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Abstract: The most significant assumptions in the subdomain technique (i.e., based on the formal
resolution of Maxwell’s equations applied in subdomain) is defined by: The iron parts (i.e., the teeth
and the back-iron are considered to be infinitely permeable, i.e., µiron → +∞, so that the saturation effect is
neglected. In this paper, the authors present a new scientific contribution on improving of this method
in two-dimensional (2-D) and in Cartesian coordinates by focusing on the consideration of iron.
The subdomains connection is carried out in the two directions (i.e., x- and y-edges). For example, the
improvement was performed by solving magnetostatic Maxwell’s equations for an air- or iron-cored
coil supplied by a direct current. To evaluate the efficacy of the proposed technique, the magnetic
flux density distributions have been compared with those obtained by the 2-D finite-element analysis
(FEA). The semi-analytical results are in quite satisfying agreement with those obtained by the 2-D
FEA, considering both amplitude and waveform.

Keywords: air- or iron-cored coil; Cartesian coordinates; Fourier analysis; two-dimensional;
saturation effect; subdomain technique

1. Introduction

1.1. Context of this Paper

Generally, the modeling of the electromagnetic field distribution is a key step in the design process
for developing electromechanical systems. Although there are many papers in this scientific domain,
the modeling approach is still a challenging and attractive research topic. Some comprehensive reviews
on the models of electrical machines for magnetic field calculations along with their advantages and
disadvantages can be found in [1–6] and the accompanying references. The modeling techniques can
thus be classified in various categories:

• Graphical method of Lehmann (1909) [7];
• Numerical methods (i.e., the finite-element, finite-difference or boundary-element analysis) [8–12];
• Electrical/Thermal/Magnetic equivalent circuit (EEC/TEC/MEC) [13–16];
• Schwarz-Christoffel (SC) mapping method [17–19];
• Maxwell-Fourier methods [10,18–22]: (i) Multi-layers models; (ii) Eigenvalues model; and

(iii) Subdomain technique.

The graphical method of Lehmann, which determines the magnetic field distribution in all parts
of an electrical machine even when the machine is saturated, has been forgotten to the detriment
of other methods, mainly numerical. In the past few decades, numerical modeling techniques
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have been applied to electromechanical systems analysis. These methods are precise and take into
account the exact/simplified geometry, the nonlinear B(H) curve, the rotor motion, etc. The most
accurate models are the three-dimensional numerical methods. Nevertheless, these approaches are
time-consuming and not suitable for the optimization problems. In [23,24], it is possible to optimize
electromagnetic systems from numerical methods. Nowadays, in order to reduce the computation
time, hybrid numerical methods can be developed [25–27]. The actual design works are mainly based
on (semi-)analytical models (i.e., EEC/TEC/MEC, SC mapping and Maxwell-Fourier methods). This
type of model consists of N interrelated analytical equations which must be solved numerically (a.k.a.
semi-numerical models). For example, in Maxwell-Fourier methods, the unknown coefficients of the
series are computed by solving a (non)linear matrix system. Indeed, under certain assumptions, these
models have the advantage to be explicit/accurate/fast. Moreover, they allow us to take into account
rigorously the slotting effect in the electrical machines as well as various electromagnetic domains
with(out) the current penetration effect in the conductive materials. Except in the numerical methods
and nonlinear MEC, the saturation effect remains one of the scientific challenges in the modeling.
Tiegna et al. [5] (p.168) wrote: “No examples of analytical models based on the formal solution of
Maxwell’s equations which take into account local magnetic saturation are available to date”. Thus, in
this paper, the main scientific focus will be on the consideration of iron in Maxwell-Fourier methods
with the local/global saturation.

1.2. State-of-the-Art: Saturation in Maxwell-Fourier Methods

Very few works have included the iron in Maxwell-Fourier methods with the local/global
saturation due to variation of the material properties (e.g., in case of stator and/or rotor slotting,
buried magnets, etc.). The most significant assumptions is defined by: The iron parts (i.e., the teeth
and the back-iron) are considered to the infinitely permeable, i.e., µiron → +∞, so that the saturation effect is
neglected. It results in an overestimation of the magnetic flux and, consequently, the electromagnetic
performances (e.g., the back electromotive force (EMF), the electromagnetic torque, the efficiency).
Thus, consideration of iron in the modeling is a mandatory task in order to have a reliable estimation
of the electromechanical systems behavior.

Existing models in the electrical machines, based on Maxwell’s electromagnetic field equations,
taking into account the iron parts with(out) the nonlinear B(H) curve are:

• Multi-layers models (only the global saturation):

– Carter’s coefficient: The slotted machine is transformed into a slotless equivalent structure
by applying the usual Carter’s coefficient [28]. Generally, the armature slotting is taken
into account through the SC mapping method. The analytical magnetic field distribution is
determined in five or six homogeneous layers (i.e., exterior, slotless stator, winding/air-gap,
magnets, and rotor) [29–31]. In [29], the magnetic permeabilities in stator/rotor iron cores
have a constant value corresponding to linear zone of the B(H) curve. An iterative technique
to include the nonlinear properties of core material has been developed in [30] (for a no-load
operation) and [31] (for a load operation whose the source term in the slot caused by the
armature currents is represented by a winding current region over the stator slot-isthmus). In
this type of modeling, the local distribution of flux densities in the teeth and slots is neglected.
However, by calculating the flux entering the stator surface from the air-gap magnetic field
and thus assuming uniform distribution of flux, the flux density in middle of the stator teeth
can be obtained.

– Saturation coefficient: It represents the ratio between the total magnetomotive force (MMF)
required for the entire magnetic circuit and the air-gap MMF [32]. The main magnetic
saturation is included in the saturation factor, in an iterative way, by using the nonlinear
B(H) curve. The saturation effect is accounted for by modifying the air-gap length [32–34] or
by changing the physical properties of magnets (in this case, the saturated load operation is
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calculated by considering an equivalent no-load operation with a fictitious magnet having
a remanent flux density that creates the same MMF as the one created by both real magnet
and stator MMF) [35]. The analytical magnetic field distribution is mainly determined in one
or two regions (viz., air-gap or air-gap/magnets) of slotless machines by applying the Carter’s
coefficient [32]. The slotting effect can be neglected [32,35] or taken into account through the
SC mapping method [33,34]. The magnetic fluxes in the stator/rotor iron cores are obtained
from the air-gap magnetic field [32,33,35] or/and with a simple MEC [34]. This technique
has been applied to surface-mounted/-inset magnets machines [32–35], surface-inset magnet
machines [33], and others electrical machines.

– Concept wave impedance: They are based on a direct solution of Maxwell’s field equations in
homogeneous multi-layers of magnetic material properties, viz., the magnetic permeability and
the electrical conductivity. This approach, developed by Mishkin (1953) [36], was first applied
to squirrel-cage induction machine in Cartesian coordinates with three-layers (i.e., stator
slotting, air-gap, and rotor slotting). It was used and enhanced by many authors, viz.,

∗ simplification of the electromagnetic theory [37];
∗ extended with an infinite number of layers [38];
∗ converted into equivalent circuits and terminal impedance [39];
∗ included the curvature effect with the magnetizing current [40];
∗ incorporated spatial harmonics in the multi-layers theory by considering isotropic and

anisotropic (e.g., laminated, composite, and toothed) regions [41,42];
∗ introduced the nonlinear B(H) curve in homogenous layers by an iterative

procedure [43,44];
∗ taking account of the slot-opening effect [45], i.e., the multi-layers model is combined with

the subdomain technique for slotted structures by assuming infinitely permeable tooth-tips;
∗ included the current penetration effect in conductive layers [43,46]. The analytical solution

for the electromagnetic field in conductive layers is then defined by Bessel functions.

– Convolution theorem: The electrical machine is divided into an infinite number of
(in)homogeneous layers. The permeability in the stator and/or rotor slotting is represented
by a complex Fourier series along the direction of permeability variation The permeability
variation in the direction of the periodicity is directly included into the solution of the
magnetic field equation. The resulting formulation, based on a direct solution of Maxwell’s
field equations using the Cauchy’s product theorem (i.e., the discrete convolution of two
infinite series), is completely defined in terms of complex Fourier series [47]. Recently,
Djelloul et al. (2016) [48] extended this modeling taking into account the nonlinear B(H)

curve in each soft-magnetic section by an iterative procedure. For the moment, this technique
has been applied to a switched reluctance machine [48] and a synchronous reluctance
machine [49].

• Eigenvalues model (only the global saturation): The electromagnetic field can be solved directly
by applying the method of Truncation Region Eigenfunction Expansions (TREE) [50]. The iron
cores have finite magnetic permeability and finite height/width. The studied domains can be
(non)conductive. The boundary value problem is formulated in terms of the magnetic vector
potential, which is expanded in a series of appropriate eigenfunctions. The unknown coefficients
of the series are computed by solving a matrix system (by using a standard method such as the
lower upper decomposition), which is formed by applying the usual interface conditions. The
corresponding eigenvalues are the real roots of a function with the geometrical and the magnetic
permeability of the core as parameters. Nevertheless, an iterative numerical method (e.g., the
bisection [50] and Newton-Raphson [51] method) is always adopted to compute the discrete
eigenvalues in both the odd and even parity solutions. For the moment, this technique has been
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widely applied to the non-destructive testing of conductive materials (e.g., for the I-cored [50]
and E-cored [52,53] probes, for a long coil with a slot in a conductive plate [51], etc.).

• Hybrid models (the local/global saturation): The analytical solution can be combined with numerical
methods [54–57] or (non)linear MEC [58–67]. Usually, the analytical solution is established in
uniform regions of very low permeability (e.g., air-gap, and magnets) and other methods are sought
in regions where magnetic saturation cannot be neglected (i.e., the stator and/or rotor iron cores).

1.3. Objectives of this Paper

To the best of the author’s knowledge, in the literature, there is no (semi-)analytical model based
on the subdomain technique that taking into account of iron parts with(out) the nonlinear B(H) curve.
Thus, the work in this paper takes part in the development and improvement of the subdomain
technique on this scientific topic.

The disadvantage of multi-layers models, except those with the convolution theorem, is that they
do not give a very accurate description of the local magnetic field distribution in the iron parts with
a global saturation. In the harmonic modeling technique using the convolution theorem, convergence
problems due to the truncated Fourier series around the soft-magnetic material discontinuities may
exist [47–49]. Except in multi-layers models using the conception wave impedance and in the TREE
method, the electrical conductivity is assumed to be zero. It is interesting to note that the TREE
method is not similar to the novel method proposed in this paper. The difference is that TREE method
imposes a term-by-term field continuity on one direction and a weak continuity on the other direction,
while the 2-D subdomain technique imposes a weak continuity on both directions. Furthermore, the
latter method does not need to find any special eigenvalues by using iterative numerical schemes.
Contrary to the TREE method, the new approach proposed in this paper allows to decompose the
analytical solution in Fourier series into two solutions according to the two directions and to respect
the boundary conditions by applying the principle of superposition on the magnetic quantities.
Moreover, it also allows evaluation of the local distribution of flux densities in the iron parts with
a global saturation, does not have numerical convergence problems, and would easily introduce the
current penetration effect in the conductive materials. Section 2 presents this new scientific contribution
based on the subdomain technique. For example, it was performed by solving 2-D magnetostatic
Maxwell’s equations in Cartesian coordinates (x, y) for an air- or iron-cored coil supplied by a direct
current. The subdomains connection is carried out in the two directions (i.e., x- and y-edges). The iron
magnetic permeability is constant corresponding to linear zone of the initial magnetization curve.
Nevertheless, as in [48], it should be mentioned that the material properties could be updated iteratively
to take the nonlinear B(H) curve of the material into account. However, this is beyond the scope
of the paper. In Section 3, in order to evaluate the efficacy of the proposed technique, the magnetic
flux density distributions have been compared with those obtained by the 2-D finite-element analysis
(FEA) [8]. The comparisons are very satisfying in amplitudes and waveforms.

This major scientific contribution could be applied to rotating and/or linear electrical machines
with(out) magnets supplied by a direct or alternate current (with any waveforms) whose the analysis
would be based on a 2-D semi-analytical model in Cartesian coordinates (e.g., plane linear machines,
axial-flux machines, etc.).

2. A 2-D Subdomain Technique of Magnetic Field

2.1. Problem Description and Assumptions

The application example, namely an air- or iron-cored coil, with the geometrical and physical
parameters is illustrated in Figure 1. The system consists of a coil with Nt turns of the copper wire
which is supply by a direct current I. The direction of current in the conductor is defined by ⊗ for the
forward conductor and � for return conductor. The material in the middle of the coil can be air or iron.
The system is surrounded by the vacuum via an infinite box.
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Figure 1. Air- or iron-cored coil (see Table 1 for the various parameters).

The 2-D magnetic field distribution in the air- or iron-cored coil has been studied in Cartesian
coordinates (x, y) by solving magnetostatic Maxwell’s equations from subdomain technique. In this
analysis, the magnetic field solution is based on the following simplifying assumptions:

• The end-effects are neglected (i.e., that the magnetic variables are independent of z);
• The electrical conductivities of materials are assumed to be null (i.e., the eddy-currents induced

in the copper/iron are neglected);
• The magnetic materials are considered as isotropic (i.e., the permeability can be assumed the

same in the two directions);
• The effect of global saturation is taken into account with a constant magnetic permeability

corresponding to linear zone of the B(H) curve (i.e., the initial magnetization curve).

2.2. Problem Discretization in Subdomains

As shown in Figure 2, the problem domain is divided into 7 subdomains with µ = Cst. The
vacuum around to the air- or iron-cored coil is defined by 4 regions, i.e.,

• Region 1 {∀x ∧ y ∈ [y1, y2]} with µ1 = µv;

• Region 2 {∀x ∧ y ∈ [y3, y4]} with µ2 = µv;

• Region 3 {x ∈ [x1, x2] ∧ y ∈ [y2, y3]} with µ3 = µv;

• Region 4 {x ∈ [x5, x6] ∧ y ∈ [y2, y3]} with µ4 = µv.

The air or iron in the middle of the coil is defined by the Region 5 {x ∈ [x2, x3] ∧ y ∈ [y2, y3]}
with µ5 = µv for the air or µ5 = µiron for the iron. The coil (i.e., forward and return conductors) is
defined by 2 regions, i.e.,

• Region 6 {x ∈ [x2, x3] ∧ y ∈ [y2, y3]} with µ6 = µc;

• Region 7 {x ∈ [x4, x5] ∧ y ∈ [y2, y3]} with µ7 = µc.

2.3. Governing Partial Differential Equations in Cartesian Coordinates

According to (A4) (see Appendix A), the 2-D magnetic vector potential distribution in Cartesian
coordinates (x, y) is governed by the Laplace’s equation in regions j with j = {1, . . . , 5}, i.e.,

∆Azj =
∂2Azj

∂x2 +
∂2Azj

∂y2 = 0, (1)
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Figure 2. Subdomains in the air- or iron-cored coil.

and the Poisson’s equation in regions k with k = {6, 7}, i.e.,

∆Azk =
∂2Azk
∂x2 +

∂2Azk
∂y2 = −µk · Jzk, (2a)

where Jzk represents the current density (due to supply currents) which is defined by

Jzk = Ck ·
Nt · I

Sc
, (2b)

in which Sc is the conductor surface, and Ck is the coefficient for the direction of current in the conductor
(e.g., with C6 = 1 for the forward conductor and C7 = −1 for return conductor).

According to the method of separation of variables, it is interesting to note that Az• can be
decomposed into two potentials according to the two directions (see Appendix A), i.e., Ax

z• for the
x-edges (A5b) and Ay

z• for the y-edges (A5c). The periodicity of Ax
z• and Ay

z• are respectively defined
by β•h• and λ•n• with h• and n• the spatial harmonic orders.

2.4. Boundary Conditions

2.4.1. Reminder on the Boundary Conditions at the Interface of Two Surfaces

In electromagnetic, as shown in Figure 3, the magnetic field
−→
H obeys Ampère’s continuity condition,

−→n ×
(−→

H ‖a −
−→
H ‖b

)
=
−→
K , (3a)

where −→n is the unit vector normal to the boundary between two surfaces,
−→
H ‖ the parallel component

of
−→
H on one side of the interface, and

−→
K the current density at the surface of the interface.

At this same surface, the magnetic flux continuity condition also applies

−→n ·
(−→

B ⊥a −
−→
B ⊥b

)
= 0 or

−→
A a −

−→
A b = 0, (3b)

where
−→
B ⊥ is the perpendicular component of

−→
B on one side of the interface. The Dirichlet condition

on one surface is defined by
−→
A a = 0 or

−→
A b = 0. (3c)
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Figure 3. Boundary conditions at the interface of two surfaces.

2.4.2. Application to the Air- or Iron-Cored Coil

On the outer boundaries for (x1 ∧ x6, ∀y) and (∀x, y1 ∧ y4) (see Figure 2), the component of the
magnetic vector potential satisfies the Dirichlet boundary condition, i.e., (3c). By applying (3) and
using (A2) (see Appendix A), the respective boundaries at the interface between the various regions
are illustrated in Figure 4.

2.5. General Solutions

2.5.1. Region 1

The general solution of Az1, Bx1 and By1 are determined by the particular case of the case-study
no 1 (i.e., Az imposed on all edges of a region) in Appendix B. The boundary conditions on the y-edges
of the region (see Figure 4a) are met by posing cx

h = 0 in (B4). Therefore, the magnetic vector potential
Az1, which is a solution of (1) satisfying the boundary conditions of Figure 4a, is defined by

Az1 =
∞

∑
h1=1

d1x
h1

β1h1
· sh [β1h1 · (y− y1)]

ch
(

β1h1 · τy1
) · sin [β1h1 · (x− x1)], (4)

the components of
−→
B 1 =

{
Bx1; By1; 0

}
by

Bx1 =
∞

∑
h1=1

d1x
h1 ·

ch [β1h1 · (y− y1)]

ch
(

β1h1 · τy1
) · sin [β1h1 · (x− x1)], (5)

By1 = −
∞

∑
h1=1

d1x
h1 ·

sh [β1h1 · (y− y1)]

ch
(

β1h1 · τy1
) · cos [β1h1 · (x− x1)], (6)

where h1 is the spatial harmonic orders in Region 1, d1x
h1 the integration constant, β1h1 = h1 · π

/
τx1

with τx1 = x6 − x1, and τy1 = y2 − y1.
The coefficient d1x

h1 is determined using a Fourier series expansion of F1 (x) (see Figure 4a) over
the interval x = [x1, x6] = [x1, x1 + τx1]:

d1x
h1 =

2
τx1
·

x1+τx1∫
x1

F1 (x) · sin [β1h1 · (x− x1)] · dx. (7)

The expression of d1x
h1 is developed in Appendix C.



Math. Comput. Appl. 2017, 22, 17 8 of 39

Region 1

Region 3

R
eg

io
n

 6

Region 5 Region 4

R
eg

io
n

 7
1

z1 x x y
A 0

 


2y

1y
1

z1 x y y
A 0

  


6
z1 x x y

A 0
 



 

 

 

 

 

 

1 2 2

2 3 2

2 3 4 2

4 5 2

5 6 2

3 x3 x x , x y y

6 x6 x x , x y y

x1 1 1 5 x5x y y x x , x y y

7 x7 x x , x y y

4 x4 x x , x y y

1 B

1 B

B F x 1 B

1 B

1 B





 





  

  

     

  

  

 

 



   








2x 3x 4x 5x 6x1x

(a)

Region 2

Region 3

R
eg

io
n

 6

Region 5 Region 4

R
eg

io
n

 7

1
z2 x x y

A 0
 



4y

3y

4
z2 x y y

A 0
  



6
z2 x x y

A 0
 



2x 3x 4x 5x 6x1x

 

 

 

 

 

 

1 2 3

2 3 3

3 3 4 3

4 5 3

5 6 3

3 x3 x x , x y y

6 x6 x x , x y y

x2 2 2 5 x5x y y x x , x y y

7 x7 x x , x y y

4 x4 x x , x y y

1 B

1 B

B G x 1 B

1 B

1 B





 





  

  

     

  

  

 

 



   








(b)

Region 1

Region 2

Region 3

R
eg

io
n

 6

1
z3 x x y

A 0
 



2y

3y

22
z3 z1 x y yx y y

A A
    



33
z3 z2 x y yx y y

A A
    



2 2
z3 z6x x y x x y

A A
   



2x1x

(c)

Region 1

Region 2

Region 4

R
eg

io
n

 7

6
z4 x x y

A 0
 



2y

3y

22
z4 z1 x y yx y y

A A
    



33
z4 z2 x y yx y y

A A
    



5 5
z4 z7x x y x x y

A A
   



6x5x

(d)

Region 1

Region 2

Region 5

R
eg

io
n

 6

4 4
z5 z7x x y x x y

A A
   



2y

3y

22
z5 z1 x y yx y y

A A
    



33
z5 z2 x y yx y y

A A
    



3 3
z5 z6x x y x x y

A A
   



4x3x

R
eg

io
n

 7

(e)

Region 1

Region 2

Region 6

R
eg

io
n

 3

2 3

y6 6 5 y5x x y x x y
B B 

   
 

2y

3y

22
z6 z1 x y yx y y

A A
    



33
z6 z2 x y yx y y

A A
    



2 2

y6 6 3 y3x x y x x y
B B 

   
 

3x2x

R
eg

io
n

 5

(f)

Region 1

Region 2

Region 7

R
eg

io
n

 5

5 5

y7 7 4 y4x x y x x y
B B 

   
 

2y

3y

22
z7 z1 x y yx y y

A A
    



33
z7 z2 x y yx y y

A A
    



4 4

y7 7 5 y5x x y x x y
B B 

   
 

5x4x

R
eg

io
n

 4

(g)

Figure 4. Boundary conditions in subdomains: (a) Region 1; (b) Region 2; (c) Region 3; (d) Region 4;
(e) Region 5; (f) Region 6; and (g) Region 7.

2.5.2. Region 2

The same method than Region 1 is used to find the solution in Region 2. By posing dx
h = 0 in (B4)

(see Appendix B), the magnetic vector potential Az2, which is a solution of (1) satisfying the boundary
conditions of Figure 4b, is defined by

Az2 = −
∞

∑
h2=1

c2x
h2

β2h2
· sh [β2h2 · (y4 − y)]

ch
(

β2h2 · τy2
) · sin [β2h2 · (x− x1)], (8)

the components of
−→
B 2 =

{
Bx2; By2; 0

}
by

Bx2 =
∞

∑
h2=1

c2x
h2 ·

ch [β2h2 · (y4 − y)]
ch
(

β2h2 · τy2
) · sin [β2h2 · (x− x1)], (9)
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By2 =
∞

∑
h2=1

c2x
h2 ·

sh [β2h2 · (y4 − y)]
ch
(

β2h2 · τy2
) · cos [β2h2 · (x− x1)], (10)

where h2 is the spatial harmonic orders in Region 2, c2x
h2 the integration constant, β2h2 = h2 · π

/
τx2

with τx2 = x6 − x1, and τy2 = y4 − y3.
The coefficient c2x

h2 is determined using a Fourier series expansion of G2 (x) (see Figure 4b) over
the interval x = [x1, x6] = [x1, x1 + τx2]:

c2x
h2 =

2
τx2
·

x1+τx2∫
x1

G2 (x) · sin [β2h2 · (x− x1)] · dx. (11)

The expression of c2x
h2 is developed in Appendix C.

2.5.3. Region 3

The general solution of Az3, Bx3 and By3 are determined by the case-study no 1 (i.e., Az imposed
on all edges of a region) in Appendix B. The boundary conditions on the x-edges of the region (see
Figure 4c) are met by posing ey

n = 0 in (B1)–(B3). Therefore, the magnetic vector potential Az3, which is
a solution of (1) satisfying the boundary conditions of Figure 4c, is defined by

Az3 = Ax
z3 + Ay

z3, (12a)

Ax
z3 =

∞

∑
h3=1

{
c3x

h3
β3h3

· sh [β3h3 · (y3 − y)]
sh
(

β3h3 · τy3
) +

d3x
h3

β3h3
· sh [β3h3 · (y− y2)]

sh
(

β3h3 · τy3
) }

· sin [β3h3 · (x− x1)], (12b)

Ay
z3 =

∞

∑
n3=1

f 3y
n3

λ3n3
· sh [λ3n3 · (x− x1)]

sh (λ3n3 · τx3)
· sin [λ3n3 · (y− y2)], (12c)

the x-component of
−→
B 3 by

Bx3 = Bx
x3 + By

x3, (13a)

Bx
x3 =

∞

∑
h3=1

{
−c3x

h3 ·
ch [β3h3 · (y3 − y)]

sh
(

β3h3 · τy3
) + d3x

h3 ·
ch [β3h3 · (y− y2)]

sh
(

β3h3 · τy3
) }

· sin [β3h3 · (x− x1)], (13b)

By
x3 =

∞

∑
n3=1

f 3y
n3 ·

sh [λ3n3 · (x− x1)]

sh (λ3n3 · τx3)
· cos [λ3n3 · (y− y2)], (13c)

the y-component of
−→
B 3 by

By3 = Bx
y3 + By

y3, (14a)

Bx
y3 = −

∞

∑
h3=1

{
c3x

h3 ·
sh [β3h3 · (y3 − y)]

sh
(

β3h3 · τy3
) + d3x

h3 ·
sh [β3h3 · (y− y2)]

sh
(

β3h3 · τy3
) }

· cos [β3h3 · (x− x1)], (14b)

By
y3 = −

∞

∑
n3=1

f 3y
n3 ·

ch [λ3n3 · (x− x1)]

sh (λ3n3 · τx3)
· sin [λ3n3 · (y− y2)], (14c)

where h3 and n3 are the spatial harmonic orders in Region 3; c3x
h3, d3x

h3 and f 3x
n3 the integration

constants; β3h3 = h3 · π
/

τx3 with τx3 = x2 − x1; and λ3n3 = n3 · π
/

τy3 with τy3 = y3 − y2.
The coefficients c3x

h3 and d3x
h3 are respectively determined using Fourier series expansion of

Az1|∀x∧y=y2
and Az2|∀x∧y=y3

(see Figure 4c) over the interval x = [x1, x2] = [x1, x1 + τx3]:

c3x
h3 =

2
τx3
·

x1+τx3∫
x1

β3h3 · Az1|y=y2
· sin [β3h3 · (x− x1)] · dx, (15a)
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d3x
h3 =

2
τx3
·

x1+τx3∫
x1

β3h3 · Az2|y=y3
· sin [β3h3 · (x− x1)] · dx. (15b)

The coefficient f 3y
n3 is determined using a Fourier series expansion of Az6|x=x2∧∀y (see Figure 4c)

over the interval y = [y2, y3] =
[
y2, y2 + τy3

]
:

f 3y
n3 =

2
τy3
·

y2+τy3∫
y2

λ3n3 · Az6|x=x2
· sin [λ3n3 · (y− y2)] · dy. (16)

The expression of c3x
h3, d3x

h3 and f 3y
n3 are developed in Appendix C.

2.5.4. Region 4

The same method than Region 3 is used to find the solution in Region 4. By posing f y
n = 0 in

(B1)–(B3) (see Appendix B), the magnetic vector potential Az4, which is a solution of (1) satisfying the
boundary conditions of Figure 4d, is defined by

Az4 = Ax
z4 + Ay

z4, (17a)

Ax
z4 =

∞

∑
h4=1

{
c4x

h4
β4h4

· sh [β4h4 · (y3 − y)]
sh
(

β4h4 · τy4
) +

d4x
h4

β4h4
· sh [β4h4 · (y− y2)]

sh
(

β4h4 · τy4
) }

· sin [β4h4 · (x− x5)], (17b)

Ay
z4 =

∞

∑
n4=1

e4y
n4

λ4n4
· sh [λ4n4 · (x6 − x)]

sh (λ4n4 · τx4)
· sin [λ4n4 · (y− y2)], (17c)

the x-component of
−→
B 4 by

Bx4 = Bx
x4 + By

x4, (18a)

Bx
x4 =

∞

∑
h4=1

{
−c4x

h4 ·
ch [β4h4 · (y3 − y)]

sh
(

β4h4 · τy4
) + d4x

h4 ·
ch [β4h4 · (y− y2)]

sh
(

β4h4 · τy4
) }

· sin [β4h4 · (x− x5)], (18b)

By
x4 =

∞

∑
n4=1

e4y
n4 ·

sh [λ4n4 · (x6 − x)]
sh (λ4n4 · τx4)

· cos [λ4n4 · (y− y2)], (18c)

the y-component of
−→
B 4 by

By4 = Bx
y4 + By

y4, (19a)

Bx
y4 = −

∞

∑
h4=1

{
c4x

h4 ·
sh [β4h4 · (y3 − y)]

sh
(

β4h4 · τy4
) + d4x

h4 ·
sh [β4h4 · (y− y2)]

sh
(

β4h4 · τy4
) }

· cos [β4h4 · (x− x5)], (19b)

By
y4 =

∞

∑
n4=1

e4y
n4 ·

ch [λ4n4 · (x6 − x)]
sh (λ4n4 · τx4)

· sin [λ4n4 · (y− y2)], (19c)

where h4 and n4 are the spatial harmonic orders in Region 4; c4x
h4, d4x

h4 and e4y
n4 the integration

constants; β4h4 = h4 · π
/

τx4 with τx4 = x6 − x5; and λ4n4 = n4 · π
/

τy4 with τy4 = y3 − y2.
The coefficients c4x

h4 and d4x
h4 are respectively determined using Fourier series expansion of

Az1|∀x∧y=y2
and Az2|∀x∧y=y3

(see Figure 4d) over the interval x = [x5, x6] = [x5, x5 + τx4]:

c4x
h4 =

2
τx4
·

x5+τx4∫
x5

β4h4 · Az1|y=y2
· sin [β4h4 · (x− x5)] · dx, (20a)
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d4x
h4 =

2
τx4
·

x5+τx4∫
x5

β4h4 · Az2|y=y3
· sin [β4h4 · (x− x5)] · dx. (20b)

The coefficient e4y
n4 is determined using a Fourier series expansion of Az7|x=x5∧∀y (see Figure 4d)

over the interval y = [y2, y3] =
[
y2, y2 + τy4

]
:

e4y
n4 =

2
τy4
·

y2+τy4∫
y2

λ4n4 · Az7|x=x5
· sin [λ4n4 · (y− y2)] · dy. (21)

The expression of c4x
h4, d4x

h4 and e4y
n4 are developed in Appendix C.

2.5.5. Region 5

According to case-study no 1 (i.e., Az imposed on all edges of a region) in Appendix B, the magnetic
vector potential Az5, which is a solution of (1) satisfying the boundary conditions of Figure 4e, is
defined by

Az5 = Ax
z5 + Ay

z5, (22a)

Ax
z5 =

∞

∑
h5=1

{
c5x

h5
β5h5

· sh [β5h5 · (y3 − y)]
sh
(

β5h5 · τy5
) +

d5x
h5

β5h5
· sh [β5h5 · (y− y2)]

sh
(

β5h5 · τy5
) }

· sin [β5h5 · (x− x3)], (22b)

Ay
z5 =

∞

∑
n5=1

{
e5y

n5
λ5n5

· sh [λ5n5 · (x4 − x)]
sh (λ5n5 · τx5)

+
f 5y

n5
λ5n5

· sh [λ5n5 · (x− x3)]

sh (λ5n5 · τx5)

}
· sin [λ5n5 · (y− y2)], (22c)

the x-component of
−→
B 5 by

Bx5 = Bx
x5 + By

x5, (23a)

Bx
x5 =

∞

∑
h5=1

{
−c5x

h5 ·
ch [β5h5 · (y3 − y)]

sh
(

β5h5 · τy5
) + d5x

h5 ·
ch [β5h5 · (y− y2)]

sh
(

β5h5 · τy5
) }

· sin [β5h5 · (x− x3)], (23b)

By
x5 =

∞

∑
n5=1

{
e5y

n5 ·
sh [λ5n5 · (x4 − x)]

sh (λ5n5 · τx5)
+ f 5y

n5 ·
sh [λ5n5 · (x− x3)]

sh (λ5n5 · τx5)

}
· cos [λ5n5 · (y− y2)], (23c)

the y-component of
−→
B 5 by

By5 = Bx
y5 + By

y5, (24a)

Bx
y5 = −

∞

∑
h5=1

{
c5x

h5 ·
sh [β5h5 · (y3 − y)]

sh
(

β5h5 · τy5
) + d5x

h5 ·
sh [β5h5 · (y− y2)]

sh
(

β5h5 · τy5
) }

· cos [β5h5 · (x− x3)], (24b)

By
y5 = −

∞

∑
n5=1

{
−e5y

n5 ·
ch [λ5n5 · (x4 − x)]

sh (λ5n5 · τx5)
+ f 5y

n5 ·
ch [λ5n5 · (x− x3)]

sh (λ5n5 · τx5)

}
· sin [λ5n5 · (y− y2)], (24c)

where h5 and n5 are the spatial harmonic orders in Region 5; c5x
h5, d5x

h5, e5y
n5 and f 5y

n5 the integration
constants; β5h5 = h5 · π

/
τx5 with τx5 = x4 − x3; and λ5n5 = n5 · π

/
τy5 with τy5 = y3 − y2.

The coefficients c5x
h5 and d5x

h5 are respectively determined using Fourier series expansion of
Az1|∀x∧y=y2

and Az2|∀x∧y=y3
(see Figure 4e) over the interval x = [x3, x5] = [x3, x3 + τx5]:

c5x
h5 =

2
τx5
·

x3+τx5∫
x3

β5h5 · Az1|y=y2
· sin [β5h5 · (x− x3)] · dx, (25a)
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d5x
h5 =

2
τx5
·

x3+τx5∫
x3

β5h5 · Az2|y=y3
· sin [β5h5 · (x− x3)] · dx. (25b)

The coefficient e5y
n5 and f 5y

n5 are respectively determined using a Fourier series expansion of
Az6|x=x3∧∀y and Az7|x=x4∧∀y (see Figure 4e) over the interval y = [y2, y3] =

[
y2, y2 + τy5

]
:

e5y
n5 =

2
τy5
·

y2+τy5∫
y2

λ5n5 · Az6|x=x3
· sin [λ5n5 · (y− y2)] · dy, (26a)

f 5y
n5 =

2
τy5
·

y2+τy5∫
y2

λ5n5 · Az7|x=x4
· sin [λ5n5 · (y− y2)] · dy. (26b)

The expression of c5x
h5, d5x

h5, e5y
n5 and f 5y

n5 are developed in Appendix C.

2.5.6. Region 6

According to case-study no 2 (i.e., By and Az are respectively imposed on x- and y-edges of a
region) in Appendix B, the magnetic vector potential Az6, which is a solution of (2) satisfying the
boundary conditions of Figure 4f, is defined by

Az6 = Ax
z6 + Ay

z6 + AzP6, (27a)

Ax
z6 =

∣∣∣∣∣∣
(y3 − y) · c6x

0 + (y− y2) · d6x
0

· · ·+
∞
∑

h6=1

{
c6x

h6
β6h6
· sh[β6h6·(y3−y)]

sh(β6h6·τy6)
+

d6x
h6

β6h6
· sh[β6h6·(y−y2)]

sh(β6h6·τy6)

}
· cos [β6h6 · (x− x2)]

, (27b)

Ay
z6 = −

∞

∑
n6=1

{
e6y

n6
λ6n6

· ch [λ6n6 · (x− x2)]

sh (λ6n6 · τx6)
−

f 6y
n6

λ6n6
· ch [λ6n6 · (x3 − x)]

sh (λ6n6 · τx6)

}
· sin [λ6n6 · (y− y2)]. (27c)

Considering (27b) and (27c) as well as the form of the current density distribution, i.e., (2b),
a particular solution AzP6 can be found. The following quadratic form can be proposed as a
particular solution:

AzP6 = −1
2
· µ6 · Jz6 · y2. (27d)

The x-component of
−→
B 6 is defined by

Bx6 = Bx
x6 + By

x6 + BxP6, (28a)

Bx
x6 =

∣∣∣∣∣∣
−c6x

0 + d6x
0

· · ·+
∞
∑

h6=1

{
−c6x

h6 ·
ch[β6h6·(y3−y)]

sh(β6h6·τy6)
+ d6x

h6 ·
ch[β6h6·(y−y2)]

sh(β6h6·τy6)

}
· cos [β6h6 · (x− x2)],

(28b)

By
x6 = −

∞

∑
n6=1

{
e6y

n6 ·
ch [λ6n6 · (x− x2)]

sh (λ6n6 · τx6)
− f 6y

n6 ·
ch [λ6n6 · (x3 − x)]

sh (λ6n6 · τx6)

}
· cos [λ6n6 · (y− y2)], (28c)

BxP6 =
∂AzP6

∂y
= −µ6 · Jz6 · y, (28d)

and the y-component of
−→
B 6 by

By6 = Bx
y6 + By

y6 + ByP6, (29a)
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Bx
y6 =

∞

∑
h6=1

{
c6x

h6 ·
sh [β6h6 · (y3 − y)]

sh
(

β6h6 · τy6
) + d6x

h6 ·
sh [β6h6 · (y− y2)]

sh
(

β6h6 · τy6
) }

· sin [β6h6 · (x− x2)], (29b)

By
y6 =

∞

∑
n6=1

{
e6y

n6 ·
sh [λ6n6 · (x− x2)]

sh (λ6n6 · τx6)
+ f 6y

n6 ·
sh [λ6n6 · (x3 − x)]

sh (λ6n6 · τx6)

}
· sin [λ6n6 · (y− y2)], (29c)

ByP6 = −∂AzP6

∂x
= 0, (29d)

where h6 and n6 are the spatial harmonic orders in Region 6; c6x
0 , d6x

0 , c6x
h6, d6x

h6, e6y
n6 and f 6y

n6 the
integration constants; β6h6 = h6 · π

/
τx6 with τx6 = x3 − x2; and λ6n6 = n6 · π

/
τy6 with τy6 = y3 − y2.

The coefficients c6x
0 & c6x

h6 and d6x
0 & d6x

h6 are respectively determined using Fourier series
expansion of Az1|∀x∧y=y2

and Az2|∀x∧y=y3
(see Figure 4f) over the interval x = [x2, x3] = [x2, x2 + τx6]:

c6x
0 =

1
τx6
·

x2+τx6∫
x2

1
τy6
·
[

Az1|y=y2
− AzP6|y=y2

]
· dx, (30a)

c6x
h6 =

2
τx6
·

x2+τx6∫
x2

β6h6 ·
[

Az1|y=y2
− AzP6|y=y2

]
· cos [β6h6 · (x− x2)] · dx, (30b)

d6x
0 =

1
τx6
·

x2+τx6∫
x2

1
τy6
·
[

Az2|y=y3
− AzP6|y=y3

]
· dx, (30c)

d6x
h6 =

2
τx6
·

x2+τx6∫
x2

β6h6 ·
[

Az2|y=y3
− AzP6|y=y3

]
· cos [β6h6 · (x− x2)] · dx. (30d)

The coefficient e6y
n6 and f 6y

n6 are respectively determined using a Fourier series expansion of µ6
/

µ5 ·
By5
∣∣
x=x3∧∀y and µ6

/
µ3 · By3

∣∣
x=x2∧∀y (see Figure 4f) over the interval y = [y2, y3] =

[
y2, y2 + τy6

]
:

e6y
n6 =

2
τy6
·

y2+τy6∫
y2

[
µ6

µ5
· By5

∣∣
x=x3
− ByP6

∣∣
x=x3

]
· sin [λ6n6 · (y− y2)] · dy, (31a)

f 6y
n6 =

2
τy6
·

y2+τy6∫
y2

[
µ6

µ3
· By3

∣∣
x=x2
− ByP6

∣∣
x=x2

]
· sin [λ6n6 · (y− y2)] · dy. (31b)

The expression of c6x
0 , d6x

0 , c6x
h6, d6x

h6, e6y
n6 and f 6y

n6 are developed in Appendix C.

2.5.7. Region 7

According to case-study no 2 (i.e., By and Az are respectively imposed on x- and y-edges of a
region) in Appendix B, the magnetic vector potential Az7, which is a solution of (2) satisfying the
boundary conditions of Figure 4g, is defined by

Az7 = Ax
z7 + Ay

z7 + AzP7, (32a)

Ax
z7 =

∣∣∣∣∣∣
(y3 − y) · c7x

0 + (y− y2) · d7x
0

· · ·+
∞
∑

h7=1

{
c7x

h7
β7h7
· sh[β7h7·(y3−y)]

sh(β7h7·τy7)
+

d7x
h7

β7h7
· sh[β7h7·(y−y2)]

sh(β7h7·τy7)

}
· cos [β7h7 · (x− x4)],

(32b)
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Ay
z7 = −

∞

∑
n7=1

{
e7y

n7
λ7n7

· ch [λ7n7 · (x− x4)]

sh (λ7n7 · τx7)
−

f 7y
n7

λ7n7
· ch [λ7n7 · (x5 − x)]

sh (λ7n7 · τx7)

}
· sin [λ7n7 · (y− y2)]. (32c)

Considering (32b) and (32c) as well as the form of the current density distribution, i.e.,
(2b), a particular solution AzP7 can be found. The following quadratic form can be proposed as
a particular solution:

AzP7 = −1
2
· µ7 · Jz7 · y2. (32d)

The x-component of
−→
B 7 is defined by

Bx7 = Bx
x7 + By

x7 + BxP7, (33a)

Bx
x7 =

∣∣∣∣∣∣
−c7x

0 + d7x
0

· · ·+
∞
∑

h7=1

{
−c7x

h7 ·
ch[β7h7·(y3−y)]

sh(β7h7·τy7)
+ d7x

h7 ·
ch[β7h7·(y−y2)]

sh(β7h7·τy7)

}
· cos [β7h7 · (x− x4)],

(33b)

By
x7 = −

∞

∑
n7=1

{
e7y

n7 ·
ch [λ7n7 · (x− x4)]

sh (λ7n7 · τx7)
− f 6y

n7 ·
ch [λ7n7 · (x5 − x)]

sh (λ7n7 · τx7)

}
· cos [λ7n7 · (y− y2)], (33c)

BxP7 =
∂AzP7

∂y
= −µ7 · Jz7 · y, (33d)

and the y-component of
−→
B 7 by

By7 = Bx
y7 + By

y7 + ByP7, (34a)

Bx
y7 =

∞

∑
h7=1

{
c7x

h7 ·
sh [β7h7 · (y3 − y)]

sh
(
β7h7 · τy7

) + d7x
h7 ·

sh [β7h7 · (y− y2)]

sh
(
β7h7 · τy7

) }
· sin [β7h7 · (x− x4)], (34b)

By
y7 =

∞

∑
n7=1

{
e7y

n7 ·
sh [λ7n7 · (x− x4)]

sh (λ7n7 · τx7)
+ f 7y

n7 ·
sh [λ7n7 · (x5 − x)]

sh (λ7n7 · τx7)

}
· sin [λ7n7 · (y− y2)], (34c)

ByP7 = −∂AzP7

∂x
= 0, (34d)

where h7 and n7 are the spatial harmonic orders in Region 7; c7x
0 , d7x

0 , c7x
h7, d7x

h7, e7y
n7 and f 7y

n7 the
integration constants; β7h7 = h7 · π

/
τx7 with τx7 = x5 − x4; and λ7n7 = n7 · π

/
τy7 with τy7 = y3 − y2.

The coefficients c7x
0 & c7x

h7 and d7x
0 & d7x

h7 are respectively determined using Fourier series
expansion of Az1|∀x∧y=y2

and Az2|∀x∧y=y3
(see Figure 4g) over the interval x = [x4, x5] = [x4, x4 + τx7]:

c7x
0 =

1
τx7
·

x4+τx7∫
x4

1
τy7
·
[

Az1|y=y2
− AzP7|y=y2

]
· dx, (35a)

c7x
h7 =

2
τx7
·

x4+τx7∫
x4

β7h7 ·
[

Az1|y=y2
− AzP7|y=y2

]
· cos [β7h7 · (x− x4)] · dx, (35b)

d7x
0 =

1
τx7
·

x4+τx7∫
x4

1
τy7
·
[

Az2|y=y3
− AzP7|y=y3

]
· dx, (35c)

d7x
h7 =

2
τx7
·

x4+τx7∫
x4

β7h7 ·
[

Az2|y=y3
− AzP7|y=y3

]
· cos [β7h7 · (x− x4)] · dx. (35d)
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The coefficient e7y
n7 and f 7y

n7 are respectively determined using a Fourier series expansion of µ7
/

µ4 ·
By4
∣∣
x=x5∧∀y and µ7

/
µ5 · By5

∣∣
x=x4∧∀y (see Figure 4g) over the interval y = [y2, y3] =

[
y2, y2 + τy7

]
:

e7y
n7 =

2
τy7
·

y2+τy7∫
y2

[
µ7

µ4
· By4

∣∣
x=x5
− ByP7

∣∣
x=x5

]
· sin [λ7n7 · (y− y2)] · dy, (36a)

f 7y
n7 =

2
τy7
·

y2+τy7∫
y2

[
µ7

µ5
· By5

∣∣
x=x4
− ByP7

∣∣
x=x4

]
· sin [λ7n7 · (y− y2)] · dy. (36b)

The expression of c7x
0 , d7x

0 , c7x
h7, d7x

h7, e7y
n7 and f 7y

n7 are developed in Appendix C.

2.6. Solving of Linear System

The integration constants can be determined by solving the following linear equations which can
be written in matrix form as [68]

[IC] = [BC]−1 · [ES] , (37)

where [IC] is the integration constants vector (of dimension Xmax × 1),

[IC] =
[
[IC1] [IC2] [IC3] [IC4] [IC5] [IC6] [IC7]

]T
, (38a)

[IC1] = [d1x
h1] , (38b)

[IC2] = [c2x
h2] , (38c)

[IC3] =
[

c3x
h3 d3x

h3 f 3y
n3

]
, (38d)

[IC4] =
[

c4x
h4 d4x

h4 e4y
n4

]
, (38e)

[IC5] =
[

c5x
h5 d5x

h5 e5y
n5 f 5y

n5

]
, (38f)

[IC6] =
[

c6x
0 c6x

h6 d6x
0 d6x

h6 e6y
n6 f 6y

n6

]
, (38g)

[IC7] =
[

c7x
0 c7x

h7 d7x
0 d7x

h7 e7y
n7 f 7y

n7

]
, (38h)

[ES] the electromagnetic sources vector (of dimension Xmax × 1),

[ES] =
[
[ES1] [ES2] [ES3] [ES4] [ES5] [ES6] [ES7]

]T
, (39a)

[ES1] = [ES16h1 + ES17h1] , (39b)

[ES2] = [ES26h2 + ES27h2] , (39c)

[ES3] =
[

0 0 ES36n3

]
, (39d)

[ES4] =
[

0 0 ES47n4

]
, (39e)

[ES5] =
[

0 0 ES56n5 ES57n5

]
, (39f)

[ES6] =
[

ES610 0 ES620 0 0 0
]

, (39g)

[ES7] =
[

ES710 0 ES720 0 0 0
]

, (39h)
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and [BC] the boundary conditions matrix (of dimension Xmax × Xmax)

[BC] =



[I] 0 [BC13] [BC14] [BC15] [BC16] [BC17]
0 [I] [BC23] [BC24] [BC25] [BC26] [BC27]

[BC31] [BC32] [I] 0 0 [BC36] 0
[BC41] [BC42] 0 [I] 0 0 [BC47]
[BC51] [BC52] 0 0 [I] [BC56] [BC57]
[BC61] [BC62] [BC63] 0 [BC65] [I] 0
[BC71] [BC72] 0 [BC74] [BC75] 0 [I]


, (40a)

in which [I] is identity matrix, and

[BC13] =
[

Q13ch1,h3 Q13dh1,h3 Q13 fh1,n3

]
[BC14] =

[
Q14ch1,h4 Q14dh1,h4 Q14eh1,n4

]
[BC15] =

[
Q15ch1,h5 Q15dh1,h5 Q15eh1,n5 Q15 fh1,n5

]
[BC16] =

[
Q16ch1,0 Q16ch1,h6 Q16dh1,0 Q16dh1,h6 Q16eh1,n6 Q16 fh1,n6

]
[BC17] =

[
Q17ch1,0 Q17ch1,h7 Q17dh1,0 Q17dh1,h7 Q17eh1,n7 Q17 fh1,n7

]
(40b)

for Region 1,

[BC23] =
[

Q23ch2,h3 Q23dh2,h3 Q23 fh2,n3

]
[BC24] =

[
Q24ch2,h4 Q24dh2,h4 Q24eh2,n4

]
[BC25] =

[
Q25ch2,h5 Q25dh2,h5 Q25eh2,n5 Q25 fh2,n5

]
[BC26] =

[
Q26ch2,0 Q26ch2,h6 Q26dh2,0 Q26dh2,h6 Q26eh2,n6 Q26 fh2,n6

]
[BC27] =

[
Q27ch2,0 Q27ch2,h7 Q27dh2,0 Q27dh2,h7 Q27eh2,n7 Q27 fh2,n7

]
(40c)

for Region 2,

[BC31] =
[

Q31dh3,h1 0 0
]T

[BC32] =
[

0 Q32ch3,h2 0
]T

[BC36] =

 0 0 0 0 0 0
0 0 0 0 0 0

Q36cn3,0 Q36cn3,h6 Q36dn3,0 Q36dn3,h6 Q36en3,n6 Q36 fn3,n6


(40d)

for Region 3,

[BC41] =
[

Q41dh4,h1 0 0
]T

[BC42] =
[

0 Q42ch4,h2 0
]T

[BC47] =

 0 0 0 0 0 0
0 0 0 0 0 0

Q47cn4,0 Q47cn4,h7 Q47dn4,0 Q47dn4,h7 Q47en4,n7 Q47 fn4,n7


(40e)



Math. Comput. Appl. 2017, 22, 17 17 of 39

for Region 4,

[BC51] =
[

Q51dh5,h1 0 0 0
]T

[BC52] =
[

0 Q52ch5,h2 0 0
]T

[BC56] =


0 0 0 0 0 0
0 0 0 0 0 0

Q56cn5,0 Q56cn5,h6 Q56dn5,0 Q56dn5,h6 Q56en5,n6 Q56 fn5,n6

0 0 0 0 0 0



[BC57] =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Q57cn5,0 Q57cn5,h7 Q57dn5,0 Q57cn5,h7 Q57en5,n7 Q57 fn5,n7



(40f)

for Region 5,

[BC61] =
[

Q61d0,h1 Q61dh6,h1 0 0 0 0
]T

[BC62] =
[

0 0 Q62c0,h2 Q62ch6,h2 0 0
]T

[BC63] =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Q63cn6,h3 Q63dn6,h3 Q63 fn6,n3



[BC65] =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Q65cn6,h5 Q65dn6,h5 Q65en6,n5 Q65 fn6,n5

0 0 0 0



(40g)

for Region 6,

[BC71] =
[

Q71d0,h1 Q71dh7,h1 0 0 0 0
]T

[BC72] =
[

0 0 Q72c0,h2 Q72ch7,h2 0 0
]T

[BC74] =



0 0 0
0 0 0
0 0 0
0 0 0

Q74cn7,h4 Q74dn7,h4 Q74en7,n4

0 0 0



[BC75] =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Q75cn7,h5 Q75dn7,h5 Q75en7,n5 Q75 fn7,n5



(40h)

for Region 7.
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The corresponding elements in (39) and (40) are defined in Appendix C. One can note that (37)
consists of

Xmax =

[
H1max + H2max + 2 · H3max + N3max + 2 · H4max + N4max

· · ·+ 2 · (H5max + N5max) + 2 · (H6max + N6max + 1) + 2 · (H7max + N7max + 1)

]
(41)

equations and unknowns. Any mathematical software can quickly give the numerical solution of (37).
This set is implemented in Matlab R© (R2015a, Mathworks, Natick, MA, USA) by using the sparse
matrix/vectors according to the method described in Section 2. The analytical solutions of Az and−→
B =

{
Bx; By; 0

}
in the various regions have been computed with a finite number of spatial harmonics

terms H1max – H7max (for the x-edges) and N3max – N7max (for the y-edges). Usually, the two reasons
for the possibility of including a finite number of harmonics is a limiting computational time and
numerical accuracy [69].

2.7. Numerical Problems: Harmonics and Ill-Conditioned System

A discussion on the numerical limitations of such semi-analytical models has been presented
in [69,70]. Numerical methods, which use a meshed geometry, will have a limited accuracy related to
the density of the mesh. The Maxwell-Fourier methods exhibit a similar problem due to the periodicity
of Fourier series, and consequently to the finite number of harmonics.

The size of the model, or more specifically, the size of the matrix [BC], as defined in (40),
depends on the number of: (i) subdomains; (ii) boundary conditions; and (iii) spatial harmonics
terms. Consequently, an electromagnetic device with a high number of teeth/slots results in large
model and, hence, in high computational time [70]. The numerical accuracy of magnetic field
solution and the computational time depend on the highest spatial harmonic orders considered
in the different subdomains. It is interesting to note that the maximum number of harmonics also
depends on the available memory of computer. Beyond a certain number of harmonics, the linear
system becomes ill-conditioned and the results inaccurate [69]. Therefore, the number of harmonics
has to be carefully selected to obtain a correctly converged solution. An extensive discussion on the
effect of the harmonics number taken into account is given in [71,72]. However, owing to the different
sizes of the regions (e.g.,the finite height/width, etc.), such series could be truncated at different points.
Considering an optimal ratio between the numbers of harmonic terms taken into account in each
region might lead to a lower calculation error and a higher rate of convergence [72].

Limiting the number of harmonics will lead to inaccurate field solutions at discontinuous points in
the geometry, especially at the corner points of magnets, current regions, or soft-magnetic material [69].
Moreover, the Gibbs phenomenon can become dominant at these positions (at interfaces between
region with unequal width) [73].

3. Comparison of the Semi-Analytic and Finite-Element Calculations

3.1. Introduction

The objective of this section is to show the effectiveness of 2-D subdomain model on the magnetic
field distribution. The main parameters of the air- and iron-cored coil are given in Table 1. For the
comparison, the system has been set up using Cedrat’s Flux2D (Version 10.2.1., Altair Engineering,
Meylan Cedex, France) software package (i.e., an advanced finite-element method based numeric field
analysis program) [8]. The finite-element computations are done under same assumptions on which
the semi-analytical model is based (see § 2.1. Problem Description and Assumptions). The spatial
harmonics terms in each subdomain, given in Table 1 (rounded to 0 decimal), have been imposed
according to an optinal ratio as indicated in [71,72], i.e., for H1max given,

H •max = H1max ·
τx•
τx1

and N •max = H •max ·
τx•
τy•

. (42)
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The linear system (37) consists of 3,346 elements (representing the size of linear system to solve)
which is much smaller than the 2-D FEA mesh having 8,566 surfaces elements of second order (viz., the
triangles number of system). The 2-D FEA mesh for an air- or iron-cored coil is illustrated in Figure 5.
The personal computer used for this comparison has the following characteristics: HP Z800 Intel(R)
Xeon(R) CPU@2.4 GHz (with 2 processors) RAM 16 Go 64 bits. The computation time of 2-D subdomain
model is equal to 0.01 sec for 2-D subdomain model and 1 sec for the 2-D FEA. The proposed design
approach can thus reduce the computation time by approximately 100-fold versus to 2-D FEA.

Table 1. Parameters of the Air- or Iron-cored Coil.

Parameters, Symbols [Units] Values

Number of coils turns, Nt [–] 1600
Maximum direct current, I [A] 5
Surface of conductors, Sc [mm2] 800
Current density (due to supply currents), Jzk [A/mm2] ±10
Effective axial length, Lz [cm] 4
Geometrical parameters in the x-axis, {x1; x2; x3; x4; x5; x6} [cm] {0; 10; 12; 16; 18; 28}
Geometrical parameters in the y-axis, {y1; y2; y3; y4} [cm] {0; 10; 14; 24}
Relative magnetic permeability of the iron, µiron [–] 1500
Number of spatial harmonics for Region 1, H1max [–] 300
Number of spatial harmonics for Region 2, H2max [–] 300
Number of spatial harmonics for Region 3, {H3max; N3max} [–] {107; 268}
Number of spatial harmonics for Region 4, {H4max; N4max} [–] {107; 268}
Number of spatial harmonics for Region 5, {H5max; N5max} [–] {43; 268}
Number of spatial harmonics for Region 6, {H6max; N6max} [–] {21; 268}
Number of spatial harmonics for Region 7, {H7max; N7max} [–] {21; 268}

Coil

Air or Iron

Figure 5. 2-D finite-element analysis (FEA) mesh for an air- or iron-cored coil.

3.2. Results Discussion

The 2-D subdomain model is implemented so that it is possible to get values of Az in the air-
and iron-cored coil. Figure 6 present the equipotential lines (≈30 lines) of Az in the system with the
2-D subdomain model and 2-D FEA. As can be seen, a good evaluation is obtained, comparing those
results with 2-D FEA, for both air- and iron-core.
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Az

r

2-D Subdomain model

2-D FEA

(a)
Az

r

2-D Subdomain model

2-D FEA

(b)

Figure 6. Equipotential lines of Az with the 2-D subdomain model and FEA for an (a) air- and (b)
iron-cored coil.

The paths of the magnetic flux density validation for the comparison are given in Figure 7.
The waveforms of the components of

−→
B =

{
Bx; By; 0

}
are represented on the various paths in

Figures 8–12. The solid lines represent the magnetic flux density computed by the 2-D FEA and the
circles correspond to 2-D subdomain model. It can be seen that a very good agreement is obtained
for the components of

−→
B , whatever the paths, for both air- and iron-core. This confirms that the

effect of global saturation, with a constant magnetic permeability corresponding to linear zone of
B(H) curve, is taken into account accurately. Nevertheless, the numerical accuracy of magnetic field
solution is reduced as the number of considered is lowered. The relative error is≈1.5% for the different
components of magnetic flux density. Some slight discrepancies are observed between numerical and
analytical results (see Figures 11 and 12b) which can be caused by the finite number of spatial harmonic
taken into account in the semi-analytical model according to the x- and y-edges (see § 2.7. Numerical
Problems: Harmonics and Ill-conditioned System). The increase of harmonics number can resolve
these deviations, however, at the expense of the computation time.

y

x

z

2y

3y

4y

1y

2x 3x 4x 5x 6x1x

Path 1

Path 2

P
a

th
 3

P
a

th
 4

P
a

th
 5

Figure 7. Paths of the magnetic flux density validation for the comparison.
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Figure 8. Waveform of the magnetic flux density for Path 1: (a) x- and (b) y-component; 2-D FEA.
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Figure 9. Waveform of the magnetic flux density for Path 2: (a) x- and (b) y-component.
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Figure 10. Waveform of the magnetic flux density for Path 3: (a) x- and (b) y-component.
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Figure 11. Waveform of the magnetic flux density for Path 4: (a) x- and (b) y-component.
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Figure 12. Waveform of the magnetic flux density for Path 5: (a) x- and (b) y-component.

4. Conclusions

An overview on the existing (semi-)analytical models in Maxwell-Fourier methods
(i.e., multi-layers models and subdomain technique) with the saturation effect has been realized.
It has been demonstrated that there is no (semi-)analytical model based on the subdomain technique
taking into account the iron parts with(out) the nonlinear B(H) curve. Then, the new scientific
contribution on the 2-D subdomain technique in Cartesian coordinates to study the local magnetic
field distribution in the iron parts with a global saturation is presented in this paper.

For example, it was performed by solving 2-D magnetostatic Maxwell’s equations in Cartesian
coordinates (x, y) for an air- or iron-cored coil supplied by a direct current. The subdomains connection
is carried out in the two directions (i.e., x- and y-edges). The iron magnetic permeability is constant,
corresponding to linear zone of the initial magnetization curve. However, nonlinear magnetic materials
could be accounted for by means of an iterative algorithm as in [48]. This major scientific contribution
will be applied to rotating and/or linear electrical machines with(out) magnets supplied by a direct
current or alternate current (with any waveforms) whose the analysis would be based on a 2-D
semi-analytical model in Cartesian coordinates (e.g., plane linear machines, axial-flux machines,
etc.). An extension of the 2-D subdomain technique in polar coordinates as well as various electrical
machines (viz., radial-/axial-/transverse-flux machines, linear machines, U-/E-cored electromagnetic
device, etc.) will be made in the next studies.
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This new approach to account for the effect of global saturation is (semi-)analytically based and
takes significantly less computing time than the FEA (approximately 100-fold versus to FEA); it is
eminently suitable for design and optimization of the electromechanical systems. Predicted results
from the exact (semi-)analytical model have been compared finite-element predictions, and good
agreement has been achieved, in both amplitudes and waveforms.

Author Contributions: The work presented here was carried out in cooperation among all authors, which have
written the paper and have gave advice for the manuscripts.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The 2-D Magnetostatic General Solution in Cartesian Coordinates

Appendix A.1. Governing Partial Differential Equations (EDPs)

By assuming that the term ∂
−→
D
/

∂t is negligible, the magnetostatic Maxwell’s equations are
represented by Maxwell-Ampère

−−−−−→
rot
(−→

H
)
=
−→
J (with

−→
J = 0 for the no-load operation), (A1a)

and Maxwell-Thomson
div
(−→

B
)
= 0 (Magnetic flux conservation), (A1b)

−→
B =

−−−−−→
rot
(−→

A
)

with div
(−→

A
)
= 0 (Coulomb’s gauge), (A1c)

where
−→
A ,
−→
B ,
−→
H , and

−→
J are respectively the magnetic vector potential, the magnetic flux density,

magnetic field, and the current density (due to supply currents) vectors.
The field vectors

−→
B and

−→
H are coupled by the magnetic material equation

−→
B = µ · −→H + µ0 ·

−→
M, (A2)

where
−→
M is the magnetization vector (with

−→
M = 0 for the vacuum/iron or

−→
M 6= 0 for the magnets

according to the magnetization direction [4]), and µ = µ0 · µr the absolute magnetic permeability of
the magnetic material in which µ0 and µr are respectively the vacuum permeability and the relative
permeability of the magnetic material (with µr = 1 for the vacuum or µr 6= 1 for the magnets/iron).

By using (A1) and (A2), the general EDPs of magnetostatic are defined by [74]:

−→
X A − ν · ∆−→A =

−→
J +
−→
X B, (A3a)

−→
X A =

−−−−→
grad (ν) ∧

−−−−−→
rot
(−→

A
)

, (A3b)

−→
X B = µ0 ·

[−−−−→
grad (ν) ∧−→M + ν ·

−−−−−→
rot
(−→

M
)]

, (A3c)

where ν = 1
/

µ is the absolute magnetic reluctivity of the magnetic material.

By neglecting the end-effects (i.e., the system is infinitely long which leads to
−→
A = {0; 0; Az}:

the magnetic variables are independent of z), (A3) in Cartesian coordinates (x, y) with µ = Cst can be
expressed by:

∆Az =
∂2 Az

∂x2 +
∂2 Az

∂y2 = ES, (A4a)

ES = −
[

µ · Jz + µ0 ·
(

∂My

∂x
− ∂Mx

∂y

)]
. (A4b)
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Appendix A.2. General Solution

It is interesting to note that Az is governed by Poisson’s equation, when there is one or more
electromagnetic sources (i.e., ES 6= 0), or Laplace’s equation, when there is no electromagnetic sources
(i.e., ES = 0). According to the method of separation of variables, the 2-D magnetostatic general
solution of Az in Cartesian coordinates (x, y) can be written as

Az = Ax
z + Ay

z + AzP, (A5a)

Ax
z =

∣∣∣∣∣∣∣
(
Cx

0 + Dx
0 · y

)
·
(
Ex

0 + Fx
0 · x

)
· · ·+

∞
∑

h=1

[
Cx

h · ch (βh · y)
· · ·+ Dx

h · sh (βh · y)

]
·
[

Ex
h · cos (βh · x)
· · ·+ Fx

h · sin (βh · x)

]
, (A5b)

Ay
z =

∣∣∣∣∣∣∣∣
(

Cy
0 + Dy

0 · y
)
·
(

Ey
0 + Fy

0 · x
)

· · ·+
∞
∑

n=1

[
Cy

n · cos (λn · y)
· · ·+ Dy

n · sin (λn · y)

]
·
[

Ey
n · ch (λn · x)
· · ·+ Fy

n · sh (λn · x)

]
, (A5c)

where AzP are the particular solution of Az respecting the second member ES in (A4), Cx
0 – Fx

h & Cy
0 – Fy

h
the integration constants, βh & λn the periodicity of Ax

z & Ay
z , and h and n the spatial harmonic orders.

According to (A1c), the components of
−→
B =

{
Bx; By; 0

}
can be deduced from Az by

Bx =
∂Az

∂y
and By = −∂Az

∂x
(A6)

which leads to
Bx = Bx

x + By
x +

∂AzP
∂y

, (A7a)

Bx
x =

∣∣∣∣∣∣∣
Dx

0 ·
(
Ex

0 + Fx
0 · x

)
· · ·+

∞
∑

h=1
βh ·

[
Cx

h · sh (βh · y)
· · ·+ Dx

h · ch (βh · y)

]
·
[

Ex
h · cos (βh · x)
· · ·+ Fx

h · sin (βh · x)

]
, (A7b)

By
x =

∣∣∣∣∣∣∣∣
Dy

0 ·
(

Ey
0 + Fy

0 · x
)

· · ·+
∞
∑

n=1
λn ·

[
−Cy

n · sin (λn · y)
· · ·+ Dy

n · cos (λn · y)

]
·
[

Ey
n · ch (λn · x)
· · ·+ Fy

n · sh (λn · x)

]
, (A7c)

and
By = Bx

y + By
y −

∂AzP
∂x

, (A8a)

Bx
y = −

∣∣∣∣∣∣∣
Fx

0 ·
(
Cx

0 + Dx
0 · y

)
· · ·+

∞
∑

h=1
βh ·

[
Cx

h · ch (βh · y)
· · ·+ Dx

h · sh (βh · y)

]
·
[
−Ex

h · sin (βh · x)
· · ·+ Fx

h · cos (βh · x)

]
, (A8b)

By
y = −

∣∣∣∣∣∣∣∣
Fy

0 ·
(

Cy
0 + Dy

0 · y
)

· · ·+
∞
∑

n=1
λn ·

[
Cy

n · cos (λn · y)
· · ·+ Dy

n · sin (λn · y)

]
·
[

Ey
n · sh (λn · x)
· · ·+ Fy

n · ch (λn · x)

]
. (A8c)

Appendix B. Simplification of Laplace’s Equations According to Imposed Boundary Conditions

Appendix B.1. Case-Study No 1: Az Imposed on All Edges of a Region

Figure B1a shows a region (for x ∈ [xl , xr] and y ∈ [yl , yt]) whose the magnetic vector potentials
are imposed on all edges. By applying the principle of superposition on the magnetic quantities,
Figure B1a is redefined by Figure B1b.
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Figure B1. Az imposed on all edges of a region: (a) General and (b) Principle of superposition.

In the case-study no 1, the magnetic vector potential Az = Ax
z + Ay

z , i.e., (A5), is redefined by

Ax
z =

∞

∑
h=1

{
cx

h
βh
· sh [βh · (yt − y)]

sh
(

βh · τy
) +

dx
h

βh
· sh [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B1a)

Ay
z =

∞

∑
n=1

{
ey

n
λn
· sh [λn · (xr − x)]

sh (λn · τx)
+

f y
n

λn
· sh [λn · (x− xl)]

sh (λn · τx)

}
· sin [λn · (y− yl)], (B1b)

the component Bx = Bx
x + By

x of
−→
B , i.e., (A7), by

Bx
x =

∞

∑
h=1

{
−cx

h ·
ch [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
ch [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B2a)

By
x =

∞

∑
n=1

{
ey

n ·
sh [λn · (xr − x)]

sh (λn · τx)
+ f y

n ·
sh [λn · (x− xl)]

sh (λn · τx)

}
· cos [λn · (y− yl)], (B2b)
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and the component By = Bx
y + By

y of
−→
B , i.e., (A8), by

Bx
y = −

∞

∑
h=1

{
cx

h ·
sh [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
sh [βh · (y− yl)]

sh
(

βh · τy
) }

· cos [βh · (x− xl)], (B3a)

By
y = −

∞

∑
n=1

{
−ey

n ·
ch [λn · (xr − x)]

sh (λn · τx)
+ f y

n ·
ch [λn · (x− xl)]

sh (λn · τx)

}
· sin [λn · (y− yl)], (B3b)

where cx
h, dx

h, ey
n and f y

n are new integration constants; βh = h · π
/

τx with τx = xr − xl ; and λn =

n · π
/

τy with τy = yt − yl .
For the particular case illustrated in Figure B2 (whose the magnetic vector potentials are zero on

x-edges and imposed on y-edges), the magnetic vector potential Az, according to (B1) with Ay
z = 0, is

expressed by

Az =
∞

∑
h=1

{
cx

h
βh
· sh [βh · (yt − y)]

sh
(

βh · τy
) +

dx
h

βh
· sh [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B4a)

the x-component of
−→
B , according to (B6) with By

x = 0, by

Bx =
∞

∑
h=1

{
−cx

h ·
ch [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
ch [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B4b)

the y-component of
−→
B , according to (B3) with By

y = 0, by

By = −
∞

∑
h=1

{
cx

h ·
sh [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
sh [βh · (y− yl)]

sh
(

βh · τy
) }

· cos [βh · (x− xl)]. (B4c)
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Figure B2. Particular case: Az = 0 on x-edges and Az imposed on y-edges of a region.

Appendix B.2. Case-Study No 2: By and Az Are Respectively Imposed on X- and Y-Edges of a Region

Figure B3a shows a region for (x ∈ [xl , xr] and y ∈ [yl , yt]) whose the magnetic flux densities
and vector potentials are respectively imposed on x- and y-edges. By applying the principle of
superposition on the magnetic quantities, Figure B3a is redefined by Figure B3b.
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Figure B3. By imposed on x-edges and Az imposed on y-edges of a region: (a) General and (b) Principle
of superposition.

In the case-study no 2, the magnetic vector potential Az = Ax
z + Ay

z , i.e., (A5), is redefined by

Ax
z =

∣∣∣∣∣∣
(yt − y) · cx

0 + (y− yl) · dx
0

· · ·+
∞
∑

h=1

{
cx

h
βh
· sh[βh ·(yt−y)]

sh(βh ·τy)
+

dx
h

βh
· sh[βh ·(y−yl)]

sh(βh ·τy)

}
· cos [βh · (x− xl)]

, (B5a)

Ay
z = −

∞

∑
n=1

{
ey

n
λn
· ch [λn · (x− xl)]

sh (λn · τx)
− f y

n
λn
· ch [λn · (xr − x)]

sh (λn · τx)

}
· sin [λn · (y− yl)], (B5b)

the component Bx = Bx
x + By

x of
−→
B , i.e., (A7), by

Bx
x =

∣∣∣∣∣∣
−cx

0 + dx
0

· · ·+
∞
∑

h=1

{
−cx

h ·
ch[βh ·(yt−y)]

sh(βh ·τy)
+ dx

h ·
ch[βh ·(y−yl)]

sh(βh ·τy)

}
· cos [βh · (x− xl)]

, (B6a)
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By
x = −

∞

∑
n=1

{
ey

n ·
ch [λn · (x− xl)]

sh (λn · τx)
− f y

n ·
ch [λn · (xr − x)]

sh (λn · τx)

}
· cos [λn · (y− yl)], (B6b)

and the component By = Bx
y + By

y of
−→
B , i.e., (A8), by

Bx
y =

∞

∑
h=1

{
cx

h ·
sh [βh · (yt − y)]

sh
(

βh · τy
) + dx

h ·
sh [βh · (y− yl)]

sh
(

βh · τy
) }

· sin [βh · (x− xl)], (B7a)

By
y =

∞

∑
n=1

{
ey

n ·
sh [λn · (x− xl)]

sh (λn · τx)
+ f y

n ·
sh [λn · (xr − x)]

sh (λn · τx)

}
· sin [λn · (y− yl)], (B7b)

where cx
0 , dx

0 , cx
h , dx

h , ey
n and f y

n are new integration constants.

Appendix C. Elements of Linear Systems

Appendix C.1. Simplifying Function of General Integrals

For the determination of the integral constants, it is required to calculate general integrals of
the form

Fs =

ll+w∫
ll

sin [αs · (l − ls)] · dl, (C1a)

Fcs =

ll+w∫
ll

cos [αc · (l − lc)] · sin [αs · (l − ls)] · dl, (C1b)

Fss =

ll+w∫
ll

sin [αs1 · (l − ls1)] · sin [αs2 · (l − ls2)] · dl, (C1c)

Fls =

ll+w∫
ll

l · sin [αs · (l − ls)] · dl, (C1d)

Fl2s =

ll+w∫
ll

l2 · sin [αs · (l − ls)] · dl, (C1e)

Fchs =

ll+w∫
ll

ch [αch · (l − lch)] · sin [αs · (l − ls)] · dl, (C1f)

Fshs =

ll+w∫
ll

sh [αsh · (l − lsh)] · sin [αs · (l − ls)] · dl. (C1g)

The functions (C1) will be used in the expression of the integration constants. The expressions
of (C1a)–(C1c) have given in [68]. The development of (C1d)–(C1g) gives

Fls (αs, ls, ll , w) =

[
sin [αs · (ll + w− ls)]− sin [αs · (ll − ls)]
· · · − αs · {(ll + w) · cos [αs · (ll + w− ls)]− ll · cos [αs · (ll − ls)]}

]
α2

s
, (C2a)
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Fl2s (αs, ls, ll , w) =

 2 · {cos [αs · (ll + w− ls)]− cos [αs · (ll − ls)]}
· · · − α2

s ·
{
(ll + w)2 · cos [αs · (ll + w− ls)]− l2

l · cos [αs · (ll − ls)]
}

· · ·+ 2 · αs · {(ll + w) · sin [αs · (ll + w− ls)]− ll · sin [αs · (ll − ls)]}


α3

s
, (C2b)

Fchs (αch, αs, lch, ls, ll , w) =


−αch ·

{
sh [αch · (ll − lch)] · sin [αs · (ll − ls)]
· · · − sh [αch · (ll + w− lch)] · sin [αs · (ll + w− ls)]

}

· · ·+ αs ·
{

ch [αch · (ll − lch)] · cos [αs · (ll − ls)]
· · · − ch [αch · (ll + w− lch)] · cos [αs · (ll + w− ls)]

}


(α2
ch+α2

s)
, (C2c)

Fshs (αsh, αs, lsh, ls, ll , w) =


−αsh ·

{
ch [αsh · (ll − lsh)] · sin [αs · (ll − ls)]
· · · − ch [αsh · (ll + w− lsh)] · sin [αs · (ll + w− ls)]

}

· · ·+ αs ·
{

sh [αsh · (ll − lsh)] · cos [αs · (ll − ls)]
· · · − sh [αsh · (ll + w− lsh)] · cos [αs · (ll + w− ls)]

}


(α2
sh+α2

s )
. (C2d)

Appendix C.2. Expression of d1x
h1 for Region 1

By incorporating F1 (x) (see Figure 4a) into (7) and by using (13), (18), (23), (28) and (33),
the development of (7) gives

d1x
h1 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞
∑

h3=1

(
c3x

h3 ·Q13ch1,h3 + d3x
h3 ·Q13dh1,h3

)
+

∞
∑

n3=1
f 3y

n3 ·Q13 fh1,n3

· · ·+
∞
∑

h4=1

(
c4x

h4 ·Q14h1,h4 + d4x
h4 ·Q14dh1,h4

)
+

∞
∑

n4=1
e4y

n4 ·Q14eh1,n4

· · ·+
∞
∑

h5=1

(
c5x

h5 ·Q15ch1,h5 + d5x
h5 ·Q15dh1,h5

)
+

∞
∑

n5=1

(
e5y

n5 ·Q15eh1,n5 + f 5y
n5 ·Q15 fh1,n5

)
· · ·+

∞
∑

h6=0

(
c6x

h6 ·Q16ch1,h6 + d6x
h6 ·Q16dh1,h6

)
+

∞
∑

n6=1

(
e6y

n6 ·Q16eh1,n6 + f 6y
n6 ·Q16 fh1,n6

)
· · ·+

∞
∑

h7=0

(
c7x

h7 ·Q17ch1,h7 + d7x
h7 ·Q17dh1,h7

)
+

∞
∑

n7=1

(
e7y

n7 ·Q17eh1,n7 + f 6y
n7 ·Q17 fh1,n7

)
· · · − ES1h1

, (C3a)

Q13ch1,h3 =
2

τx1
· µ1

µ3
· coth

(
β3h3 · τy3

)
· Fss (β3h3, β1h1, x1, x1, x1, τx3) , (C3b)

Q13dh1,h3 = − 2
τx1
· µ1

µ3
· csch

(
β3h3 · τy3

)
· Fss (β3h3, β1h1, x1, x1, x1, τx3) , (C3c)

Q13 fh1,n3 = − 2
τx1
· µ1

µ3
· csch (λ3n3 · τx3) · Fshs (λ3n3, β1h1, x1, x1, x1, τx3) , (C3d)

Q14ch1,h4 =
2

τx1
· µ1

µ4
· coth

(
β4h4 · τy4

)
· Fss (β4h4, β1h1, x5, x1, x5, τx4) , (C3e)

Q14dh1,h4 = − 2
τx1
· µ1

µ4
· csch

(
β4h4 · τy4

)
· Fss (β4h4, β1h1, x5, x1, x5, τx4) , (C3f)

Q14eh1,n4 =
2

τx1
· µ1

µ4
· csch (λ4n4 · τx4) · Fshs (λ4n4, β1h1, x6, x1, x5, τx4) , (C3g)

Q15ch1,h5 =
2

τx1
· µ1

µ5
· coth

(
β5h5 · τy5

)
· Fss (β5h5, β1h1, x3, x1, x3, τx5) , (C3h)

Q15dh1,h5 = − 2
τx1
· µ1

µ5
· csch

(
β5h5 · τy5

)
· Fss (β5h5, β1h1, x3, x1, x3, τx5) , (C3i)

Q15eh1,n5 =
2

τx1
· µ1

µ5
· csch (λ5n5 · τx5) · Fshs (λ5n5, β1h1, x4, x1, x3, τx5) , (C3j)
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Q15 fh1,n5 = − 2
τx1
· µ1

µ5
· csch (λ5n5 · τx5) · Fshs (λ5n5, β1h1, x3, x1, x3, τx5) , (C3k)

Q16ch1,h6 =
2

τx1
· µ1

µ6
·
{

Fs (β1h1, x1, x2, τx6) for h6 = 0
coth

(
β6h6 · τy6

)
· Fcs (β6h6, β1h1, x2, x1, x2, τx6) for h6 6= 0

(C3l)

Q16dh1,h6 = − 2
τx1
· µ1

µ6
·
{

Fs (β1h1, x1, x2, τx6) for h6 = 0
csch

(
β6h6 · τy6

)
· Fcs (β6h6, β1h1, x2, x1, x2, τx6) for h6 6= 0

(C3m)

Q16eh1,n6 =
2

τx1
· µ1

µ6
· csch (λ6n6 · τx6) · Fchs (λ6n6, β1h1, x2, x1, x2, τx6) , (C3n)

Q16 fh1,n6 = − 2
τx1
· µ1

µ6
· csch (λ6n6 · τx6) · Fchs (λ6n6, β1h1, x3, x1, x2, τx6) , (C3o)

Q17ch1,h7 =
2

τx1
· µ1

µ7
·
{

Fs (β1h1, x1, x4, τx7) for h7 = 0
coth

(
β7h7 · τy7

)
· Fcs (β7h7, β1h1, x4, x1, x4, τx7) for h7 6= 0

(C3p)

Q17dh1,h7 = − 2
τx1
· µ1

µ7
·
{

Fs (β1h1, x1, x4, τx7) for h7 = 0
csch

(
β7h7 · τy7

)
· Fcs (β7h7, β1h1, x4, x1, x4, τx7) for h7 6= 0

(C3q)

Q17eh1,n7 =
2

τx1
· µ1

µ7
· csch (λ7n7 · τx7) · Fchs (λ7n7, β1h1, x4, x1, x4, τx7) , (C3r)

Q17 fh1,n7 = − 2
τx1
· µ1

µ7
· csch (λ7n7 · τx7) · Fchs (λ7n7, β1h1, x5, x1, x4, τx7) , (C3s)

ES16h1 =
2

τx1
· µ1

µ6
· BxP6|y=y2

· Fs (β1h1, x1, x2, τx6) , (C3t)

ES17h1 =
2

τx1
· µ1

µ7
· BxP7|y=y2

· Fs (β1h1, x1, x4, τx7) . (C3u)

Appendix C.3. Expression of c2x
h2 for Region 2

By incorporating G2 (x) (see Figure 4b) into (11) and by using (13), (18), (23), (28) and (33),
the development of (11) gives

c2x
h2 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞
∑

h3=1

(
c3x

h3 ·Q23ch2,h3 + d3x
h3 ·Q23dh2,h3

)
+

∞
∑

n3=1
f 3y

n3 ·Q23 fh2,n3

· · ·+
∞
∑

h4=1

(
c4x

h4 ·Q24ch2,h4 + d4x
h4 ·Q24dh2,h4

)
+

∞
∑

n4=1
e4y

n4 ·Q24eh2,n4

· · ·+
∞
∑

h5=1

(
c5x

h5 ·Q25ch2,h5 + d5x
h5 ·Q25dh2,h5

)
+

∞
∑

n5=1

(
e5y

n5 ·Q25eh2,n5 + f 5y
n5 ·Q25 fh2,n5

)
· · ·+

∞
∑

h6=0

(
c6x

h6 ·Q26ch2,h6 + d6x
h6 ·Q26dh2,h6

)
+

∞
∑

n6=1

(
e6y

n6 ·Q26eh2,n6 + f 6y
n6 ·Q26 fh2,n6

)
· · ·+

∞
∑

h7=0

(
c7x

h7 ·Q27ch2,h7 + d7x
h7 ·Q27dh2,h7

)
+

∞
∑

n7=1

(
e7y

n7 ·Q27eh2,n7 + f 6y
n7 ·Q27 fh2,n7

)
· · · − (ES26h2 + ES27h2)

, (C4a)

Q23ch2,h3 =
2

τx2
· µ2

µ3
· csch

(
β3h3 · τy3

)
· Fss (β3h3, β2h2, x1, x1, x1, τx3) , (C4b)

Q23dh2,h3 = − 2
τx2
· µ2

µ3
· coth

(
β3h3 · τy3

)
· Fss (β3h3, β2h2, x1, x1, x1, τx3) , (C4c)

Q23 fh2,n3 = − 2
τx2
· µ2

µ3
·

cos
(
λ3n3 · τy3

)
sh (λn3 · τx3)

· Fshs (λ3n3, β2h2, x1, x1, x1, τx3) , (C4d)

Q24ch2,h4 =
2

τx2
· µ2

µ4
· csch

(
β4h4 · τy4

)
· Fss (β4h4, β2h2, x5, x1, x5, τx4) , (C4e)
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Q24dh2,h4 = − 2
τx2
· µ2

µ4
· coth

(
β4h4 · τy4

)
· Fss (β4h4, β2h2, x5, x1, x5, τx4) , (C4f)

Q24eh2,n4 =
2

τx2
· µ2

µ4
·

cos
(
λ4n4 · τy4

)
sh (λ4n4 · τx4)

· Fshs (λ4n4, β2h2, x6, x1, x5, τx4) , (C4g)

Q25ch2,h5 =
2

τx2
· µ2

µ5
· csch

(
β5h5 · τy5

)
· Fss (β5h5, β2h2, x3, x1, x3, τx5) , (C4h)

Q25dh2,h5 = − 2
τx2
· µ2

µ5
· coth

(
β5h5 · τy5

)
· Fss (β5h5, β2h2, x3, x1, x3, τx5) , (C4i)

Q25eh2,n5 =
2

τx2
· µ2

µ5
·

cos
(
λ5n5 · τy5

)
sh (λ5n5 · τx5)

· Fshs (λ5n5, β2h2, x4, x1, x3, τx5) , (C4j)

Q25 fh2,n5 = − 2
τx2
· µ2

µ5
·

cos
(
λ5n5 · τy5

)
sh (λ5n5 · τx5)

· Fshs (λ5n5, β2h2, x3, x1, x3, τx5) , (C4k)

Q26ch2,h6 =
2

τx2
· µ2

µ6
·
{

Fs (β2h2, x1, x2, τx6) for h6 = 0
csch

(
β6h6 · τy6

)
· Fcs (β6h6, β2h2, x2, x1, x2, τx6) for h6 6= 0

(C4l)

Q26dh2,h6 = − 2
τx2
· µ2

µ6
·
{

Fs (β2h2, x1, x2, τx6) for h6 = 0
coth

(
β6h6 · τy6

)
· Fcs (β6h6, β2h2, x2, x1, x2, τx6) for h6 6= 0

(C4m)

Q26eh2,n6 =
2

τx2
· µ2

µ6
·

cos
(
λ6n6 · τy6

)
sh (λ6n6 · τx6)

· Fchs (λ6n6, β2h2, x2, x1, x2, τx6) , (C4n)

Q26 fh2,n6 = − 2
τx2
· µ2

µ6
·

cos
(
λ6n6 · τy6

)
sh (λ6n6 · τx6)

· Fchs (λ6n6, β2h2, x3, x1, x2, τx6) , (C4o)

Q27ch2,h7 =
2

τx2
· µ2

µ7
·
{

Fs (β2h2, x1, x4, τx7) for h7 = 0
csch

(
β7h7 · τy7

)
· Fcs (β7h7, β2h2, x4, x1, x4, τx7) for h7 6= 0

(C4p)

Q27dh2,h7 = − 2
τx2
· µ2

µ7
·
{

Fs (β2h2, x1, x4, τx7) for h7 = 0
coth

(
β7h7 · τy7

)
· Fcs (β7h7, β2h2, x4, x1, x4, τx7) for h7 6= 0

(C4q)

Q27eh2,n7 =
2

τx2
· µ2

µ7
·

cos
(
λ7n7 · τy7

)
sh (λ7n7 · τx7)

· Fchs (λ7n7, β2h2, x4, x1, x4, τx7) , (C4r)

Q27 fh2,n7 = − 2
τx2
· µ2

µ7
·

cos
(
λ7n7 · τy7

)
sh (λ7n7 · τx7)

· Fchs (λ7n7, β2h2, x5, x1, x4, τx7) , (C4s)

ES26h2 =
2

τx2
· µ2

µ6
· BxP6|y=y3

· Fs (β2h2, x1, x2, τx6) , (C4t)

ES27h2 =
2

τx2
· µ2

µ7
· BxP7|y=y3

· Fs (β2h2, x1, x4, τx7) . (C4u)

Appendix C.4. Expression of c3x
h3, d3x

h3 and f 3y
n3 for Region 3

By using (4), the development of (15a) gives

c3x
h3 = −

∞

∑
h1=1

d1x
h1 ·Q31dh3,h1, (C5a)

Q31dh3,h1 = − 2
τx3
· β3h3

β1h1
· th
(

β1h1 · τy1
)
· Fss (β1h1, β3h3, x1, x1, x1, τx3) . (C5b)
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By using (8), the development of (15b) gives

d3x
h3 = −

∞

∑
h2=1

c2x
h2 ·Q32ch3,h2, (C6a)

Q32ch3,h2 =
2

τx3
· β3h3

β2h2
· th
(

β2h2 · τy2
)
· Fss (β2h2, β3h3, x1, x1, x1, τx3) . (C6b)

By using (27), the development of (16) gives

f 3y
n3 = ES36n3 −

∣∣∣∣∣∣∣∣
∞
∑

h6=0

(
c6x

h6 ·Q36cn3,h6 + d6x
h6 ·Q36dn3,h6

)
· · ·+

∞
∑

n6=1

(
e6y

n6 ·Q36en3,n6 + f 6y
n6 ·Q36 fn3,n6

) , (C7a)

Q36cn3,h6 = 2
τy3
· λ3n3 ·

{
−
[
y3 · Fs

(
λ3n3, y2, y2, τy3

)
− Fls

(
λ3n3, y2, y2, τy3

)]
for h6 = 0

1
β6h6
· csch

(
β6h6 · τy6

)
· Fshs

(
β6h6, λ3n3, y3, y2, y2, τy3

)
for h6 6= 0

(C7b)

Q36dn3,h6 = 2
τy3
· λ3n3 ·

{ [
y2 · Fs

(
λ3n3, y2, y2, τy3

)
− Fls

(
λ3n3, y2, y2, τy3

)]
for h6 = 0

−1
β6h6
· csch

(
β6h6 · τy6

)
· Fshs

(
β6h6, λ3n3, y2, y2, y2, τy3

)
for h6 6= 0

(C7c)

Q36en3,n6 =
2

τy3
· λ3n3

λ6n6
· csch (λ6n6 · τx6) · Fss

(
λ6n6, λ3n3, y2, y2, y2, τy3

)
, (C7d)

Q36 fn3,n6 = − 2
τy3
· λ3n3

λ6n6
· coth (λ6n6 · τx6) · Fss

(
λ6n6, λ3n3, y2, y2, y2, τy3

)
, (C7e)

ES36n3 = −µ6 · Jz6 ·
λ3n3

τy3
· Fl2s

(
λ3n3, y2, y2, τy3

)
. (C7f)

Appendix C.5. Expression of c4x
h4, d4x

h4 and e4y
n4 for Region 4

By using (4), the development of (20a) gives

c4x
h4 = −

∞

∑
h1=1

d1x
h1 ·Q41dh4,h1, (C8a)

Q41dh4,h1 = − 2
τx4
· β4h4

β1h1
· th
(

β1h1 · τy1
)
· Fss (β1h1, β4h4, x1, x5, x5, τx4) . (C8b)

By using (8), the development of (20b) gives

d4x
h4 = −

∞

∑
h2=1

c2x
h2 ·Q42ch4,h2, (C9a)

Q42ch4,h2 =
2

τx4
· β4h4

β2h2
· th
(

β2h2 · τy2
)
· Fss (β2h2, β4h4, x1, x5, x5, τx4) . (C9b)

By using (32), the development of (21) gives

e4y
n4 = ES47n4 −

∣∣∣∣∣∣∣∣
∞
∑

h7=0

(
c7x

h7 ·Q47cn4,h7 + d7x
h7 ·Q47dn4,h7

)
· · ·+

∞
∑

n7=1

(
e7y

n7 ·Q47en4,n7 + f 7y
n7 ·Q47 fn4,n7

) , (C10a)

Q47cn4,h7 = 2
τy4
· λ4n4 ·

{
−
[
y3 · Fs

(
λ4n4, y2, y2, τy4

)
− Fls

(
λ4n4, y2, y2, τy4

)]
for h7 = 0

1
βh7
· cos(β7h7·τx7)

sh(β7h7·τy7)
· Fshs

(
β7h7, λ4n4, y3, y2, y2, τy4

)
for h7 6= 0 (C10b)
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Q47dn4,h7 = 2
τy4
· λ4n4 ·

{ [
y2 · Fs

(
λ4n4, y2, y2, τy4

)
− Fls

(
λ4n4, y2, y2, τy4

)]
for h7 = 0

−1
βh7
· cos(β7h7·τx7)

sh(β7h7·τy7)
· Fshs

(
β7h7, λ4n4, y2, y2, y2, τy4

)
for h7 6= 0 (C10c)

Q47en4,n7 =
2

τy4
· λ4n4

λ7n7
· coth (λ7n7 · τx7) · Fss

(
λ7n7, λ4n4, y2, y2, y2, τy4

)
, (C10d)

Q47 fn4,n7 = − 2
τy4
· λ4n4

λ7n7
· csch (λ7n7 · τx7) · Fss

(
λ7n7, λ4n4, y2, y2, y2, τy4

)
, (C10e)

ES47n4 = −µ7 · Jz7 ·
λ4n4

τy4
· Fl2s

(
λ4n4, y2, y2, τy4

)
. (C10f)

Appendix C.6. Expression of c5x
h5, d5x

h5, e5y
n5 and f 5y

n5 for Region 5

By using (4), the development of (25a) gives

c5x
h5 = −

∞

∑
h1=1

d1x
h1 ·Q51dh5,h1, (C11a)

Q51dh5,h1 = − 2
τx5
· β5h5

β1h1
· th
(

β1h1 · τy1
)
· Fss (β1h1, β5h5, x1, x3, x3, τx5) . (C11b)

By using (8), the development of (25b) gives

d5x
h5 = −

∞

∑
h2=1

c2x
h2 ·Q52ch5,h2, (C12a)

Q52ch5,h2 =
2

τx5
· β5h5

β2h2
· th
(

β2h2 · τy2
)
· Fss (β2h2, β5h5, x1, x3, x3, τx5) . (C12b)

By using (27), the development of (26a) gives

e5y
n5 = ES56n5 −

∣∣∣∣∣∣∣∣
∞
∑

h6=0

(
c6x

h6 ·Q56cn5,h6 + d6x
h6 ·Q56dn5,h6

)
· · ·+

∞
∑

n6=1

(
e6y

n6 ·Q56en5,n6 + f 6y
n6 ·Q56 fn5,n6

) , (C13a)

Q56cn5,h6 = 2
τy5
· λ5n5 ·

{
−
[
y3 · Fs

(
λ5n5, y2, y2, τy5

)
− Fls

(
λ5n5, y2, y2, τy5

)]
for h6 = 0

1
β6h6
· cos(β6h6·τx6)

sh(β6h6·τy6)
· Fshs

(
β6h6, λ5n5, y3, y2, y2, τy5

)
for h6 6= 0 (C13b)

Q56dn5,h6 = 2
τy5
· λ5n5 ·

{ [
y2 · Fs

(
λ5n5, y2, y2, τy5

)
− Fls

(
λ5n5, y2, y2, τy5

)]
for h6 = 0

− 1
β6h6

cos(β6h6·τx6)

sh(β6h6·τy6)
· Fshs

(
β6h6, λ5n5, y2, y2, y2, τy5

)
for h6 6= 0 (C13c)

Q56en5,n6 =
2

τy5
· λ5n5

λ6n6
· coth (λ6n6 · τx6) · Fss

(
λ6n6, λ5n5, y2, y2, y2, τy5

)
, (C13d)

Q56 fn5,n6 = − 2
τy5
· λ5n5

λ6n6
· csch (λ6n6 · τx6) · Fss

(
λ6n6, λ5n5, y2, y2, y2, τy5

)
, (C13e)

ES56n5 = −µ6 · Jz6 ·
λ5n5

τy5
· Fl2s

(
λ5n5, y2, y2, τy5

)
. (C13f)

By using (32), the development of (26b) gives

f 5y
n5 = ES57n5 −

∣∣∣∣∣∣∣∣
∞
∑

h7=0

(
c7x

h7 ·Q57cn5,h7 + d7x
h7 ·Q57dn5,h7

)
· · ·+

∞
∑

n7=1

(
e7y

n7 ·Q57en5,n7 + f 7y
n7 ·Q57 fn5,n7

) , (C14a)



Math. Comput. Appl. 2017, 22, 17 34 of 39

Q57cn5,h7 = 2
τy5
· λ5n5 ·

{
−
[
y3 · Fs

(
λ5n5, y2, y2, τy5

)
− Fls

(
λ5n5, y2, y2, τy5

)]
for h7 = 0

1
β7h7
· csch

(
β7h7 · τy7

)
· Fshs

(
β7h7, λ5n5, y3, y2, y2, τy5

)
for h7 6= 0

(C14b)

Q57dn5,h7 = 2
τy5
· λ5n5 ·

{ [
y2 · Fs

(
λ5n5, y2, y2, τy5

)
− Fls

(
λ5n5, y2, y2, τy5

)]
for h7 = 0

− 1
β7h7
· csch

(
β7h7 · τy7

)
· Fshs

(
β7h7, λ5n5, y2, y2, y2, τy5

)
for h7 6= 0

(C14c)

Q57en5,n7 =
2

τy5
· λ5n5

λ7n7
· csch (λ7n7 · τx7) · Fss

(
λ7n7, λ5n5, y2, y2, y2, τy5

)
, (C14d)

Q57 fn5,n7 = − 2
τy5
· λ5n5

λ7n7
· coth (λ7n7 · τx7) · Fss

(
λ7n7, λ5n5, y2, y2, y2, τy5

)
, (C14e)

ES57n5 = −µ7 · Jz7 ·
λ5n5

τy5
· Fl2s

(
λ5n5, y2, y2, τy5

)
. (C14f)

Appendix C.7. Expression of c6x
0 , d6x

0 , c6x
h6, d6x

h6, e6y
n6 and f 6y

n6 for Region 6

By using (4) and (27d), the development of (30a) and (30b) gives

c6x
h6 = ES61h6 −

∞

∑
h1=1

d1x
h1 ·Q61dh6,h1, (C15a)

Q61dh6,h1 = − 1
τx6
· 1

β1h1
· th
(

β1h1 · τy1
)
·
{

1
τy6
· Fs (β1h1, x1, x2, τx6) for h6 = 0

2 · β6h6 · Fcs (β6h6, β1h1, x2, x1, x2, τx6) for h6 6= 0
(C15b)

ES61h6 =

{
− 1

τy6
· AzP6|y=y2

for h6 = 0

0 for h6 6= 0
(C15c)

By using (8) and (27d), the development of (30c) and (30d) gives

d6x
h6 = ES62h6 −

∞

∑
h2=1

c2x
h2 ·Q62ch6,h2, (C16a)

Q62ch6,h2 = 1
τx6
· 1

β2h2
· th
(

β2h2 · τy2
)
·
{

1
τy6
· Fs (β2h2, x1, x2, τx6) for h6 = 0

2 · β6h6 · Fcs (β6h6, β2h2, x2, x1, x2, τx6) for h6 6= 0
(C16b)

ES62h6 =

{
− 1

τy6
· AzP6|y=y3

for h6 = 0

0 for h6 6= 0
(C16c)

By using (24), the development of (31a) gives

e6y
n6 = −

∣∣∣∣∣∣∣∣
∞
∑

h5=1

(
c5x

h5 ·Q65cn6,h5 + d5x
h5 ·Q65dn6,h5

)
· · ·+

∞
∑

n5=1

(
e5y

n5 ·Q65en6,n5 + f 5y
n5 ·Q65 fn6,n5

) , (C17a)

Q65cn6,h5 = − 2
τy6
· µ6

µ5
· csch

(
β5h5 · τy5

)
· Fshs

(
β5h5, λ6n6, y3, y2, y2, τy6

)
, (C17b)

Q65dn6,h5 =
2

τy6
· µ6

µ5
· csch

(
β5h5 · τy5

)
· Fshs

(
β5h5, λ6n6, y2, y2, y2, τy6

)
, (C17c)

Q65en6,n5 = − 2
τy6
· µ6

µ5
· coth (λ5n5 · τx5) · Fss

(
λ5n5, λ6n6, y2, y2, y2, τy6

)
, (C17d)

Q65 fn6,n5 =
2

τy6
· µ6

µ5
· csch (λ5n5 · τx5) · Fss

(
λ5n5, λ6n6, y2, y2, y2, τy6

)
, (C17e)
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By using (14), the development of (31b) gives

f 6y
n6 = −

∣∣∣∣∣∣∣∣
∞
∑

h3=1

(
c3x

h3 ·Q63cn6,h3 + d3x
h3 ·Q63dn6,h3

)
· · ·+

∞
∑

n3=1
f 3y

n3 ·Q63 fn6,n3

, (C18a)

Q63cn6,h3 = − 2
τy6
· µ6

µ3
· cos (β3h3 · τx3)

sh
(

β3h3 · τy3
) · Fshs

(
β3h3, λ6n6, y3, y2, y2, τy6

)
, (C18b)

Q63dn6,h3 =
2

τy6
· µ6

µ3
· cos (β3h3 · τx3)

sh
(

β3h3 · τy3
) · Fshs

(
β3h3, λ6n6, y2, y2, y2, τy6

)
, (C18c)

Q63 fn6,n3 =
2

τy6
· µ6

µ3
· coth (λ3n3 · τx3) · Fss

(
λ3n3, λ6n6, y2, y2, y2, τy6

)
. (C18d)

Appendix C.8. Expression of c7x
0 , d7x

0 , c7x
h7, d7x

h7, e7y
n7 and f 7y

n7 for Region 7

By using (4) and (32d), the development of (35a) and (35b) gives

c7x
h7 = ES71h7 −

∞

∑
h1=1

d1x
h1 ·Q71dh7,h1, (C19a)

Q71dh7,h1 = − 1
τx7
· 1

β1h1
· th
(

β1h1 · τy1
)
·
{

1
τy7
· Fs (β1h1, x1, x4, τx7) for h7 = 0

2 · β7h7 · Fcs (β7h7, β1h1, x4, x1, x4, τx7) for h7 6= 0
(C19b)

ES71h7 =

{
− 1

τy7
· AzP7|y=y2

for h7 = 0

0 for h7 6= 0
(C19c)

By using (8) and (32d), the development of (35c) and (35d) gives

d7x
h7 = ES72h7 −

∞

∑
h2=1

c2x
h2 ·Q72ch7,h2, (C20a)

Q72ch7,h2 = 1
τx7
· 1

β2h2
· th
(

β2h2 · τy2
)
·
{

1
τy7
· Fs (β2h2, x1, x4, τx7) for h7 = 0

2 · β7h7 · Fcs (β7h7, β2h2, x4, x1, x4, τx7) for h7 6= 0
(C20b)

ES72h7 =

{
− 1

τy7
· AzP7|y=y3

for h7 = 0

0 for h7 6= 0
(C20c)

By using (24), the development of (36a) gives

f 7y
n7 = −

∣∣∣∣∣∣∣∣
∞
∑

h5=1

(
c5x

h5 ·Q75cn7,h5 + d5x
h5 ·Q75dn7,h5

)
· · ·+

∞
∑

n5=1

(
e5y

n5 ·Q75en7,n5 + f 5y
n5 ·Q75 fn7,n5

) , (C21a)

Q75cn7,h5 = − 2
τy7
· µ7

µ5
· cos (β5h5 · τx5)

sh
(

β5h5 · τy5
) · Fshs

(
β5h5, λ7n7, y3, y2, y2, τy7

)
, (C21b)

Q75dn7,h5 =
2

τy7
· µ7

µ5
· cos (β5h5 · τx5)

sh
(

β5h5 · τy5
) · Fshs

(
β5h5, λ7n7, y2, y2, y2, τy7

)
, (C21c)

Q75en7,n5 = − 2
τy7
· µ7

µ5
· csch (λ5n5 · τx5) · Fss

(
λ5n5, λ7n7, y2, y2, y2, τy7

)
, (C21d)
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Q75 fn7,n5 =
2

τy7
· µ7

µ5
· coth (λ5n5 · τx5) · Fss

(
λ5n5, λ7n7, y2, y2, y2, τy7

)
. (C21e)

By using (19), the development of (36b) gives

e7y
n7 = −

∣∣∣∣∣∣∣∣
∞
∑

h4=1

(
c4x

h4 ·Q74cn7,h4 + d4x
h4 ·Q74dn7,h4

)
· · ·+

∞
∑

n4=1
e4y

n4 ·Q74en7,n4

, (C22a)

Q74cn7,h4 = − 2
τy7
· µ7

µ4
· csch

(
β4h4 · τy4

)
· Fshs

(
β4h4, λ7n7, y3, y2, y2, τy7

)
, (C22b)

Q74dn7,h4 =
2

τy7
· µ7

µ4
· csch

(
β4h4 · τy4

)
· Fshs

(
β4h4, λ7n7, y2, y2, y2, τy7

)
, (C22c)

Q74en7,n4 = − 2
τy7
· µ7

µ4
· coth (λ4n4 · τx4) · Fss

(
λ4n4, λ7n7, y2, y2, y2, τy7

)
. (C22d)
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