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Abstract: In this paper, we introduce a new metric on the space of fuzzy continuous functions on
time scales by using the exponential function, eγ(t, t0), where γ > 0 is a constant. Then, we provide
some conditions to prove an existence and uniqueness theorem for solutions to nonlinear fuzzy
dynamic equations. Furthermore, we present three different examples including a practical example
to illustrate the main results.
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1. Introduction

Mathematical modeling of some phenomena becomes more realistic and suitable by
non-continuous dynamical equations, so, in this regard, it is necessary to consider both continuous
and discrete models for such problems. These equations can be interpreted by idea time scales, which
was introduced for the first time in 1988 by Stefan Hilger [1] (for more details please see [2]). The time
scales calculus is a unification of the continuous and discrete analysis, which describes the difference
and differential equations together as well as allowing us to deal with combining equations of two
differential and difference equations simultaneously (see, for example, [2–5]).

The theory of dynamic equations on time scales has many interesting applications in control
theory, mathematical economics, mathematical biology, engineering and technology (see [2,6–9]).
In some cases, there exists uncertainty, ambiguity or vague factors in such problems, and fuzzy
theory and interval analysis are powerful tools for modeling these equations on time scales. In [10],
authors introduced and considered the notions of delta derivative and delta integral to fuzzy valued
functions on time scales. These definitions may accurately describe fuzzy dynamic processes where
time may flow continuously and discretely at different stages in the one model; in other words,
these concepts are useful in modelling fuzzy start–stop processes.

As an application, consider an electric circuit of resistor R, with unit Ω, in a series with capacitance
C farads and a generator of V volts.

Note that, in an electrical RC circuit when switch s is closed on a, the capacitor is charged
through the resistor and when the switch is afterward closed on b, the capacitor discharges through
the resistor. Suppose we discharge the capacitor periodically every time unit and assume that the
discharging takes δ > 0 but is small on time units. Thus, we can simulate it by using the time scales
P =

⋃
k∈N0

[k, k + 1− δ]. Now, according to the assumptions of the problem, we have

V(t) = Rqδt +
q
C

(1)
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The dynamic Equation (1) describes the time variation of the charge q on the capacitor Figure 1
and t is in a time scale and qδt is a delta derivative of q with respect to t. Then, the problem along with
a fuzzy initial condition is a first order fuzzy dynamic equation on the time scale P.

+
−
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R

sb

Figure 1. The capacitor described by dynamic Equation (1). Here, R is the resistor, C is capacitor, s is
the switch, a and b are points for charging and discharging, respectively.

Recently, the theory of fuzzy difference equations in [11] and a theory of fuzzy differential
equations [12–14] has been studied separately. In the current work, we are going to incorporate these
two theories and describe a new fuzzy theory that is called the theory of fuzzy dynamic equations on
time scales, and it is a generalization of the theory of fuzzy differentials and fuzzy difference equations.

To this end, we aim to study the existence and uniqueness of solutions to fuzzy dynamic equations
on time scales with a new metric on fuzzy continuous functions on time scales, which is defined in
terms of the exponential functions on time scales. This metric greatly simplifies the application of
Banach’s theorem for the existence and uniqueness proofs. Indeed, a significant interest of this work
is to utilize the rich qualities of the exponential functions on time scales. In fact, the first metric in
terms of the exponential functions on time scales is introduced by Tisdell and its colleague [15], and we
generalized it from crisp case to fuzzy case.

This paper is organized as follows. In Section 2, notions of the theory of fuzzy and time scales are
introduced. Then, the fuzzy delta derivative and delta integral are defined in Section 3. In addition,
a new metric on the space of fuzzy continuous functions on time scales is introduced. Finally, in the
last section, the existence and uniqueness of the solution to a nonlinear fuzzy dynamic equations on
time scales is established.

2. Preliminaries

For a better understanding, the notations used throughout the paper and keeping the paper
somewhat self-contained, this section contains some preliminary definitions and associated notations.

Definition 1. Let X be a nonempty set. A fuzzy set u in X is characterized by its membership function
u : X → [0, 1]. Then, u(x) is interpreted as the degree of membership of an element x in the fuzzy set u for each
x ∈ X [16].

Let us denote by RF the class of fuzzy subsets of the real axis (i.e., u : R→ [0, 1]), satisfying the
following properties:

1. u is normal, i.e., there exists x0 ∈ R with u(x0) = 1,
2. u is a fuzzy-convex set (i.e., u(tx + (1− t)y) ≥ min{u(x), u(y)}, ∀t ∈ [0, 1], x, y ∈ R),
3. u is upper semicontinuous on R,
4. cl{x ∈ R; u(x) > 0} is compact, where cl denotes the closure of a subset.

Then, RF is called the space of fuzzy numbers. Obviously, R ⊂ RF . Here, R ⊂ RF is understood
as R = {χ{x}; x is a usual real number}. For 0 < α ≤ 1, denote [u]α = {x ∈ R; u(x) ≥ α} and
[u]0 = cl{x ∈ R; u(x) > 0}.
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Using the definition of fuzzy numbers, it follows that, for any α ∈ [0, 1], [u]α is a bounded closed
interval. The notation [u]α = [uα, uα] denotes explicitly the α-level set of u. We refer to u and u as the
lower and upper branches on u, respectively.

For u, v ∈ RF and λ ∈ R, the sum u+ v and the product λ · u are defined by [u+ v]α = [u]α+ [v]α,
[λ · u]α = λ[u]α, ∀α ∈ [0, 1], where [u]α+ [v]α = {x+ y : x ∈ [u]α, y ∈ [v]α}means the usual addition
of two intervals of R and λ[u]α = {λ · x : x ∈ [u]α}means the usual product between a scalar and a
subset of R.

Theorem 1. According to Bede et al. [13].

1. If we denote 0̃ = χ{0}, then 0̃ ∈ RF is the zero element with respect to +, i.e., u + 0̃ = 0̃ + u = u , for all
u ∈ RF .

2. For any a, b ∈ R with a, b ≤ 0 or a, b ≥ 0 and any u ∈ RF , we have (a + b) · u = a · u + b · u; for general
a, b ∈ R, the above property does not hold.

3. For any λ ∈ R and any u, v ∈ RF , we have λ · (u + v) = λ · u + λ · v.
4. For any λ,µ ∈ R and any u ∈ RF , we have λ · (µ · u) = (λµ) · u.

Definition 2. Let x, y ∈ RF . If there exists z ∈ RF such that x = y + z, then z is called the H-difference of x
and y, and it is denoted by x	 y [13].

Let D : RF ×RF → R+ ∪ {0}, D(u, v) = supα∈[0,1] max{|uα − vα|, |uα − vα|} be the Hausdorff
distance between fuzzy numbers, where [u]α = [uα, uα], [v]α = [vα, vα]. The following properties
are well-known (see [12,13]):

• D(u + w, v + w) = D(u, v), ∀u, v, w ∈ RF ,
• D(k · u, k · v) = |k|D(u, v), ∀k ∈ R, u, v ∈ RF ,
• D(u + v, w + e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈ RF ,
• D(u	 v, e	 w) ≤ D(u, e) + D(v, w),

where (RF , D) is a complete metric space. In addition, we define for each x, y ∈ C(I,RF ),
D(x, y) = supt∈I D(x(t), y(t)), which C(I,RF ) is a set of all fuzzy continuous functions on I.

Definition 3. Given u, v ∈ RF , the gH-difference is the fuzzy number w, if it exists, such that

u	gH v = w⇔
{

(i) u = v + w,
or (ii) v = u + (−1) · w.

(2)

If u	gH v exists, its α cuts are given by

[u	gH v]α = [min{uα − vα, uα − vα}, max{uα − vα, uα − vα}]

and u	 v = u	gH v if u	 v exists. If (i) and (ii) are satisfied simultaneously, then w is a crisp number [17,18].

Remark 1. In the fuzzy case, it is possible that the gH-difference of two fuzzy numbers does not exist. If u	gH v
exists, then v	gH u exists and v	gH u = −(u	gH v). The following properties have been obtained in [17,18].

Proposition 1. Let u, v ∈ RF be two fuzzy numbers [17,18] ; then,

1. if the gH-difference exists, it is unique;
2. u 	gH v = u 	 v or u 	gH v = −(u 	 v) whenever the expressions on the right exist; in particular,

u	gH u = u	 u = 0̃;
3. if u	gH v exists in the sense (i), then v	gH u exists in the sense (ii) and vice versa;
4. (u + v)	gH v = u;
5. 0̃	gH (u	gH v) = v	gH u;
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6. u	gH v = v	gH u = w if and only if w = −w; furthermore, w = 0̃ if and only if u = v.

Definition 4. A time scale T is a non-empty, closed subset of R, equipped with the topology induced from the
standard topology on R [2].

According to Definition 4, a time scale can be continuous and discrete or continuous-discrete.
Hence, the definition of jump operator is very important to time scales.

Definition 5. The forward (backward) jump operator σ(t) at t for t < supT (respectively, ρ(t) at t for
t > infT) is given by

σ(t) = inf{τ > t : τ ∈ T}, (ρ(t) = sup{τ < t : τ ∈ T}) for all t ∈ T. (3)

Additionally, σ(supT) = supT, if supT < ∞, and ρ(infT) = infT if infT > −∞. Furthermore, the
graininess function µ : T→ R+ is defined by µ(t) = σ(t)− t and also the left-graininess function ν : T→ R+

is defined by ν(t) = t− ρ(t) [2].

It is enough to recognize that, for connected points, the forward and backward jump operators
return the same element of the time scale that was drawn from the domain. However, for non-connected
points, the forward and backward jump operators return the next and previous elements of the time
scale, respectively. The jump operators then enable the classification of points in a time scale in the
following way:

Definition 6. If σ(t) > t, then the point t is called right-scattered; while, if ρ(t) < t, then t is termed
left-scattered. If t < supT and σ(t) = t, then the point t is called right-dense; while if t > infT and ρ(t) = t,
then we say that t is left-dense [2].

Definition 7. A mapping f : T→ RF is rd-continuous if it is continuous at each right-dense point and its
left-side limits exist (finite) at left-dense points in T. We denote the set of rd-continuous functions from T to RF
by Crd[T,RF ].

Definition 8. Fix t ∈ T and f : T → R. Define f δ(t) to be the real number (provided it exists) with the
property that, given ε > 0, there is a neighborhood UT of t (i.e., UT = (t− δ, t + δ) ∩T) such that

|( f (σ(t))− f (s))− f δ(t)(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ UT. f δ(t) is called the δ-derivative of f at t [2].

Definition 9. We say that a function f : T → R is right-increasing at a point t0 ∈ T \ {minT} provided
that [19]:

• if t0 is right-scattered, then f (t0) < f (σ(t0));
• if t0 is right-dense, then there is a neighborhood UT = (t0 − δ, t0 + δ) ∩T of t0 such that

f (t) > f (t0) for all t ∈ UT with t > t0.

Similarly, we say that f is right-decreasing if in (i), f (σ(t0)) < f (t0) and in (ii), f (t) < f (t0).

Theorem 2. Suppose f : T → R is differentiable at t0 ∈ T \ {minT} [19]. If f δ(t0) > 0, then f is
right-increasing at the point t0. If f δ(t0) < 0, then f is right-decreasing at the point t0.

Here, we review some properties of the exponential function on time scales. For more details, we
refer to Definition 2.30 in [2].
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A function p : T → R is called regressive if 1 + µ(t)p(t) 6= 0 for all t ∈ T and the function p is
called positively regressive if 1 + µ(t)p(t) > 0 for all t ∈ T. If p : T→ R is a regressive function and
t0 ∈ T, then (see Theorem 2.33 in [2]) the exponential function ep(., t0) is the unique solution of the
initial value problem

yδ(t) = p(t)y(t), y(t0) = 1

The following properties of the exponential function will be used in the last section:

1. e0(t, s) = 1, ep(t, t) = 1;
2. ep(σ(t), s) = [1 + µ(t)p(t)]ep(t, s);
3. ep(t, r)ep(r, s) = ep(t, s);
4. ep(t, s) = 1

ep(s,t) ;
5. eδp(t, t0) = p(t)ep(t, t0).

The set Tk is defined to be T \ {m} if T has a left-scattered maximum m. Otherwise, Tk = T.

3. Fuzzy Delta Derivative and Integral on Time Scales

Definition 10. Assume that f : T→ RF is a fuzzy function and let t ∈ Tk [10]. Then, f is said to be right
fuzzy delta differentiable at t, if there exists an element δ+H f (t) of RF with the property that, given any ε > 0,
there exists a neighborhood UT of t [i.e., UT = (t− δ, t + δ) ∩T for some δ > 0 such that for all t + h ∈ UT

D[ f (t + h)	gH f (σ(t)), δ+H f (t)(h− µ(t))] ≤ ε(h− µ(t)),

with 0 ≤ h < δ.

Definition 11. Assume that f : T → RF is a fuzzy function and let t ∈ Tk [10]. Then, f is said to be left
fuzzy delta differentiable at t, if there exists an element δ−H f (t) of RF with the property that, given any ε > 0,
there exists a neighborhood UT of t such that for all t− h ∈ UT

D[ f (σ(t))	gH f (t− h), δ−H f (t)(h + µ(t))] ≤ ε(h + µ(t)),

with 0 ≤ h < δ.

In the above definitions δ+H f (t) and δ−H f (t) are called, respectively, right fuzzy delta derivative
and left fuzzy delta derivative at t.

Definition 12. Let f : T → RF be a fuzzy function and t ∈ Tk [10]. Then, f is said to be δ-Hukuhara
differentiable at t, if f is both left and right fuzzy delta differentiable at t ∈ Tk and δ+H f (t) = δ−H f (t), and we
will denote it by δH f (t).

We call δH f (t) the δ-Hukuhara derivative of f at t. We say that f is δH-differentiable at t if its
δH-derivative exists at t. Moreover, we say that f is δH-differentiable on Tk if its δH-derivative exists at
each t ∈ Tk. The fuzzy function δH f : Tk → RF is then called the δH-derivative of f on Tk.

Proposition 2. If the δH-derivative of f at t exists, then it is unique. Hence, the δH-derivative is well
defined [10].

Lemma 1. Assume that f : T→ RF is δH-differentiable at t ∈ Tk, then f is continuous at t [10].

Theorem 3. Assume that f : T→ RF is a function and let t ∈ Tk, then we have the following [10]:

1. If f is continuous at t and t is right-scattered, then f is δH-differentiable at t with

δH f (t) =
f (σ(t))	gH f (t)

µ(t)
(4)
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2. If t is right-dense, then f is δH-differentiable at t iff the limits

lim
h→0+

f (t + h)	gH f (t)
h

and lim
h→0+

f (t)	gH f (t− h)
h

exist and satisfy in this case

lim
h→0+

f (t + h)	gH f (t)
h

= lim
h→0+

f (t)	gH f (t− h)
h

= δH f (t) (5)

Lemma 2. If f is δH-differentiable at t ∈ Tk, then f (σ(t)) = f (t) + µ(t)δH f (t) or f (t) = f (σ(t)) +
(−1)µ(t)δH f (t) [10].

Remark 2. Assuming that f is δH-differentiable, we say that f is δH-differentiable in the sense (i) or
(i)δH-differentiable if, in the definition of δH-derivative, the gH-difference is equivalent to the H-difference
and we say that f is δH-differentiable in the sense (ii) or (ii)δH-differentiable if gH-difference is equivalent to
another case.

Lemma 3. If f , g : T→ RF are δH-differentiable at t ∈ Tk, in the same case of δH-differentiability (both are
(i)δH-differentiable or (ii)δH-differentiable), then f + g : T→ RF is also δH-differentiable at t and

δH( f + g)(t) = δH f (t) + δH g(t) (6)

Proof. It can be easily proved by using Theorem 3.

Lemma 4. If f : T → RF is δH-differentiable at t ∈ Tk, then, for any nonnegative constant λ ∈ R,
λ f : T→ RF is δH-differentiable at t with

δH(λ f )(t) = λδH f (t)

Proof. It follows easily from the Theorem 3.

Now, we present the definition of integral on time scales and give some properties of integrals on
time scales for fuzzy valued functions. Let T be a time scale, a < b be points in T, and [a, b]T be the
closed (and bounded) interval in T. A partition of [a, b]T is any finite ordered subset

P = {t0, t1, ..., tn} ⊂ [a, b]T, where a = t0 < t1 < ... < tn = b

The number n depends on the particular partition, so we have n = n(P). The intervals [ti−1, ti)

for 1 ≤ i ≤ n are called the subintervals of the partition P. We denote the set of all partitions of [a, b]T
by P = P(a, b).

Lemma 5. According to Guseinov and Kaymaklan [20], for each δ > 0, there exists a partition P ∈ P(a, b)
given by a = t0 < t1 < ... < tn = b such that, for each i ∈ {1, 2, ..., n}, either

ti − ti−1 < δ

or
ti − ti−1 > δ and ρ(ti) = ti−1.
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Definition 13. A function f : [a, b]T → RF is called Riemann δ-integrable on [a, b]T, if there exists IR ∈ RF ,
with the property [10]: ∀ε > 0, ∃δ > 0, such that for any division of [a, b]T, d : a = x0 < ... < xn = b with
xi ∈ [a, b]T, and for any points ξi ∈ [xi, xi+1)T, i = 0, n− 1, we have

D

[
n−1

∑
i=0

f (ξi).(xi+1 − xi), IR

]
< ε

Then, we denote IR =
∫ b

a f (x)δx the fuzzy Riemann δ-integral.

Definition 14. Let f : [0, t]T → RF [10]. We define levelwise the δ-integral of f in [0, t]T, (denoted by∫
[0,t]T

f (t)δt or
∫ t

0 f (t)δt) as the set of the integrals of the measurable selections for [ f ]α, for each α ∈ (0, 1].
We say that f is δ-integrable over [0, t]T if

∫
[0,t]T

f (t)δt ∈ RF and we have

[ ∫ t

0
f (t)δt

]α
=
[ ∫ t

0
fα(t)δt,

∫ t

0
f
α
(t)δt

]
(7)

for each α ∈ (0, 1].

Theorem 4. If f , g : [a, b]T → RF are δ-integrable on [a, b]T, then α f + βg, where α, β ∈ R, is δ-integrable
on [a, b]T and ∫ b

a
(α f (t) + βg(t))δt = α

(∫ b

a
f (t)δt

)
+ β

(∫ b

a
g(t)δt

)
(8)

Proof. It easily follows from Definition 13.

Theorem 5. If f : [a, b]T → RF is δH-differentiable on [a, b]T and a ∈ T, then δH f (t) is δ-integrable over
[a, b]T and

f (s) = f (a) +
∫ s

a
δH f (t)δt

or
f (a) = f (s) + (−1)

∫ s

a
δH f (t)δt

for any s ∈ [a, b]T.

Proof. By setting the functions δL and δR defined in Definition 15 [10] as the same constant functions,
the proof immediately follows from Theorem 18 [10].

Theorem 6. Let f : T→ RF and let t ∈ T. Then, f is δ-integrable from t to σ(t) and

∫ σ(t)

t
f (s)δs = µ(t) f (t) (9)

4. New Metric Space

Now, we are ready to define a new metric for the fuzzy continuous functions on time scales.

Definition 15. Let D denote the Hausdorff metric on space RF . Let γ > 0 be a constant. We define the space
of all fuzzy continuous functions on time scales, C([t0, t0 + a]T;RF ), along with γ-metric, dγ(x, y), which is
defined by

dγ(x, y) := sup
t∈[t0,t0+a]T

D(x(t), y(t))
eγ(t, t0)

(10)

for all t ∈ [t0, t0 + a]T and x, y ∈ C([t0, t0 + a]T;RF ).
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In addition, since e0(t, s) ≡ 1, d0 is defined as

d0(x, y) := sup
t∈[t0,t0+a]T

D(x(t), y(t)) (11)

for all t ∈ [t0, t0 + a]T and x, y ∈ C([t0, t0 + a]T;RF ), which is the same as the Hausdorff metric on the
fuzzy continuous functions space.

In addition, we consider

‖x‖γ := sup
t∈[t0,t0+a]T

D(x(t), 0̃)
eγ(t, t0)

for all t ∈ [t0, t0 + a]T and x ∈ C([t0, t0 + a]T;RF ) and ‖x‖0 is defined as

‖x‖0 := sup
t∈[t0,t0+a]T

D(x(t), 0̃)

Here, dγ mapping is a new generalization of the Bielecki’s metric in [21]. The following two
lemmas describe some important properties of dγ and ‖.‖γ.

Lemma 6. If γ > 0 is constant, then:

• dγ is a metric and is equivalent to the sup-metric d0,
• (C[t0, t0 + a]T;RF ), dγ) is a complete metric space.

Proof. We note that γ ∈ Crd([t0, t0 + a]T;RF ) as any constant function is always rd-continuous.
Since µ(t) ≥ 0, we have 1 + µ(t)γ > 0 for all t ∈ [t0, t0 + a]T. Hence, γ ∈ R+ (set of positively
regressive functions) and eγ(t, t0) > 0 for all t ∈ [t0, t0 + a]T (see [2]). It follows that, for each
x, y ∈ C([t0, t0 + a]T;RF ), we have

1. since γ > 0, eγ(t, t0) > 0, thus dγ ≥ 0. dγ(x, y) = 0 if and only if D(x, y) = 0, and we know that
D(x, y) = 0 if and only if x = y. Since D is a metric, dγ(x, y) = dγ(y, x). In addition, we have

dγ(x, z) = sup
t∈[t0,t0+a]T

D(x, z)
eγ(t, t0)

≤ sup
t∈[t0,t0+a]T

D(x, y)
eγ(t, t0)

+ sup
t∈[t0,t0+a]T

D(y, z)
eγ(t, t0)

= dγ(x, y) + dγ(y, z)

We know that if eδγ(t, t0) = γeγ(t, t0) > 0, then eγ(t, t0) is right-increasing. Thus, we have

1
eγ(t0 + a, t0)

≤ 1
eγ(t, t0)

≤ 1

It follows that
1

eγ(t0 + a, t0)
d0(x, y) ≤ dγ(x, y) ≤ d0(x, y)

2. Now, we show that C([t0, t0 + a]T,RF ) is a complete metric space. To this end, we show that
every Cauchy sequence in (C([t0, t0 + a]T,RF ), dγ) converges to a function in C([t0, t0 + a]T,RF ).
Let xi(t) be a Cauchy sequence in C([t0, t0 + a]T;RF ). This means that, for every ε > 0, there is a
positive integer Nε such that

D(xi(t), xj(t))
eγ(t, t0)

< ε, for all i, j > Nε, for all t ∈ [t0, t0 + a]T
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Thus, according to 1.,

D(xi(t), xj(t)) < εeγ(t0 + a, t0), for all i, j > Nε, for all t ∈ [t0, t0 + a]T

and D([t0, t0 + a]T,RF ) is a complete metric space (see [14]). Thus, there exists a x ∈ C([t0, t0 +

a]T,RF ) such that
lim
i→∞

D(xi(t), x(t)) = 0, for all t ∈ [t0, t0 + a]T

and, as a result of (i), we have limi→∞ dγ(xi(t), x(t)) = 0. Hence, a Cauchy sequence xi in
C([t0, t0 + a]T,RF ) is convergent and the limit is a fuzzy continuous function on [t0, t0 + a]T.
Thus, C([t0, t0 + a]T,RF ) is a complete metric space.

Now, we show ‖.‖γ has some properties similar to the properties of a norm in the usual crisp
sense without being a norm. It is not a norm because C([a, b]T,RF ) is not a vector space (see part (ii)
of Theorem 1) and, consequently, C([a, b]T,RF ) with ‖.‖γ is not a normed space.

Lemma 7. The map ‖.‖γ : RF → [0, ∞) has the the following properties:

• ‖x‖γ = 0 if and only if x = 0,
• ‖λ · x‖γ = |λ|‖x‖γ for all x ∈ C([t0, t0 + a]T,RF ) and λ ∈ R,
• ‖x + y‖γ ≤ ‖x‖γ + ‖y‖γ for all x, y ∈ RF .

Proof.

1. It is obvious that ‖.‖γ ≥ 0 and ‖x‖γ = 0 if and only if x = 0.
2. For λ ∈ R and x ∈ C([t0, t0 + a]T;RF ),

‖λx‖γ = sup
t∈[t0,t0+a]T

D(λx(t), 0̃)
eγ(t, t0)

= |λ| sup
t∈[t0,t−0+a]T

D(x(t), 0̃)
eγ(t, t0)

= |λ|‖x‖γ

and

3. for x, y ∈ C([t0, t0 + a]T;RF ),

‖x + y‖γ = sup
t∈[t0,t0+a]T

D((x + y)(t), 0̃)
eγ(t, t0)

≤ sup
t∈[t0,t0+a]T

D(x(t), 0̃)
eγ(t, t0)

+ sup
t∈[t0,t0+a]T

D(y(t), 0̃)
eγ(t, t0)

= ‖x‖γ + ‖y‖γ.

5. Results

Before starting the main discussion, we give a definition which is necessary.

Definition 16. Let T be a time scale. A function f : T×RF → RF is called

1. rd-continuous, if g defined by g(t) = f (t, x(t)) is rd-continuous for any continuous function x : T→ RF ;
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2. Lipschitz continuous with respect to the second variable on a set S ⊂ T×RF , if there exists a constant
L > 0 such that

D( f (t, x1), f (t, x2)) ≤ LD(x1, x2) for all (t, x1), (t, x2) ∈ S

Consider the following fuzzy dynamic equations

δHx(t) = f (t, x(t)), x(t0) = x0, t ∈ [t0, t0 + a]T (12)

and
δHx(t) = f (t, xσ(t)), x(t0) = x0, t ∈ [t0, t0 + a]T (13)

where xσ(t) = x(σ(t)).

Lemma 8. For t0 ∈ T, the fuzzy dynamic equation δHx(t) = f (t, x(t)), x(t0) = x0 ∈ RF , where f :
T×RF → RF is rd-continuous, is equivalent to one of the following fuzzy integral equations

x(t) = x0 +
∫ t

t0
f (s, x(s))δs, t ∈ [t0, t0 + a]T

or
x0 = x(t) + (−1) ·

∫ t
t0

f (s, x(s))δs, t ∈ [t0, t0 + a]T

(14)

on interval [t0, t0 + a]T, depending on the 	gH considered in Definition 12, (i)δH or (ii)δH , respectively.

Proof. Let us suppose that x(t) is a solution of the fuzzy dynamic equation δHx(t) = f (t, x(t)),
x(t0) = x0 ∈ RF . Then, by integration, we get

∫ t

t0

δHx(s)δs =
∫ t

t0

f (s, x(s))δs

Thus, 
x(t) = x0 +

∫ t
t0

f (s, x(s))δs
or
x0 = x(t) + (−1) ·

∫ t
t0

f (s, x(s))δs

where, in both cases, we have a solution x(t) of the δH-integral equation.
In fact, a solution to the fuzzy integral Equation (14) is a continuous function satisfying the

conditions in Equation (14). Now, if x(t) is a solution to one of the δ-integral Equation (14), we can write

x(t + h) = x0 +
∫ t+h

t0

f (s, x(s))δs

and

x(σ(t)) = x0 +
∫ σ(t)

t0

f (s, x(s))δs

or

x(t + h) = x0 	 (−1) ·
∫ t+h

t0

f (s, x(s))δs

and

x(σ(t)) = x0 	 (−1) ·
∫ σ(t)

t0

f (s, x(s))δs

Therefore, if t is a right-scattered point σ(t) > t,

x(σ(t))	gH x(t)
µ(t)

=
1

µ(t)

∫ σ(t)

t
f (s, x(s))δs
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Since
∫ σ(t)

t f (s)δs = µ(t) f (t), it follows that

x(σ(t))	gH x(t)
µ(t)

= f (t, x(t))

and, if t is a right-dense point σ(t) = t, we have (in the metric D)

lim
h→0+

x(t + h)	gH x(t)
h

= lim
h→0+

1
h

∫ t+h

t
f (s, x(s))δs

and we observe that

D
[∫ t+h

t
f (s, x(s))δs, h f (t, x(t))

]
= D

[∫ t+h

t
f (s, x(s))δs,

∫ t+h

t
f (t, x(t))δs

]

≤
∫ t+h

t
D( f (s, x(s)), f (t, x(t)))δs

Since f is continuous at t (t is right-dense), it follows for each ε > 0 that there exists a neighborhood
UT such that, for each s ∈ UT, D( f (t, x(t)), f (s, x(s))) < ε. Hence, by taking the limit as h → 0+,
we have

lim
h→0+

1
h

∫ t+h

t
f (s, x(s))δs = f (t, x(t)), in the metric D.

Therefore

lim
h→0+

D[
x(t + h)	gH x(t)

h
, f (t, x(t))] = 0.

Similarly, the left fuzzy delta derivative of f in t is f (t, x(t)). This means that x(t) is a solution to
the fuzzy dynamic equation δHx(t) = f (t, x(t)).

Considering the proof of Lemma 8, it is deduced that from the first expression in the Equation (14)
that we have a (i)δH differentiable solution, and, from the second expression in the Equation (14),
we have a (ii)δH-differentiable solution.

Lemma 9. For t0 ∈ T, the fuzzy dynamic equation δHx(t) = f (t, xσ(t)), x(t0) = x0 ∈ RF , where
f : T×RF → RF is rd-continuous, is equivalent to one of the following integral equations

x(t) = x0 +
∫ t

t0
f (s, xσ(s))δs, t ∈ [t0, t0 + a]T

or
x0 = x(t) + (−1) ·

∫ t
t0

f (s, xσ(s))δs, t ∈ [t0, t0 + a]T

(15)

on interval [t0, t0 + a]T.

Proof. It is similar to the proof of Lemma 8.

Now, in the following theorem, we prove that the problem (12) has two unique solutions.

Theorem 7. Let f : [t0, t0 + a]kT ×RF → RF be rd-continuous. If there exists a positive constant L such that

D( f (t, x), f (t, y)) ≤ LD(x, y), f orall (t, x), (t, y) ∈ [t0, t0 + a]kT ×R (16)
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then the dynamic Equation (12) has two solutions (one δ differentiable as (i)δH and the other one differentiable
as (ii)δH), x, z, such that x, z ∈ C([t0, t0 + a]T;RF ).

Proof. Let L > 0 be the constant defined in the Lipschitz condition (16). Define γ := Lβ where β > 1
is an arbitrary constant. Consider the complete metric space (C([t0, t0 + a]T;RF ), dγ). Let

P(y)(t) := x0 +
∫ t

t0

f (s, y(s))δs, for all t ∈ [t0, t0 + a]T (17)

Note that Equation (17) is well defined, as f is rd-continuous. Since f is rd-continuous on
[t0, t0 + a]kT × RF , according to Theorem 7 in [10], we have P(y) ∈ C([t0, t0 + a]T,RF ) for every
y ∈ C([t0, t0 + a]T;RF ). Furthermore, P(y)(t0) = x0 ∈ RF . Hence,

P : C([t0, t0 + a]T;RF )→ C([t0, t0 + a]T;RF )

Now, we prove that there exists a unique, continuous function x such that Px = x i.e., the fixed
point of P will be the solution to the fuzzy dynamic Equation (12). In this regard, it is sufficient to
show that P is a contractive map with contraction constant α = 1/β < 1. Let x, y ∈ C([t0, t0 + a]T;RF ).
Using the metric dγ in (10), we note that

dγ(P(x), P(y)) := sup
t∈[t0,t0+a]T

D(P(x)(t), P(y)(t))
eγ(t, t0)

= sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)
D(x0 +

∫ t

t0

f (s, x(s)δs), x0 +
∫ t

t0

f (s, y(s))δs)
]

≤ sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

D( f (s, x(s)), f (s, y(s)))δs
]

≤ sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

LD(x(s), y(s))δs
]

here, we used the Lipschitz condition (16) in the last step. We can rewrite the above inequality as

dγ(P(x), P(y)) ≤ sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

Leγ(s, t0) sup
s∈[t0,t0+a]T

D(x(s), y(s))
eγ(s, t0)

δs

]

Again, using Definition 15 and employing eδγ(t, t0) = γeγ(t, t0) with L/γ = 1/β = α < 1,
we obtain

dγ(P(x), P(y)) ≤ dγ(x, y)
β

sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

γeγ(s, t0)δs
]

=
dγ(x, y)

β
sup

t∈[t0,t0+a]T

[
1

eγ(t, t0)
(eγ(t, t0)− 1)

]
=

dγ(x, y)
β

[
1− 1

eγ(t0 + a, t0)

]
< αdγ(x, y)

where 0 < α < 1. Thus, P satisfies Equation (12), and it is a contractive map. Therefore, using Banach’s
fixed point theorem, there exists a unique fixed point x of P in C([t0, t0 + a]T;RF ).

Similarly, it can be proved that P(z)(t) = x0 	
∫ t

t0
f (s, z(s))δs is a contractive map.

As can be seen, this metric is incredibly interesting in the sense that it necessitates the operator
involved to be contractive on the whole of C([t0, t0 + a]T,RF ) rather than on the smaller set.
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Example 1. Consider the fuzzy dynamic initial value problem

δHx(t) = tx + cost + (0, 1, 2), for all t ∈ [0, 1]kT; x(0) = (1, 2, 3) (18)

where f (t, x) = tx + cost is rd-continuous on [0, 1]kT, since t is rd-continuous. Therefore, the composition
function g(t) := t(x(t)) + cost + (0, 1, 2) will be rd-continuous, according to Definition 16 for all t ∈ [0, 1]kT.
Hence, f is rd- continuous on [0, 1]kT ×RF .

In addition, f is Lipschitz continuous on [0, 1]kT ×RF . We note that, for all t ∈ [0, 1]kT, we have

D( f (t, x(t)), f (t, y(t))) = D(tx + cost + (0, 1, 2), ty + cost + (0, 1, 2))

= D(tx, ty) = |t|D(x, y)

where |t| < 1. Therefore, f satisfies a Lipschitz condition in the second argument on [0, 1]kT×RF with Lipschitz
constant L = 1. Thus, the fuzzy dynamic equation IVP has a unique solution, x, such that x ∈ C([0, 1]T;RF ).

Example 2. Consider Equation (1) as

δHq(t) =
1
R

V(t)	 1
RC

q(t) t ∈ ∪k∈N0 [k, k + 1− δ]

q(t) = (−0.01, 0, 0.1)
(19)

In this equation, according to properties of metric D, we have

D(
1
R

V(t)	 1
RC

q1(t),
1
R

V(t)	 1
RC

q2(t)) ≤
1
|RC|D(q1(t), q2(t))

Thus, right side function (19) satisfies a Lipschitz condition with Lipschitz constant L =
1
|RC| . Hence, the

fuzzy dynamic Equation (19) has a unique solution.

The next theorem concerns the existence and uniqueness of solutions to the fuzzy dynamic
Equation (13) using Banach’s fixed-point theorem. However, in the following theorem, a modified
Lipschitz condition for f is defined that guarantees a unique solution to the fuzzy dynamic
Equation (13).

Theorem 8. Let f : [t0, t0 + a]kT ×RF → RF be rd-continuous. If there exists a positive constant L such that

(1 + µ(t)γ)D( f (t, x), f (t, y)) ≤ LD(x, y), f orall (t, x), (t, y) ∈ [t0, t0 + a]kT ×RF (20)

then the dynamic Equation (13) has two solutions (one δHdifferentiable as (i)δH and the other one
δHdifferentiable as (ii)δH), x, z, such that x, z ∈ C([t0, t0 + a]T;RF ).

Proof. Consider the complete metric space (C([t0, t0 + a]T;R), dγ). Let L > 0 be the constant defined
in the Lipschitz condition (20) such that γ := Lβ, where β > 1 is an arbitrary constant. Define, for all
x ∈ C([t0, t0 + a]T;RF ),

P(x)(t) = x0 +
∫ t

t0

f (s, xσ(s))δs, for all t ∈ [t0, t0 + a]T (21)

Note that the right side of Equation (21) is well defined, as the function f is rd-continuous.
In addition, since f is rd-continuous, according to Theorem 7 from [10], we have that P(y) ∈ C([t0, t0 +

a]T;RF ) for all x ∈ C([t0, t0 + a]T;RF ). Furthermore, P(x)(t0) = x0. Hence,

P : C([t0, t0 + a]T;RF )→ C([t0, t0 + a]T;RF )
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Thus, according to Lemma 9, the fixed points of P will be solutions to the fuzzy dynamic
Equation (13). We prove that there exists a unique, continuous function x such that Px = x. To do this,
we show that P is a contractive map with contraction constant α = 1/β < 1. Thus, Banach’s Theorem
will guarantee the existence and uniqueness of the solution of the fuzzy dynamic equations.

Let x, y ∈ C([t0, t0 + a]T;RF ). From the definition of dγ, we have

dγ(P(x), P(y)) := sup
t∈[t0,t0+a]T

D(P(x)(t), P(y)(t))
eγ(t, t0)

≤ sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

D( f (s, xσ(s)), f (s, yσ(s)))δs
]

≤ sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

L
1 + µγ

D(xσ(s), yσ(s))δs
]

where we used Lipschitz condition (20) in the last step. Moreover, we note that from the property of
exponential function, we have eγ(t, t0),

1
1 + µ(t)γ

=
eγ(t, t0)

eσγ(t, t0)
, for all t ∈ T (22)

Using property (22) and assumption γ := βL, we obtain

dγ(P(x), P(y)) ≤ sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

Leγ(t, t0)

eσγ(s, t0)
D(xσ(s), yσ(s))δs

]

≤ 1
β

sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

γeγ(t, t0) sup
s∈[t0,t0+a]T

D(xσ(s), yσ(s))
eσγ(t, t0)

δs

]

=
1
β

dγ(x, y) sup
t∈[t0,t0+a]T

[
1

eγ(t, t0)

∫ t

t0

eδγ(s, t0)δs
]

,

where we used definition dγ and eδγ(t, t0) = γeγ(t, t0) in the last step. Then, we get

dγ(P(x), P(y)) ≤ 1
β

dγ(x, y) sup
t∈[t0,t0+a]T

[
eγ(t, t0)− 1

eγ(t, t0)

]
=

1
β

dγ(x, y)
[

1− 1
eγ(t0 + a, t0)

]
<

1
β

dγ(x, y),

where 1/β = α < 1. Thus, P is a contractive map. Therefore, Banach’s fixed-point theorem implies
that there exists a unique solution x ∈ C([t0, t0 + a]T,RF ) for dynamic Equation (13). Similarly, it can
be proved that P(z)(t) = x0 	

∫ t
t0

f (s, zσ(s))δs is a contractive map. This completes the proof.

Example 3. Consider the following fuzzy dynamic equation

δHy(t) =
2

(1 + 2µ(t))t
yσ(t) + t2e1(t, 1), y(1) = (−0.01, 0, 0.1), t ∈ [1, 2]kT (23)
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the function f :=
2

(1 + 2µ(t))t
yσ(t) + t2e1(t, 1) in the Equation (23) satisfies the Lipschitz condition (20)

with L = 2, since

D( f (t, y1), f (t, y2)) = |
2

(1 + 2µ(t))t
|D(y1, y2) ≤ 2

1
1 + µ(t)

D(y1, y2)

Therefore, Equation (23) has a unique solution in [1, 2]kT ×RF .

6. Conclusions

In this paper, we introduced the fuzzy dynamic equations on time scales and defined a new
metric. In addition, we proved the existence and uniqueness of solutions to first order fuzzy dynamic
equations on time scales. In the near future, we would like to expand it for the second order fuzzy
dynamic equations.
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