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Abstract:



Usually, the parameters of a Weibull distribution are estimated by maximum likelihood estimation. To reduce the biases of the maximum likelihood estimators (MLEs) of two-parameter Weibull distributions, we propose analytic bias-corrected MLEs. Two other common estimators of Weibull distributions, least-squares estimators and percentiles estimators, are also introduced. Based on a comparison of their performances in the simulation study, we strongly recommend the analytic bias-corrected MLEs for the parameters of Weibull distributions, especially when the sample size is small.
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1. Introduction


We investigate several different estimations of the parameters of the two-parameter Weibull distribution, and analyze two different methods to reduce the biases of maximum likelihood estimators (MLEs).



The following formula is the cumulative distribution function of a Weibull distribution:


[image: there is no content]



(1)




and its probability density function is:


[image: there is no content]



(2)







The Weibull distribution was first identified by Fréchet in 1927, and it was named after Waloddi Weibull, a Swedish mathematician who described this distribution in detail in 1951. Rammler [1] used it to explain a particle size distribution.



The Weibull distribution is not a single distribution, but is in fact a family of distributions, because of the distribution having the shape parameter. The shape parameter enables Weibull distributions to take on various shapes, contingent on the value of the shape parameter. Those distributions are particularly useful in modeling applications since they are flexible enough to model various datasets.



The Weibull distribution has a relatively simple form. Nevertheless, the shape parameter enables the Weibull to assume a variety of shapes. This combination of simplicity and flexibility in the shape of the Weibull distribution makes it an effective distributional model in reliability applications. The ability to model various distributional shapes by using a relatively simple distributional form is possible with many other distributional families, as well.



The Weibull distribution is associated with various other distributions. For instance, it is well known that a Weibull distribution contains the exponential distribution (when [image: there is no content]) and the Rayleigh distribution (when [image: there is no content]). Recently, Ling and Giles [2] studied the Rayleigh distribution and the bias adjustment of the Rayleigh distribution. The Weibull distribution is a special condition of the generalized extreme value distribution, which was proposed by Fréchet [3]. This closely-related Fréchet distribution has the probability density function:


[image: there is no content]



(3)







Actually, [image: there is no content]. A Weibull distribution is also characterized in terms of a uniform distribution; when U is uniformly distributed on [image: there is no content], then the random variable [image: there is no content] is Weibull distributed with parameters k and λ.



The Weibull distribution has been used in numerous fields, such as production, industry, data analysis, reliability in devices, materials testing and environmental assessment. This distribution was studied and used in an aircraft system to investigate operational reliability by Kaltschmidt et al. [4]. Nikolaj [5] showed that this distribution can be used in oil pollution examination. Singh [6] studied the Weibull distribution and worked in hydrology by using this distribution. Aarset [7] applied a Weibull distribution to test failure times of devices, and the data were further analyzed and modified by Lai et al. [8]. It was used in breakdown voltage estimation by Hirose [9], and Fabiani [10] used it to test electrical breakdown of insulating materials. It was applied to censored data by Ghitany et al. [11]. In the study of wind energy, the Weibull distribution was also applied by Akdaǧ et al. [12].



Additionally, we have also considered the exponential distribution. When the value of k is one, the Weibull distribution becomes the exponential distribution, which is studied widely. The cumulative distribution function of the exponential distribution is:


[image: there is no content]



(4)




and its probability density is:


[image: there is no content]



(5)







Maximum-likelihood estimators of the Weibull distribution are commonly used. However, they are biased, and thus, in this paper, we propose analytic bias-corrected MLEs for the two-parameter Weibull distribution. The analytic bias-corrected MLEs are considered in Section 2 and compared with the other bias-corrected MLEs, which are also known as bootstrap bias-corrected MLEs. In Section 3 and Section 4, we introduce two other commonly-used estimators. Monte Carlo experiments are conducted for the simulation study. Tabular and graphical representations of the results are presented in this section. The results indicate that the analytic bias-corrected estimators are superior to not only traditional bootstrap bias-corrected estimators, but also the other two commonly-used estimators. Thus, the analytic bias-corrected estimators should be highly recommended. Finally, we apply these estimators to an actual situation and draw conclusions.




2. Maximum Likelihood Estimators and Different Bias-Corrected Maximum Likelihood Estimators


2.1. Maximum Likelihood Estimators


Suppose the sample [image: there is no content] is generated from the log–normal distribution. The likelihood function of the Weibull distribution is:


[image: there is no content]



(6)




and the formula for the log-likelihood function is:


[image: there is no content]



(7)







The MLEs can be obtained by solving the following equations:


[image: there is no content]



(8)






[image: there is no content]



(9)







The Newton-Raphson method is used to solve these two equations, and solutions [image: there is no content] and [image: there is no content] were obtained.




2.2. Analytic Bias-Corrected Maximum Likelihood Estimators


Suppose l(σ) is the log-likelihood function of the Weibull distribution based on a sample size n. The joint cumulants of the derivatives of the log-likelihood function are:


[image: there is no content]



(10)
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(12)
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(13)







In this part, the function l(σ) is regular with respect to all derivatives up to the third order.



We assume that Equations (10)–(13) are [image: there is no content]. Cox and Snell [13] showed that for sample data that are independent, but not always identically distributed, the bias of the s-th element of the MLE of σ is:


[image: there is no content]



(14)




where [image: there is no content] is the [image: there is no content]-th element of the inverse of Fisher’s information matrix, [image: there is no content]. Cordeiro and Klein [14] observed that the bias expression still holds even if the observations are non-independent, proved that all of the h terms are [image: there is no content] and recommended another form for the expression:


[image: there is no content]



(15)







In Equation (15), we define:


[image: there is no content]



(16)




and (15) can be written as:


[image: there is no content]



(17)




where [image: there is no content] is a transformation of the matrix [image: there is no content] into a vector form, and the matrix A is:


[image: there is no content]



(18)






[image: there is no content]



(19)







Then, the bias-corrected MLEs are:


[image: there is no content]



(20)




where [image: there is no content] and [image: there is no content]. The bias of [image: there is no content] can be proven to be [image: there is no content]. The values of the elements of [image: there is no content] can be obtained based on the maximum likelihood equations.



This method was applied to the generalized Pareto distribution by Giles et al. [15] successfully, and Min Wang [16] used it for the weighted Lindley distribution with Wentao Wang.



Specific calculation procedures of the bias-corrected MLEs of the parameters of the Weibull distribution are listed in Appendix A.




2.3. Bootstrap Bias-Corrected Estimators


In this section, the bootstrap bias-corrected estimators of the Weibull distribution are considered, which were suggested by Mackinnon and Smith [17].



The solutions [image: there is no content] and [image: there is no content] are the particular values of estimators based on MLEs, and we regard [image: there is no content] and [image: there is no content] as the particular parameters of the log–normal distribution, from which the [image: there is no content] replicative samples are generated. Thus, the corresponding estimates [image: there is no content] and [image: there is no content] are obtained.



The bootstrap bias-corrected parameters are [image: there is no content], [image: there is no content] (the parameters [image: there is no content] and [image: there is no content] are the MLEs of k and λ from the j-th sample of the [image: there is no content] replication samples).



This method is fairly effective and is worth applying to various situations, which causes that many experts have investigated it. Ferrari and Cribari-Neto [18] explored the relationship between bias correction of maximum likelihood estimators through the bootstrap method, and the bootstrap method was presented by Ho and Fernandes da Silva [19] to make improvements in the MLE of Mean Time to Failure (MTTF) and p-quantiles. Focarelli [20] used the bootstrap bias-correction procedure to estimate long-run relationships from dynamic panels, with an application to money demand in the euro area.





3. Percentile Estimators


The estimators based on percentiles are also investigated. This approach was first studied by Kao [21,22] and then was explored by Mann, Schafer and Singpurwalla [23]. This method is suitable for the Weibull distribution.



Let us consider the situation where both the parameters λ and k are unknown. From the cumulative distribution function (1), we can obtain:


[image: there is no content]



(21)







Suppose that [image: there is no content] is a random sample of data, and the [image: there is no content] is the ordered observation. Let [image: there is no content] be the estimate of [image: there is no content], then we can obtain estimates of λ and k by minimizing the equation:


[image: there is no content]



(22)







Generally, some [image: there is no content]’s are used to be the estimates of the [image: there is no content], and the [image: there is no content] is most frequently used, because [image: there is no content] is the expected value of [image: there is no content]. In this article, we also use this [image: there is no content].



Equation (22) is a non-linear function. To obtain estimates of the two parameters, we can solve (22) by using some non-linear regression techniques. These estimators are called percentile estimators, which were also applied and introduced by Gupta and Kundu [24].




4. Least Squares Estimators


In this section, we introduce the expressions of another estimation. This method was first applied by Swain, Venkatraman and Wilson [25] to estimate the parameters of the beta distribution, and it can be utilized in other cases, as well. Suppose that [image: there is no content] is a random sample of size n from a distribution whose distribution function is [image: there is no content] and that [image: there is no content] denotes the ordered set of sample observations. Jonson, Kotz and Balakrishnan [26] proposed expressions for the expectations and variances,


[image: there is no content]



(23)







The least squares estimators can be obtained by minimizing:


[image: there is no content]



(24)







We call this estimator as least squares estimator.



Therefore, in the case of the Weibull distribution, the least squares estimators of k and λ are denoted by [image: there is no content] and [image: there is no content], respectively. These values are obtained by minimizing:


[image: there is no content]



(25)








5. Simulation Study


5.1. Procedures


In this part, the Monte Carlo experiment is described, and the simulation results are analyzed. The R 3.2.2 software [27] routines for log–normal random variates are used to generate the sample from the Weibull distribution. Then, the MLE, percentile estimation and least squares estimation can be realized by the non-linear minimization function. In the R software, the non-linear minimization function can solve a minimization problem using a Newton-type algorithm. After substituting the MLEs into the corrected formula mentioned previously, we can obtain the analytic bias-corrected estimators. The bootstrap bias-corrected estimators will be acquired after conducting the replicative MLE experiments.




5.2. Analysis of the Results


5.2.1. Comparison of Maximum Likelihood Estimators and Bias-Corrected Maximum Likelihood Estimators


Comparing the theoretical performances of the different estimators mentioned above is not convincing. Therefore, we performed extensive simulations to compare the performances of the different methods, mainly with respect to their real absolute percentage biases and percentage mean squared errors (MSEs) for different sample sizes. The percentage MSE is defined as [image: there is no content], and the absolute percentage bias is defined as [image: there is no content].



In each section of this experiment, 20,000 Monte Carlo replications are performed, and 10,000 bootstrap samples are used for every replication.



We also investigate general Weibull distributions with some common parameter values. The exponential distribution with particular parameter value ([image: there is no content]) is also investigated here. We select parameters values for the Weibull distribution ([image: there is no content]) that are consistent with the data generating process being an exponential distribution.



Absolute percentage biases and MSEs of those estimators for the exponential distribution are presented in Table 1, and those for the Weibull distribution are presented in Table 2.



Table 1. Percentage bias and mean squared errors (MSEs) for the exponential distribution.







	

	
n

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content], [image: there is no content]

	
10

	
3.38797(1.72263)

	
4.24687(1.63461)

	
1.62722(1.68783)

	
2.03847(2.23278)

	
1.54944(2.178493)




	
20

	
3.29136(1.65143)

	
4.13135(1.57272)

	
1.58273(1.52827)

	
1.74331(2.177534)

	
1.48638(1.40788)




	
50

	
2.79397(1.14223)

	
3.64087(1.09408)

	
1.09148(1.04746)

	
1.21462(1.68899)

	
0.97849(0.98887)




	
90

	
2.25832(0.43723)

	
2.73324(0.49677)

	
1.03022(0.41751)

	
1.09139(0.95252)

	
0.96362(0.40429)




	
[image: there is no content], [image: there is no content]

	
10

	
3.62346(2.43225)

	
4.52579(2.32371)

	
1.93752(2.37691)

	
2.12836(2.84987)

	
1.83741(2.23637)




	
20

	
3.48225(2.34162)

	
4.44257(2.26101)

	
1.84247(2.23775)

	
1.93243(2.76782)

	
1.73236(2.19606)




	
50

	
2.48276(1.83342)

	
3.33175(1.71529)

	
0.99447(1.75702)

	
1.01764(2.37791)

	
0.96848(1.67906)




	
90

	
2.24721(0.88253)

	
2.92384(0.89496)

	
0.83833(0.89241)

	
0.99847(1.04731)

	
0.81751(0.81043)
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10

	
0.32264(0.24035)

	
0.28236(0.59336)

	
0.623731(0.24071)

	
0.18357(0.30108)

	
0.17435(0.23218)




	
20

	
0.31451(0.22341)

	
0.27293(0.23809)

	
0.24386(0.23353)

	
0.17673(0.29049)

	
0.16212(0.22234)




	
50

	
0.27232(0.18334)

	
0.22251(0.18124)

	
0.19474(0.18364)

	
0.12734(0.24157)

	
0.11615(0.17787)




	
90

	
0.22582(0.13205)

	
0.21523(0.13221)

	
0.16342(0.13201)

	
0.09862(0.15193)

	
0.06783(0.12996)




	
[image: there is no content], [image: there is no content]

	
10

	
0.23464(0.22826)

	
0.36204(0.23118)

	
0.19424(0.22719)

	
0.35411(0.23386)

	
0.13571(0.22105)




	
20

	
0.21527(0.21376)

	
0.34482(0.21096)

	
0.18895(0.21855)

	
0.33206(0.22596)

	
0.12556(0.21224)




	
50

	
0.20738(0.19892)

	
0.28401(0.20515)

	
0.17804(0.19497)

	
0.26589(0.20787)

	
0.12404(0.19272)




	
90

	
0.19278(0.09642)

	
0.26276(0.09994)

	
0.15497(0.09036)

	
0.24259(0.10425)

	
0.11285(0.08902)








In these tables [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] denote MLEs, percentile, bootstrap, least squares and analytic bias corrected estimators of λ.








Table 2. Percentage bias and MSEs for the Weibull distribution.







	

	
n
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10

	
2.87878(2.02135)

	
3.76377(1.94205)

	
1.17121(1.97737)

	
1.58273(2.52286)

	
1.09343(0.48693)




	
20

	
2.71862(1.91433)

	
3.61252(1.82626)

	
1.02736(1.88171)

	
1.23402(2.47634)

	
0.96782(1.77987)




	
50

	
2.23878(1.42331)

	
3.10377(1.34989)

	
0.51983(1.37363)

	
0.74025(1.98798)

	
0.48693(1.28777)




	
90

	
1.78422(0.77231)

	
2.23241(0.76976)

	
0.50221(0.77014)

	
0.51992(1.22424)

	
0.46362(0.74991)




	
120

	
1.33244(0.68769)

	
1.76234(0.55237)

	
0.49025(0.52129)

	
0.52106(0.76348)

	
0.38221(0.50104)




	
[image: there is no content], [image: there is no content]

	
10

	
4.46931(2.83411)

	
3.27236(2.49953)

	
2.72193(2.38278)

	
1.98214(3.40137)

	
0.56310(2.22179)




	
20

	
4.21625(2.61951)

	
2.92736(2.27636)

	
2.51293(2.15254)

	
1.68174(3.19227)

	
0.54212(2.00913)




	
50

	
3.34629(1.58012)

	
2.16325(1.37882)

	
1.13245(1.37627)

	
0.80234(2.2101)

	
0.49672(1.37421)




	
90

	
2.22365(0.78163)

	
1.49237(0.70841)

	
0.82329(0.70527)

	
0.62342(1.22716)

	
0.48297(0.70044)




	
120

	
1.83167(0.57310)

	
1.26119(0.56236)

	
0.58293(0.56093)

	
0.45231(0.76328)

	
0.41032(0.55047)




	
[image: there is no content], [image: there is no content]

	
10

	
3.36463(2.51351)

	
4.25296(2.43116)

	
1.67224(2.46618)

	
1.88162(2.99377)

	
1.57213(2.36262)




	
20

	
3.11751(2.41325)

	
4.12374(2.31519)

	
1.52373(2.37256)

	
1.61233(2.87527)

	
1.42262(2.26869)




	
50

	
2.12766(1.93223)

	
3.01256(1.85091)

	
0.64873(1.87429)

	
0.77045(2.47618)

	
0.68583(1.79669)




	
90

	
1.97311(0.92734)

	
2.63147(0.94868)

	
0.58232(0.92813)

	
0.68873(1.17312)

	
0.57014(0.90033)




	
120

	
1.23241(0.69887)

	
1.26123(0.58363)

	
0.56344(0.57314)

	
0.62323(0.73139)

	
0.45236(0.50315)
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10

	
0.28614(0.26124)

	
0.241226(0.61216)

	
0.211832(0.26081)

	
0.146316(0.32004)

	
0.135225(0.25109)




	
20

	
0.27369(0.25233)

	
0.23311(0.25917)

	
0.20496(0.25164)

	
0.13753(0.31193)

	
0.12613(0.24765)




	
50

	
0.23112(0.20114)

	
0.18432(0.20213)

	
0.15589(0.20175)

	
0.08864(0.26232)

	
0.07725(0.19897)




	
90

	
0.17768(0.15408)

	
0.175003(0.15431)

	
0.12795(0.15201)

	
0.07716(0.17203)

	
0.02694(0.15097)




	
120

	
0.11291(0.11124)

	
0.13766(0.11214)

	
0.67633(0.11072)

	
0.02675(0.11482)

	
0.01418(0.10621)
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10

	
0.19743(0.13385)

	
0.310213(0.14019)

	
0.15342(0.13291

	
0.321029(0.14933)

	
0.08721(0.13004)




	
20

	
0.17243(0.12724)

	
0.29126(0.12948)

	
0.14191(0.12574)

	
0.30927(0.13852)

	
0.08512(0.12121)




	
50

	
0.15672(0.10983)

	
0.22125(0.11032

	
0.11814(0.10875)

	
0.20923(0.11763)

	
0.07431(0.10814)




	
90

	
0.12609(0.06171)

	
0.20823(0.06182)

	
0.08726(0.06121)

	
0.17301(0.07124)

	
0.04814(0.06908)




	
120

	
0.10203(0.05097)

	
0.18037(0.05102)

	
0.73716(0.05092)

	
0.09272(0.05782)

	
0.03223(0.05073)




	
[image: there is no content], [image: there is no content]

	
10

	
0.16632(0.25277)

	
0.29013(0.26126)

	
0.12231(0.25163)

	
0.28137(0.26897)

	
0.06746(0.25005)




	
20

	
0.14243(0.24724)

	
0.27839(0.24997)

	
0.11978(0.24578)

	
0.26015(0.25942)

	
0.05542(0.24213)




	
50

	
0.13362(0.22975)

	
0.21037(0.23141)

	
0.10077(0.22934)

	
0.19845(0.23861)

	
0.05031(0.22711)




	
90

	
0.12717(0.12457)

	
0.19715(0.12986)

	
0.08934(0.12397)

	
0.17518(0.13232)

	
0.04814(0.12182)




	
120

	
0.10336(0.08319)

	
0.18513(0.09043)

	
0.07861(0.08126)

	
0.11388(0.12123)

	
0.03272(0.07964)
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10

	
4.66337(2.99373)

	
3.32984(2.79688)

	
2.60702(3.72264)

	
1.59874(3.42664)

	
0.88434(2.81625)




	
20

	
4.37652(2.86477)

	
3.11147(2.43241)

	
2.47002(3.28695)

	
1.45287(3.05669)

	
0.67798(2.53676)




	
50

	
3.29761(1.71237)

	
2.42056(1.51879)

	
1.68072(2.37586)

	
1.06739(2.13422)

	
0.58241(1.51003)




	
90

	
2.02482(0.66934)

	
1.69243(0.65832)

	
0.75016(0.69897)

	
0.51206(1.21028)

	
0.49431(0.50207)




	
120

	
1.55471(0.52901)

	
1.24899(0.53106)

	
0.71538(0.52411)

	
0.41097(0.61093)

	
0.39275(0.511364)
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10

	
0.28441(2.03217)

	
0.19927(2.00121)

	
0.19221(1.96287)

	
0.14282(2.56542)

	
0.13155(0.95892)




	
20

	
0.27233(1.92128)

	
0.18876(1.90851)

	
0.18024(1.89326)

	
0.12393(2.47998)

	
0.11042(1.88297)




	
50

	
0.22341(1.40236)

	
0.17543(1.38972)

	
1.15976(1.37653)

	
0.09472(1.87524)

	
0.07424(1.36891)




	
90

	
0.16493(0.85237)

	
0.16998(0.75364)

	
0.11978(0.74984)

	
0.06921(1.10475)

	
0.02602(0.74004)




	
120

	
0.11419(0.51264)

	
0.14235(0.50928)

	
0.07321(0.50886)

	
0.02634(0.75213)

	
0.02123(0.50832)
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10

	
0.23323(0.99762)

	
0.25986(1.03875)

	
0.10375(1.08632)

	
0.25671(1.12056)

	
0.07796(0.97432)




	
20

	
0.22505(0.96251)

	
0.24158(0.98347)

	
0.09865(0.99879)

	
0.24763(1.03522)

	
0.06987(0.94318)




	
50

	
0.15613(0.65838)

	
0.20069(0.66927)

	
0.08976(0.67832)

	
0.20973(0.74224)

	
0.05759(0.65021)




	
90

	
0.11203(0.34578)

	
0.15563(0.34865)

	
0.07783(0.34196)

	
0.15107(0.38976)

	
0.04326(0.33275)




	
120

	
0.09463(0.02524)

	
0.13374(0.02637)

	
0.06372(0.02496)

	
0.13214(0.03109)

	
0.02543(0.02387)
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10

	
0.59711(0.39213)

	
0.48897(0.40027)

	
0.38799(0.37994)

	
0.466206(0.42374)

	
0.27911(0.38133)




	
20

	
0.56192(0.28192)

	
0.45256(0.38627)

	
0.34521(0.35879)

	
0.44575(0.39266)

	
0.21364(0.35025)




	
50

	
0.32624(0.25173)

	
0.39201(0.25086)

	
0.23336(0.24965)

	
0.35214(0.27894)

	
0.13342(0.24837)




	
90

	
0.11398(0.13021)

	
0.32325(0.13264)

	
0.10924(0.12987)

	
0.22343(0.15036)

	
0.05121(0.12866)




	
120

	
0.79112(0.0987)

	
0.14923(0.07023)

	
0.08011(0.06973)

	
0.09234(0.08997)

	
0.01206(0.06835)










These tables show that the percentage biases of the analytic bias-corrected MLEs are much smaller than those of the MLEs. Meanwhile, both the analytic bias correction and bootstrap bias correction perform well. However, the Cox-Snell bias correction is more effective than the bootstrap reduction, especially with the modest sample size.



The absolute values of the percentage biases tend to decline as the sample size increases, and the percentage MSEs of the Cox-Snell estimators are smaller than those of the bootstrap estimators, except in a few cases. The MSEs and biases of the analytic bias-correction estimators are smaller than those of the other estimators.




5.2.2. Analysis for All Estimators


The absolute values of the percentage biases of all five estimators are shown in the Figure 1, Figure 2 and Figure 3. Some of the points are clear based on the experimental results. For all methods, as the sample size increases, the biases decrease.


Figure 1. % Bias of the parameters. (a) % Bias of k ([image: there is no content]); (b) % bias of k ([image: there is no content]); (c) % bias of λ ([image: there is no content]); (d) % bias of λ ([image: there is no content]). In these figures, pere, lse, mle, bmle and mle denote the related curves of percentile estimators, least squares estimators, MLEs, bootstrap corrected MLEs and analytic bias-corrected estimators.



[image: Mca 22 00019 g001]





Figure 2. % Bias of the parameters. (a) % bias of k ([image: there is no content]); (b) % bias of λ ([image: there is no content]); (c) % bias of k ([image: there is no content]); (d) % bias of λ ([image: there is no content]).



[image: Mca 22 00019 g002]





Figure 3. % Bias of the parameters. (a) % bias of k ([image: there is no content]); (b) % bias of λ ([image: there is no content]).
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For the most part, the biases of the percentile estimators are larger than those of other estimators, except in specific cases, as shown in Figure 1a and Figure 2a. The bootstrap bias-corrected MLEs and analytic bias-corrected MLEs are generally both superior to MLEs. Furthermore, the analytic bias-corrected MLEs are superior to the other estimators.



The performance of the least squares estimators is uncertain. Sometimes, the least squares estimators perform better than the MLEs, whereas at other times, the latter’s performance stands out. Clearly, the biases of the least squares estimators become extremely similar to those of the bias-corrected MLEs as the sample size increases.



However, the MSEs of the least squares estimators are often larger than those of the other estimators. Meanwhile, the MSEs of the MLEs, analytic bias-corrected MLEs, bootstrap bias-corrected MLEs and percentile estimators are close, as evidenced by the results shown in Figure 4, Figure 5 and Figure 6.


Figure 4. % MSEs of the parameters. (a) % MSE of k ([image: there is no content]); (b) % MSE of k ([image: there is no content]); (c) % MSE of λ ([image: there is no content]); (d) % MSE of λ ([image: there is no content]).
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Figure 5. % MSEs of the parameters. (a) % MSE of k ([image: there is no content]); (b) % MSE of λ ([image: there is no content]); (c) % MSE of k ([image: there is no content]); (d) % MSE of λ ([image: there is no content]).



[image: Mca 22 00019 g005a][image: Mca 22 00019 g005b]





Figure 6. % MSEs of the parameters. (a) % MSE of k ([image: there is no content]); (b) % MSE of k ([image: there is no content]).
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These results indicate that the analytic bias-corrected MLEs can effectively reduce the biases of MLEs. Moreover, to obtain the least biased estimators of the parameters of the Weibull distribution, the analytic bias-corrected MLEs are much more appropriate than the other common estimators mentioned above.






6. Real Illustrative Example


In this section, the practical performance of the Cox–Snell bias correction is explored, and we apply this estimation to real data (i.e., the data provided by Aarest [7]). Aarest tested the times to failure of 50 devices.



We fit the Weibull distribution to these data using MLEs, percentile estimators and least squares estimators. Then, we obtain the bias-corrected parameters by solving the analytic expressions mentioned previously.



Table 3 reports the failure time of 50 devices.



Table 3. Calculated failure time of 50 devices.







	
No.

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12

	
13




	

	
0.100

	
7.00

	
36.00

	
67.00

	
84.00

	
0.200

	
11.00

	
40.00

	
67.00

	
84.00

	
1.00

	
12.00

	
45.00




	
No.

	
14

	
15

	
16

	
17

	
18

	
19

	
20

	
21

	
22

	
23

	
24

	
25

	
26




	

	
67.00

	
84.00

	
1.00

	
18.00

	
46.00

	
67.00

	
85.00

	
1.00

	
18.00

	
47.00

	
72.00

	
85.00

	
1.00




	
No.

	
27

	
28

	
29

	
30

	
31

	
32

	
33

	
34

	
35

	
36

	
37

	
38

	
39




	

	
18.00

	
50.00

	
75.00

	
85.00

	
1.00

	
18.00

	
55.00

	
79.00

	
85.00

	
2.00

	
18.00

	
60.00

	
82.00




	
No.

	
40

	
41

	
42

	
43

	
44

	
45

	
46

	
47

	
48

	
49

	
50

	

	




	

	
85.00

	
3.00

	
21.00

	
63.00

	
82.00

	
86.00

	
6.00

	
32.00

	
63.00

	
83.00

	
86.00

	

	










Table 4 reports the maximum likelihood estimates, bootstrap maximum likelihood estimates, analytic bias-corrected maximum likelihood estimates, percentile estimates and least squares estimates after fitting the Weibull distribution to these data.



Table 4. Five estimates of Parameters.
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16.52175

	
16.63145

	
16.22125

	
16.60235

	
16.15814
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83.64601

	
83.48114

	
83.655114

	
83.58114

	
83.669204










Based on the MLE of the data shown in Table 3, Figure 7 presents the fitted probability density function curve of Weibull distribution.


Figure 7. Fitted Weibull’s probability density function (failure time data).
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For these data, the analytic bias correction decreases the height of the Weibull distribution density, and the shape of the density becomes slightly "fatterr" and "shorter". Thus, the distribution is more uniform.




7. Conclusions


Usually, the two parameters of a Weibull distribution are estimated using maximum likelihood estimation, which is realized under non-linear and first-order conditions. Nevertheless, after comparing all of the methods, it is clear that in terms of the minimization, analytic bias-corrected MLEs exhibited the best performance in almost all cases. Therefore, the analytic bias-corrected MLEs of the two-parameter Weibull distribution are proposed to more effectively reduce the biases of the MLEs.



We conduct a Monte Carlo experiment, which is described in the simulation study section. According to the MSEs and absolute percentage biases of the estimates, we explore the effectiveness of these estimations. Clearly, the biases of the analytic bias-corrected MLEs are smaller than those of the other estimators. Consequently, we can conclude that the analytic bias-corrected MLEs are superior to the others tested here.



All in all, the analytic bias-corrected MLEs discussed in this paper are worth popularizing for utilization on actual data. They should be highly recommended, especially for small sample sizes.
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Appendix A. Specific Calculation


Here are the specific calculation procedures of the bias-corrected MLEs of the parameters of the Weibull distribution.



From the previous part, we can know that the likelihood function of the two-parameter Weibull distribution is:


[image: there is no content]



(A1)




and the log-likelihood function is:


[image: there is no content]



(A2)




We obtain these higher-order derivatives:
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(A3)
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(A4)
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(A5)
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(A6)
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(A7)
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(A8)
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(A9)
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(A10)
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(A11)




and then, we can obtain the following formulas:
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(A12)
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(A13)
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(A14)




The following equations are also easy to get:


[image: there is no content]



(A15)
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(16)
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(A17)




and the following equation is required for the next calculation part:


E(∑i=1nxik(logxi)3)=n∫0∞xk(logx)3(1λ)kkxk−1e−(xλ)kdx=nλk(klog(λ)(2klog(λ)(klog(λ)−3γ+3)+6γ(γ−2)+π2)−4ζ(3)−γ(2γ(γ−3)+π2)+π2)2k3



(A18)







Where γ is a constant called eulergamma and its value is about 0.57721; and [image: there is no content] is another constant, and its value is about 1.20206; then, these results can be obtained:


[image: there is no content]








Then, based on Equation (16), a series of results is obtained:
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(A20)
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(A21)
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(A23)
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(A24)
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(A25)
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(A26)
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(A27)




then:
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(A28)
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(A29)
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(A30)
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(A31)
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(A32)
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(A33)
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(A34)
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(A35)







From the formula [image: there is no content], we can know that the information matrix is:


[image: there is no content]



(A36)




and:
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Using the bias-corrected expressions in the matrix form, we can obtain:


[image: there is no content]



(A37)







The bias-corrected estimates are:


[image: there is no content]



(A38)




where [image: there is no content],[image: there is no content]
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