∈dy,τk−1∧ρk−1≤t)].











Repeatedly apply this recursive expression for k times, and have:


Px(Wt∈dy,τk∧ρk≤t)=∑n=1k[Px(Wt∈dy,σn≤t)+Px(Wt∈dy,πn≤t)−Px(Wt∈dy,τn−1≤t)−Px(Wt∈dy,ρn−1≤t)]+Px(Wt∈dy,τ0∧ρ0≤t).











Consider the convergence of the above summation when k goes to infinity. Since the summation equals [image: there is no content], the above summation should decrease on k, and constrained within [image: there is no content], the limit exists and is bounded. Note that St≥aorIt≤b is the same event as [image: there is no content], then pass k to infinity and gain that


Px(Wt∈dy,St≥aorIt≤b)=∑n=1∞[Px(Wt∈dy,τn−1≤t)+Px(Wt∈dy,ρn−1≤t)−Px(Wt∈dy,σn≤t)−Px(Wt∈dy,πn≤t)]=∑n=1∞[κ(t,x+y−2b+2(n−1)(a−b))+κ(t,x+y−2a−2(n−1)(a−b))−κ(t,x−y+2n(a−b))−κ(t,x−y−2n(a−b))]dy.











Finally, take integration regarding y from b to c, and hence complete the proof.                   ☐
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